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1. Introduction. Orey (1962) proved that, if p is a transition probability matrix
with one ergodic class of recurrent and aperiodic states, then

limpsce Z [p"(41,7) — p (%, 5)] = 0.

We present here a somewhat different proof which may give additional insight.
Of course, Orey’s result implies the corollary to our Theorem 2, as well as our
Theorem 1 and its corollaries.

Let {z, :0 £ n < »} be a sequence of random variables on the probability
triple (2, &, P). Let ™ be the smallest o-field over which the z, :» = n are
measurable. The tail o-field F of {, :0 £ n < ©} is Mneo F™. The main
result of this paper is: If {x, :0 < n < «} is a Markov chain with stationary
transition probabilities, countable state space I, and all states recurrent, then
g™ is atomic under P. More precisely, let {I, :c € C} be the partition of I into
its cyclically moving subeclasses. It is equivalent to the usual definition (Chung
(1960) Section 1.3) that < and j are in the same I if and only if thereisann = 0
and a k in I with the n-step transition probabilities from ¢ to £ and from j to &
both positive. Then each F-set differs from some union of sets [z ¢ I,] by a
set of P-measure 0. In particular, if {z, :0 < n < o} is aperiodic and has only
one recurrent class, its tail o-field is trivial and Orey’s result follows. These
results are proved in Section 2 which concludes by describing the tail o-field of
a random walk on a countable Abelian group, and the ¢-field of exchangeable sets
defined on the recurrent Markov chain {z,:n = 0} with countable state space
and stationary transitions. A set is exchangeable if it depends measurably on the
2,:n = 0 and is invariant under finite permutations of them.

Section 3 contains three examples. Example 1 is an aperiodic chain with only
one recurrent class, in which two independent particles, starting from different
states, may never meet. Example 2 is a transient chain {z, :0 £ n < «} with
nonatomic tail ¢-field but trivial ¢nvariant o-field. An event A is tnvariant if there
is a Borel set B of I-sequences, with (%, %, --+) in B if and only if (¢1,%, - )
isin B,and A = (o, 21, ---) 'B. Example 3 is a stationary, three state Markov
chain with one aperiodic, ergodic class, but a non-trivial o-field of exchangeable
events.
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2. The results.

TueoreM 1. If {z, :0 = n < »} is a recurrent Markov chain with countable
state space, stationary transition probabilities, and [z, = 7] has probability 1 for
some state 1, then each set in the tail o-field of {x, :0 < n < o} has probability 0
orl.

Proor. Let {y, :0 < » < »} be the infer-s blocks of {x,:0 < n < «}: if
7, is the time of the »th return to 7, and 7o = 0, then y, = (-, , -+, %7, ,;-1)-
The y, are independent and identically distributed (Chung (1960) Section 1.3).
Each set in the tail o-field of {z, :0 < n < »} depends measurably on the
¥, iv 2 0, and is invariant under finite permutations of them. The 0-1 law in
(Hewitt and Savage (1955) Theorem 11.3) completes the proof.

CoroLLARY 1. If {z, :0 < n < »} is a recurrent Markov chain with countable
state space, stationary transition probabilities, and [xo & I,] has probability 1 for
some cyclically moving subclass I, then each set in the tail o-field of {x, :0 =
n < o} has probability 0 or 1.

Proor (by V. Strassen). Let J be the set of all values assumed by , with
positive probability. Let p™ (¢, j) be the n-step transition probability from 7
to j; if 41, 4> are in J, there is an n = 0 and a k in I with p (41, k) > 0 and
p™ (4, k) > 0. Suppose {z, :0 £ n < =} is defined on the probability triple
(2,5, P).If5¢J and 4 ¢ 5, then

P(A |z =1) = p™@G k)P(A |z, = k) + [1 — p™ (4, k)IP(A | 2 # k).

If P(A | xo = 1) > 0, then P(4 | 2y = 7;) = 1 by the theorem; hence P(4 |z,
= k) > 0,s0 P(A |z = 1.) is positive and therefore 1 by the theorem. Thus,
either P(A |xo = %) = 0 for all ¢ J and P(4) =0, or P(A|xm =1) =1
forall7 ¢ J and P(4A) = 1.

COROLLARY 2. Let {z, :0 < n < «} be a recurrent Markov chain with count-
able state space I and stationary transition probabilities. Let {I, :c € C} partition
I into its cyclically moving subclasses. Then the tail o-field of {x, :0 = n < =}
is equivalent to the c-field generated by the sets [xo € I.] for c € C.

Proor. If ¢ ¢ C, the set [z ¢ I.] differs from an z,-measurable set by a set of
probability 0, for each n; hence [z, ¢ I.] differs from a set in 5 by a set of prob-
ability 0. Conversely, let {z, :0 < n < «} be defined on the probability triple
(Q,F, P). If A ¢ 5 and Py ¢ I] > 0, then P(A |[xo ¢ I.]) is 0 or 1 by the
previous corollary. Thus, 4 differs from a union of sets [z, & I,] by a set of P-
measure 0.

COROLLARY 3. Let {z, :0 £ n < »} be a recurrent Markov chain with count-
able state space I and stationary transition probabilities. Let {I, e ¢ E} partition I
into ergodic classes. Then the invariant o-field of {x, :0 < n < o} is equivalent
to the o-field generated by the sets [xo € 1.} for e ¢ E.

Proor. Immediate from Corollary 2.

TueoreM 2. Let {z,:0 = n < «} be a sequence of random variables on the
probability triple (Q, F, P). The tail o-field of {2, :0 = n < «} s trivial under P
if and only if
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(1) liMy e SUP 4w |[P(A N B) — P(4)P(B)| = 0

for each B in &.

Proor. If (1) holds, apply it with 4 = B ¢ 3 to obtain P(4) = P(4)?%,
so & is trivial under P. Conversely, suppose  is trivial and fix B in . Let
15(w) = 1 or 0 according as w ¢ B or w ¢ @ — B. Then for 4 ¢ ™,

|P(A N B) — P(A)P(B)| = |[4[ls — P(B)]dP|
= |[4[P(B|$™) — P(B)]dP| = [ |[P(B|5"™) — P(B)|dP.

The backward martingale convergence theorem (Doob (1953) Theorem 4.2,
p- 328) completes the proof of (1).

CoRroLLARY. Let [p™ (4, j):%, 7 € I] be the matriz of n-step stationary transition
probabilities for a recurrent Markov chain with countable state space 1. For any two
states 11 and 1 tn the same cyclically moving subclass,

limpoe JZ; ™ (i, 7) — 2™ (42, §)| = 0.

Proor. Let {z, :0 £ n < «} be a Markov chain with matrix of 1-step sta-
tionary transition probabilities [p* (%, 7); ¢, j € I], and 2 = % or 7, with prob-
ability 3 each. The tail o-field of {z, :0 < n < «} is trivial by Corollary 1 of
Theorem 1. After a slight manipulation, Theorem 2 yields:

limgoew Supser |P(2s € 8|20 = 41) — P(z. e S| x = 42)| = 0.

But e |Qi(5) — @(5)| = 2 supscr |@i(S) — @(8)| for any two prob-
abilities @; , Q. on the subsets of I, completing the proof.

These results apply also to random walks. Let G be a countable, Abelian group
and 7 a probability on G. Let V be the set of 7 in G with w(7) > 0. Let {G, :c ¢ C}
partition @ into the cosets of the group spanned by V-V. Let {G. :¢ ¢ E} par-
tition G into the cosets of the group spanned by V. Let {2z, :0 = n < «} be
independent random variables with values in G; the 2, with n = 1 having com-
mon distribution 7. Let z, = Y =0 2, . The tail o-field of {, :0 £ n < «} is
equivalent to the o-field generated by the sets [xy ¢ G,] for ¢ £ C. The invariant
o-field of {z, :0 < n < =} is equivalent to the o-field generated by the sets
[xo € G¢] for e ¢ E. Proofs are omitted, being virtually identical to those of
Theorem 1 and its corollaries.

Call a set exchangeable if it depends measurably on z,:n = 0 and is invariant
under finite permutations of them. The argument for Theorem 1 proves: if
{zn:m = 0} is a recurrent Markov chain with countable state space, stationary
transitions, and z, degenerate, then any exchangeable set has probability 0 or 1.
Call 7 ~ j if and only if there exists a state k, finite sequences § and ¢ of states
with 26 a permutation of jo, and all transitions in 26k and in jok possible. Then
1 ~ j if and only if conditional probabilities of exchangeable sets given zo = %
coincide with those given z, = j. Here is a sketch of the argument.

Suppose 7 ~ 7, and A is an exchangeable subset of the Borel space of state
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sequences with P{(z.:n =2 0) ¢ 4 |2y =% = land P{(.:n 2 0) ¢ A | 20 =7 }
= 0. If ¢ is a finite sequence of states, 4, is the set of infinite sequences ¢ with
ey € A. If o* is a permutation of ¢, exchangeability implies 4, = A,+. Consider
the 8, o, k promised by the definition of 7 ~ 7, and call N the length of §. Since
P{(xn:n 2 0) e A | 2o = 1} = 1, therefore P{(z,:n = 0) ¢ A | z - - - Ty41 = 10k}
= 1.But P{(n:n =20) A |2 - xpa = 10k} = P{(xoin= 1) e Ao | 2o = K}
= P{@xsin = 1) ¢ Ajo | 2o = k}. So P{(znin = 0) ¢ Az, = j} 2
P{(zain 2 1) € Ajor | ®0 = k}P{zo - - - Zy1 = jok | xo = j} > 0, a contradiction.

Conversely, let 7 ~ j. Fix any state k, and let A be the set of all infinite state
sequences such that & occurs infinitely often, and for all remote &’s, the preceding
part of the sequence is obtained by permuting a sequence %o, where all transitions
of 1ok are possible. Then A4 is exchangeable, P[(z.:n = 0) ¢ A |zy = 3] = 1,
and P[(z.:n = 0) ¢ A | 7, = j] = 0, completing the proof.

Thus ~ is an equivalence relation. If {z,:0 = n < o} is a recurrent Markov
chain with countable state space and stationary transitions, then the o-field of
exchangeable events is atomie, and the atoms are of the form: z, is in a particular
~ equivalence-class. As an application if {x,:n = 0} is a recurrent k-step Markov
chain with countable state space, stationary transitions, and no forbidden transi-
tions, its o-field of exchangeable events is trivial.

3. Three examples. Example 1 is a transition matrix p in which all states are
recurrent, aperiodic, and in the same ergodic class; but two independent par-
ticles, starting in different states and moving according to p, may never meet.
The states are the nonnegative integers, and p(é, 2 — 1) = 1 for z = 1, while
p(0, n) = a, > 0 to be defined below. Consider two independent Markov
processes {z, :0 < n < o} and {y, :0 < n < «} with p for matrix of sta-
tionary transition probabilities and initial states respectively 0 and 1. If the
two processes ever meet, they stay together until reaching 0. Let S, be the time
of the »th return of {z,} to 0; while T, is the time of the »th visit of {y,} to 0.
Then Sp= D +uU, and Ty =1+ D1 V,, where {U,:1 £» < o;
V,:1 £ v < »} are independent, with common distribution {a.}. The {a.}
will be chosen to make the event [S; = T, for some &k = 1 and m = 1] have
probability less than 1. Consider the random walk on the planar lattice where a
point moves to each of its four neighbors with probability 1/5 and stays fixed
with probability 1/5. Let a, be the probability of a first return to the origin at
time n. If two independent such walks start simultaneously from the origin,
the probability that for some n the first returns to the origin at time n, while the
second returns at time n — 1, is precisely the probability of [S; = 7' for some
k = 1 and n = 1]. This probability cannot be 1; for if it were 1, the two walks
would return to the origin at the same time with probability 1, which is known
to be false (Chung and Fuchs (1951) Theorem 6).

Example 2 is a transient Markov chain {z, :0 < n < «} with countable
state space, matrix p of stationary transition probabilities, trivial invariant o-
field, and nonatomic tail s-field. The states are pairs (m, n) of natural numbers



TAIL ¢-FIELD OF A MARKOV CHAIN 1295

with n < 2-3™ and z is (1, 1) with probability 1. The matrix p is defined by:
p[(m, 1), (772', 3m)] = P[(m; 1), (m, 23m)] = %,Whlle p[(m, n), (m,n - 1)] =1
forn = 3; and p[(m, 2), (m 4+ 1,1)] = 1. Form = 1, let U, be 1 or 2 accord-
ing as (m, 1) is followed by (m, 3™) or (m,2-3™) in {z, :0 £ n < «}. The time
T, at which (m 4+ 1, 1) is reached equals D my U,%, and T, determines
Uy -+ Un. For any n, the variables z, , Zn41, * - - determine all T',, with large
enough m, and hence z;, -+, Z,—1. The tail o-field of {2,:0 < n < =} is
therefore the o-field determined by {U, :1 < n < «}, which is nonatomic.

Let A be an invariant event on {z, :0 < n < «}. There is a Borel subset B
of the space of state sequences {4y, 741, -+ -} with 15(d, 41, ---) = 15(%, %,
--+), and 1, = 13(x0, @1, ---). Hence 14 = 15(xr, , Tr 41, - --) is measur-
able on Umt1, Umyz, - -+, and A has probability 0 or 1 by the Kolmogorov
0-1 law.

Example 3 is a stationary Markov chain with states 1, 2, 3, aperiodic and
ergodic, having a non-trivial o-field of exchangeable events. Its matrix of transi-

tion probabilities is
010
0 0 1]
330

Let 6 and ¢ be finite sequences of states with forbidden transitions in neither
163 nor 3¢3. Plainly, in 15 there is one more 2 than 3. In 3¢, however, there
are as many 2’s as 3’s. Thus 15 cannot be permuted into 3¢, and in view of the
last part of Section 2, the o-field of exchangeable events is not trivial.

REFERENCES

Cuune, Kar-Lat (1960). Markov Chains With Stationary Transition Probabilities. Springer,
Berlin.

Crung, K. L. and Fucas, W. H. J. (1951). On the distribution of values of sums of random
variables. Mem. Amer. Math. Soc. 6 1-12.

Doos, J. L. (1953). Stochastic Processes. Wiley, New York.

Hewirr, Epwin and Savage, L. J. (1955). Symmetric measures on Cartesian products.
Trans. Amer. Math. Soc. 80 470-501.

O=rEY, STEVEN (1962). An ergodic theorem for Markov chains. Z. Wahrscheinlichkeitstheorie.
1 174-176.



