ON THE DISTRIBUTION OF THE NUMBER OF SUCCESSES
IN INDEPENDENT TRIALS

By J. N. DarrocH
University of Adelaide

0. Summary. The distribution of the number of successes in n independent
trials is “bell-shaped”. The expected number of successes, u say, either deter-
mines the most probable number of successes uniquely or restricts it to the pair
of integers nearest to u.

1. The shape of the distribution. Consider a set of n independent trials and let
p;(= 1 — ¢;) denote the probability of success in the jth trial,j = 1,2, --- , n.
Also let pr = (p1, P2, ==+, Da), kK =1,2, -+, n, and let P.(px) = P(r suc-
cesses in the first & trials), r = —2, —1,0, 1, ---, k, k 4+ 1, k + 2. Thus we
have trlwa]ly P_z(pk) = P_1(pk) = Pk+1(pk) = Pk+2(pk) = 0.

In this section it will be assumed that 0 < p; < 1,5 =1, 2, --- , n with no
essential loss of generality.

LeMma 1.

P:(p2) — Pi(p:) = 0= Pi(p:) — Po(p:) > 0.
Proor. We have to prove that A N\ B is empty where
A = {p::Ps(ps) — Pi(p) 2 0}, B = {p2:Pu(p2) — Po(p2) =0}

Let & = p, + p: and 8 = pp: . Then o’ = 48. Now in 4, 38 — = 0 and
therefore 3a> — 4a = 0 which implies that « = 4/3; whilein B,38 — 2a + 1 =
0 and therefore 30 — 8a + 4 = 0 which implies that « < 2/3. Hence 4 NB
is empty.

THEOREM 1.

Prya(pn) — Po(p) Z 0= Pu(pa) — Pra(pa) >0, r=1,2--,n—1
Proor. We have

(1) P.(px) = @Pr(Pr-1) + DePra(Pi-1);

and hence

Pra(pe) — Po(p) = u(Praa(pea) — Pr(pea))
+ pe(Pr(pr1) — Proa(pe-1)) r=1,2,---, bk —1;k=2,3,---,m.

Now assume that

Pryi(pi-1) — Pr(pr-1) Z 0= Pr(pr1) — Pra(pr-1) > 0,

r=1,2--,k—2

(2)

(3)
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Then by (2) and (3)
Prii(pr) — Pr(pe) = 0= Po(pi—1) — Pra(pi—1) >0
= P,y(pr1) — Pra(pe-1) > 0,

and hence Pr+1<pk) - Pr(pk) =Z0= Pr(pk) - Pr—l(pk) > 07 r = 1’ 2, )
k — 1. Referring to Lemma 1, the proof of Theorem 1 by induction on % is now

complete.
Note that an equivalent formulation of Theorem 1 is

P.(ps) — Pra(pe) £ 0= Pra(pn) — Po(ps) <0 7 = 1, 2,---n — 1

Therefore Theorem 1 states that the probabilities P_i(ps), Po(ps), Pi(pn), -+,
P.(pr), Pnyi(pn) strictly increase and then strictly decrease, except that there
may be at most two equal maxima.

LeMma 2.

Py(p2) — 2Pi(ps) + Po(p:) = 0 and Pi(p:) — Po(pz) > 0
= P1(p2) — 2Po(p2) + P-a(p2) > 0.
Proor. We have to prove that A N B N C is empty where
A = {p2:P2(p:) — 2P1(p2) + Po(p2) = 0}
B = {p2:P1(p2) — Po(p2) > 0}
C = {p2:P1(p2) — 2Po(p2) + P-1(p2) = 0}.

Nowin 4,68 — 3a + 1 = 0andin B 2a — 38 — 1 > 0. Therefore in A N B,
a>1.InC, —3a + 48 + 2 = 0 and therefore o — 3a 4+ 2 = 0 which implies
that @ < 1. Therefore A N B N C is empty.

THEOREM 2.

Pria(pn) — 2Pr(pa) + Pra(pa) 2 0 and  Pr(pa) — Proa(ps) > 0
= P.(pn) — 2P, 1(Pa) + Pra(pa) >0, r=1,2,---,n.
Proor. From (1) we have
Prya(pr) — 2P, (pi) + Pra(pr) = @ue(Prya(Pe-1) — 2Pr(Pr-1) + Proa(Pe-1))
+ pe(Pr(Pea) — 2Pra(pra) + Prsa(pea)); 7=1,2,--- k.

The proof of Theorem 2 uses (4) and Lemma 2 and proceeds by induction in
much the same way as the proof of Theorem 1. As the details are straightforward

but tedious to write out, we omit them.
Note that an equivalent formulation of Theorem 2 is

P,(p.) — 2P,_1(ps) + Pr2(pn) =0 and Pi(p.) — Pra(pa) >0
= Pr+1(pn) - 2Pr(pr) + Pr—l(Pn) <0,

(4)

since if a, b and ¢ are statements, @ and b = ¢ is equivalent to not ¢ and b = not a.
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When the above two formulations of Theorem 2 are applied to the number of
failures instead of to the number of successes, two further formulations are ob-
tained, namely:

Pu(p.) — 2P,_1(ps) + Pr2(ps) = 0 and P.(p,) — P,s(p.) <0

= Pria(pn) — 2P(pa) + Pra(pa) > 0,
and
Pri1(pn) — 2P,(ps) + Pra(ps) <0 and P,(p.) — Pry(pa) < O

= Pr(ps) — 2P,1(pn) + Pr2(pa) < 0.

Therefore Theorem 2 states that the probabilities P_3(p.), P_1(p.), Po(pa), - - ,
Pu(pn), Pry1(pn), Pria(ps) first increase convexly and then concavely, and then
they decrease concavely and then convexly. The convexity and concavity are
strict everywhere except that there may be at most one set of three consecutive
probabilities which increase linearly and at most one set of three which decrease
linearly.

Thus the distribution of the number of successes may be described as bell-
shaped.

2. The most probable number of successes. In this section we examine the
extent to which the expected number of successes, Y ;p; = u say, determines
the most probable number of successes. The argument rests heavily on the fol-
lowing result due to Hoeffding ([2] Corollary 2.1; David [1] gave an alternative
solution of a special case of Hoeffding’s problem ).

Horrrping’s THEOREM. Given u, the maximum and minimum of any linear
function of the probabilities Po(p,), Pi(pa), * -, Pa(p.) are attained when the
probabilities p; , p2, - -+, p. take on, at most, three different values, only one
of which is distinet from 0 and 1.

Writing p, = p, define the integers [ = I(p) and m = m(p) by

Pi(p) — Pia(p) >0, Pia(p) — Pu(p) £0
and
Pu(p) = Pua(p) 20,  Pny(p) — Pa(p) <O.

Also let n,(p), no(p) respectively denote the numbers of unit and zero com-

ponents of p.
Next let

G(I‘):{p:ij=y,,0§pj§ 1,7 = 1,2,...,,%}

and define
l*(”') = minpsa(u) l(P), m*(”') = MAaXpea(u) m(P)

n;k(#) = MaXpeqq M(P), n;k(l-") = MaXpeq() No(P)-
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Our main task in this section is to find I*(x) and m*(x).

TrEOREM 3. Let [x] denote the integral part of z. Then I*(u) = u when u is
integral; I*(u) = u+ (u — [u])/(n — [u]) — 1 when p + (p — [W])/(n — [4]) is
integral but u is not; and () = [ + (& — [u])/(n — [4])] otherwise. Also
m*(u) = u when p is integral; and m*(u) = ([u] + 1 — u)/(W] + D] + 1
otherwise.

Proor. Let

(5) S(p) = {rim(p) = r = Up)} = {r:P.(p) — Pr1(p) > 0}.

Now form the intersection S*(1) = f)peow S(p). Noting that G() is closed we
deduce from (5) that

6) S*(u) = {rinf(uw) S r,r = T (w)
= {r:mingeaqy (P+(p) — Pr1(p)) > 0}
By Hoeffding’s theorem,

minpeeq (Pr(p) — Pra(p)) = mingerq (Pr(p) — Pra(p)),

where H (u) is the subset of G(u) containing those p whose components are all 0, 1
or 7 say. When p ¢ H(u) we shall write n,(p) = »n , no(p) = w, 7 = 7(u, v1, )
where

) 0<7<1, n+(n—»n—wr=p

In order to derive I*(u) suppose first that u 5 [u]. Then it is readily seen that
ni(p) = [ul, 7m0 (u) = n — [u] — 1. Therefore

(8) 0=wm=, O0=w=n-[-L

If pe H(u), P,(p) is the binomial probability of obtaining »r — » successes in
n — v, — », trials when the probability of success is =. Consequently

P.(p) — Pru(p) >020=r—n<(®m—»n—»wn+ L
ensr<p+r(gn, wn)
by (7) and therefore
mingery (Pr(p) — Pra(p)) > 0 [u] = 7 < p + min,, , (g, »1, ).
Now from (7) and (8),

. . w— n . op—n_ p— (4
i W 21, 20) = Wi = s S T

Thus when g 5 [u], I*(u) is the largest integer which is strictly less than u
+ (w — WD/(n — [u).

It remains to find * (i) when u = [u], in which case ny (n) = g, 7 (&) = 7 — p.
When vy = u, vo = n — p,

P,(p) =1 and P.(p) =0, TR
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Otherwise, when 0 < »; = p — 1and 0 = » = n — p — 1, by definition
min,, ,, (g, 1, v) > 0.

It readily follows that I*(u) = u.

The proof of Theorem 3 is completed by remarking that the formula for m*(u)
can be obtained by applying the formula for I*(u) to the distribution of the
number of failures.

Theorem 3 shows that I*(u) and m™*(u) are always equal to either [u] or [u] + 1,
subject of course to () < m*(x). When I*(u) = m*(u) it follows that I(p) =
m(p) = I*(p) for all p e G(u), and therefore that the maximum probability is
unique and occurs at *(u) for all p £ G(u). Theorem 4 determines the conditions
for this to happen and it is convenient to express these conditions in terms of
the value of 8(u) = u — [u], the fractional part of u.

TuroREM 4. Given u, the most probable number of successes is equal to

p, i 8uw) =0,

Wl+1 i (—[kD/(n—[k+1) <k <1,

W, & 0=3d( <1/(b]+2),

oneorbothof [u], (Wl +1 4  1/([ul +2) S 6(u) = (n— [u])/(n— (] +1).

Proor. Referring to Theorem 3 it is sufficient to point out that I*(u) =

[u] + 1if and only if u + (s — [u])/(n — [u]) > [u] + 1 in which case (n) >
(n — [u])/(n — [u] + 1). Also that, by a similar argument m*(u) = [u] if and

only if () < 1/([u] + 2).

Acknowledgment. I wish to thank the referee for pointing out that some im-
provement was necessary in my original proof of Theorem 3.
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