ON THE ASYMPTOTIC DISTRIBUTION OF THE
AUTOCORRELATIONS OF A SAMPLE FROM A LINEAR
STOCHASTIC PROCESS!

By T. W. AxDERsON? AND A. M. WALKER3
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1. Introduction. Let ;, %2, --- , 2, be a sample of n consecutive observa-
tions from a stationary discrete-parameter stochastic process {zs, t = 0, =1,
+2, -+, with E(z}) < o, and let r; and rf ,4=1,2,3,---, n — 1, be the

autocorrelations, which we shall define as r; = C;/Cy, where

(L1)  Ci= g(xg—u)(xt+i—u)/(n—i), 1=0,1,---,n—1,
when u = E(x;) is specified a priori, and as ri = C5/Cy, where

(12) Cf = :Z:(xt — &) (e — 3)/(n — 1), i=0,1,-,n—1

Under certain conditions on {z; the distribution of any finite set of sample
autocorrelations is asymptotically normal; that is, the limit of the joint dis-
tribution of n}(r; — p;), 1 £ ¢ <s (or of W}(rf —p), 1 <40 < s), where
pi = cov (&, Tiys)/var x,, is the s-variate normal distribution with means 0
and nonsingular covariance matrix W = (w;;) say, when n — «. When {z
is a linear process such that

(1.3) fl«'t—l-t=__27ies_i, t=0,+1,4+=2,.--,
where D i o |vi < » and {e} is a set of independently and identically dis-
tributed random variables with E(e;) = 0, the covariance is

0
2
(14)  wi; = D (popotici + poposii T+ 20ipips — 20ipopusi — 2pipoPuti);
r=—00

thus W is a function of the p; only. (See, for example, Hannan [5], pp. 4041,
or Parzen [8], pp. 982-983.) Several other definitions of r; may be used. (For
example, the divisor n — ¢ in (1.1) and (1.2) may be replaced by n.) However,
they all lead to the same asymptotic distribution.
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This result has many applications in the asymptotic treatment of statistical
inference problems where the data constitute a sample of consecutive observa-
tions from such a stationary process. (For a comprehensive account see Hannan
[5], Chapters 2—4.) The assumption that {x4 is a stationary linear process will
often be reasonable. In particular, it is satisfied when {z} is either a linear auto-
regressive process of some finite order p, namely, the stationary solution of a set
of stochastic difference equations of the form

yd
(1.5) T — p+ Zl BTy — 1) = €,

{e4 denoting (as above) a set of independently and identically distributed ran-
dom variables and Bi, B2, - - -, Bp being constants such that the roots of the
equation 2° + Y. 7 B2°" = 0 have moduli less than unity, or is a moving-
average process of finite order ¢, so that

q
(1-6) Ty — p = Zo Oly€ty «

(If {x4 is not a linear process, an additional term involving fourth-order cumu-
lants of x4, , %4 , %4, , 23, , Which in general will be extremely complicated, has
to be added to the right-hand side of (1.4).)

The purpose of this paper is to prove the asymptotic normal distribution of
the autocorrelations of a linear process under the assumption of finite second-
order moments, E(e;) < o« (which we must make in any case to have E(z}) <
). In previous work the existence of higher moments of ¢; has always been
assumed. For example, Mann and Wald [7] suppose that E{|e|} < « for all
r > 0 when dealing with the autoregressive case (1.5). Diananda [3] supposes
that E(e;) < » for the moving-average case (1.6), this being a weakening of
the condition E(ej) < o« previously used by Hoeffding and Robbins [6]; and
Walker [9], in extending Diananda’s method to obtain the result for any linear
process (1.3), retains his condition E(e;) < « and alsorequires* that )i, |¢v4|
< o (though he considered a generalization of (1.3) in which {e;} is merely a
“finitely-dependent” stationary process, such that there exists a finite integer,
m say, with the property that any two sets of ¢’s are independent whenever the
suffices of the members of one set differ from each of those of the members of
the other set by at least m -+ 1). The fact that the contribution of E(e;) to
(1.4) automatically vanishes, as was first noted by Bartlett [2], p. 29, makes it
reasonable to expect that the finiteness of E(e;) can be dispensed with. Indeed
Anderson, [1], Section 4, proved a result equivalent to the asymptotic normality
of r, for the autoregressive case with p = 1 assuming only that E(e;) < o,
and the argument here is essentially a generalization of his method.

¢ The argument used by Walker can be modified when the ¢ are mutually independent
to show that this additional condition can be omitted, it being sufficient that D s=—o
[7i] < .
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THEOREM. Let {24 be a linear stochastic process, defined by

(1.3) ¢t M= Z'Yzet—m t=0, %1, £2,.--,
where Do |yi| < © and Do iy} < © and {e} is a set of independently
and identically distributed random variables with E(e;) = 0 and E(e}) = o* < .
Letr; = Ci/Co,i=1,2,8,---,n — 1, where C; and C, are defined by (1.1).
Then the joint distribution of n (7', - p,), 1 =217 = s, where

p; = COV (x; , $t+i)/Var Ty = Zv=—°o 'Yv'Yv+i/Zv=—°° 7122 )

tends to N (0, W) when n — oo, where W = (w;;) is given by (1.4).

CoroLLARY. Under the condztzons of the theorem the ]omt distribution  of
n(rf — p), 1 £ ¢ S s, where r¥ = CF/C%F and CF and C¥ are defined by (1.2),
tends to N(0, W) when n — «, where W = (wi;) is given by (1.4).

2. Proof of Theorem. We shall first prove that n%(n — p1) has N0, wy) as
its limiting distribution. This will follow from the fact that the limiting dis-
tribution of

n—l

21) & = 0 Sl = D/ = o = 2 S Vs — o3 o),

where y; = x; — p is N(0, o*v;), where

(2.2) (_Z_ i) wu .
Let
k
(2.3) Yer = ; Vi€ei,
n—1
(24) zftll)c = {Z YerYs+i,e — PZkZ Ye k}
where
k—1 k .
(2.5) pLE = i=z_k'7ﬁ’i+l/i=z_k7i .
Substituting (2.3) into (2.4) we have
n—l1
(2.6) zf,’,)c =n [t_Zl ]; VY j€t—i€t41—5 — P, k; z;?ﬁ,ét—zét_;]

Let 22 denote the expression obtained from z{% by omitting all terms contain-
ing (1 —k <s £n 4+ k), namely,

n—1 k k—1 k
(2.7) 20 = '*[t; @_Z_k J;k VY 1€ i€t—j — Plk; ”Z__’ VeYi€ri€j),

where 3. indicates that the terms in the summation with j = 4 are to be omitted.
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LemMa 1. The limiting distribution of 250" as n — « is N(0, o*v1.1), where

2%+1 e
(2.8) Vi = Zl 5
—
l k 77 ’ 7 r 7 17
(2.9) 5512 = ‘Zk[717i+l+r + vVitir — pp(Yi¥isr + vevis)l,
=

and v; = v; when |i| < k and vi = 0 when |i| > k.

Proor. When we change the order of summation with respect to ¢ and 7, j
in (2.7) and add and subtract a finite number of terms (the number not depend-
ing on n), we obtain

2k+1 n

(2.10) zait = 12000 2 e + Op(n ),

where 0,(n*) is a generic symbol for a random variable which is of order n* in
probability. For any set of constants ¢;, -« - , ¢n , the sequence { D cresersn}
constitutes a finitely-dependent stationary process having mean zero, variance
'Y 7y ¢’ and autocorrelations all equal to zero (since F(eserireverys) = 0
when ¢’ 5 ¢). Hence from a central liniit theorem due to Diananda ([3], p. 241,
Theorem 2), n* > 7y ¢, 2 =1 esersr has the limiting distribution N(0, o* > 7y ¢?)
when n — . Applying this result to (2.10) proves Lemma 1.

Let 2{"* denote the expression obtained by substituting (1.3) for y, = z; — u
in (2.1) and omitting all terms containing ex(— e < s < ), namely,

n—l1

0 n 0
(2.11)  29* = n”’[ D Yvivieie; — p1yy 2. Vv €€ j].
j=—c0

t=1 4,5 t=1 i,j=—o0

LemMa 2. The Uimiting distribution of 23°* as n — « is N(0, ¢*v;), where v,

1s given by (2.2).
Proor. The limit of N(0, ¢*v;) (which is the limiting distribution of 22" as
n — ») is N(0, o*v;) as k — o since

. 1 =
(212) llmk_,oo Vi = -2— Z { Zoo [’Yz")’i+l+r + YYitl—r — Pl('Yi'Yi+r -+ 'Yz'yi—r)]}Z

r=—00  j=—

which is equivalent to (2.2). Lemma 2 will then follow from Anderson’s form of a
convergence theorem of Diananda ([1], p. 687, Theorem 4.5) when we show that

(2.13) ERVI® = My,

(2.14) limge My, = 0,

where

(2.15) RO = 2% — 200
Let

(2.16) RY) =20 — 28,
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If we define

(2-17) Utk = Yt — Yt = Z'Y'iet—i ,
i[>k

then

n—1
’n%R;l,I)c = Z; [(yzk -+ ut,k)(yt+l.k + ut+l,k) - yz,kyH-z,h]
tr:

n

+ ; [— pu(yew + uew)® + prayi il

n—l

(2-18) = Z [ut,kyt+l,k + YepUerir T Uesleri e

t=1

n
T+ 2_; (p1k — P)Yik — 20Weithes — prs i)
t=

say, where

(2.19) T, = ;, Ueerins 5 To = —p,ti‘, Ut -
Similarly, from (2.7), (2.11), and (2.15), we have

(2:20) WRGY = 3T,

where Ty is obtained from T by expressing the latter as a linear combination
of a finite or countably infinite number of terms of the form D i) e_ierj,
and omitting the contributions from all terms for which 7 = j. (These in fact
oceur only in T3, Ty, T .)

Now we have

(2-21) n-lE(TIT2) = Mh,k, limye My = 0.

For example
n—1

(222) BT = > yoin 3 vevpn 2 Bleie oo s),

2
|3, 5+ >k 27| 3"+1|>
7] AT

and if E(erier_jev—iver_j) 7% 0, we must have either t — ¢ =¢ — ¢, ¢t —j =
{ — ', and therefore { —t =4 —i=j —j,or t—i=¢ —5,t—j=
¢ — 4, and therefore ¢ —t = j' — ¢ = ¢ — j, the value of ¢ for a nonzero
contribution to the final summation in (2.22), if any, being thus uniquely deter-
mined by ¢. It follows that

E(T5") £ (n— 1o ,-Z,-, al byirl byl byl = (n — 1)04{|ilz>k|w'}4’
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giving n ' E(T3) £ o"{ D>k ly:}*, which shows that (2.21) holds for h =
A similar type of argument applies for b = 1, 2, 5, 6, and for o = 4 we also use
limy.e p1,6 = p1. We then obtain (2.13) from (2 21) by using the inequality

E(ZT )= GZE(T %.

This proves Lemma 2.
LemMa 3. The limiting distribution of 25° is N(0, o*v,).
Proor. We have

n 0
o) — 2t = Z E YeYisi€i—i — 1D, D Yiei—i)
=1 i=—w t=1 7=—c0
; n—Il—1¢ 0 n—1
=n" Z’Ymu Z eu—pz >4 Z )
't——°° u=1 1=—00 u=1—

=n [Z 7m+z(z & + Thl) — m Z ’Y@(Z & + T(O))]

0 0
= 2 vy L) — o 2o viTAl,

where

n—Il—1 n
(2.23) TH = 3 & — 2 6.

t=1—1 t=1
Then

E|T%) £ (2l + Do
and
Bitle — &) = o[ b brisal 2l + D) + lod 24 20l] <
since
(22 Jal bl byl = 20 iy 20 fibrias

= _Z I%l%_; i — i < .
Thus
(2.24) 2P — 2% = 0,(n 7.

This proves Lemma 3.
Lemma 4. The limiting distribution of n}(r, — p1) as n — « s N(0, wy).
Proor. This follows from Lemma 3, the fact that
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n%<7'l - Pl) = ,:Zizl)/n_ltz; y%:l + 01,(7"/_%),
and
(2.25) p limy,e 7 t; vt = E(y1).

The last follows immediately by applying the law of large numbers for sta-
tionary stochastic processes (Doob [4], p. 465, Theorem 2.1), since the process
{y%} is metrically transitive (see Doob [4], pp. 458, 460); in fact, this gives the
stronger result that the limit is an almost certain one. A more elementary proof
can also be given by writing

n n n n
—1 2 -1 2 —1 —1 2
n Zl: Yy = tZ]; Yer + 2072 yestier + 072wt
= = =1 t=1

and using

n

(2.26) nE{Y uis) = 0212 yi—0

t=1 i>k

when k — o,

’N/_IEIZ yt,kut,kl = Elyt,kut,kl = [E<y%,k)E(u?.k)]%
(2.27) =t

= o’ : -0
1i[Zk [i>k

when k — «, and
n n

. -1 2 2 1 -1 2
D i 0D Yl = lZ Vi p liMpaw n7 D €t
t=1

= S =

(2.28) .
> vevi p limae n—1¢2=1 €1—i€t—j = 02‘ ;k73 — E(yi)

19| 4] =k
17#]

when & — . The second step in (2.28) is the result of applying the weak law
of large numbers for a sequence of independently and identically distributed
random variables to the first set of terms, and the central limit theorem of Dia-
nanda referred to above (combined with Chebyshev’s inequality) to the second
set of terms. This proves Lemma 4.

To complete the proof of the Theorem we have only to observe that a similar
argument can be carried through to show that the limiting distribution of
ZLI cm%(rz —p),¢ = (¢1, ¢, -+, c) being an arbitrary set of constants,
is N(0, ¢'We); it will then follow, for example by means of the device based on
the continuity theorem for characteristic functions which was employed by
Walker in a similar context ([9], p. 64), that the joint limiting distribution of
n(r,— m), 1 £ 1 < s, is N(O, W).
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The corollary is deduced in the usual way. We have

n—1 . 0 0
nE(& — p)’ = ) (Z b (1 = [d|/n) cov (21, Ters) — var a, Z pi = 02( Z v:)"
t==—(n— 1=—00 7=—00

when n — o it is easily shown from this that the difference between C; and
C¥ is 0,(n™"), and hence that the difference between 7; and r¥ is 0,(n7).
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