PROPERTIES OF POLYKAYS OF DEVIATES!

By P. S. Dwyer
University of Michigan

1. Introduction and summary. The purpose of this paper is to present formulae
and to examine fundamental properties of polykays of deviates which are here
called d-statistics. In particular, formulae for d-statistics in terms of polykays
having no unit subscripts are presented, relations involving the d-statistics are
derived, and application is made to finite moment formulae involving the sample
mean.

2. Notation. The term polykay, following Tukey [9], [10], is used to denote a
quantity whose expected value is a product of cumulants [4]. Other terms are
generalized k-statistic [11], I-statistic [6], and multiple k-statistic [8]. Following
MacMahon [7], any partition of p may be represented by pi'---ps* where
p1 > pe > --- > p,. Using P to represent the partition, we may say that the
weight of Pisp = D p.r; and that the orderof P is the number of parts > _m; = .
Then the augmented monomial symmetric function [3] is represented by [P] and
the average augmented monomial symmetric function, which Tukey [9] indi-
cated by (p*- - -pr*), may be represented by My = [P]/n™. The combinatorial
coefficient, the number of ways in which the partition can be formed from p
distinguishable units, is represented by C(P) = p!/(p)™ - -(ps)™ w1l - -7,
For a specified P with kr = kp(21, - -+, a) = ke(x), [11] we define

(21) dp = kp(x —_ kl)

and for a finite population as n becomes N, kr becomes Kp , and dr becomes Dp
we have

(22) Dp = Kp(x —_ Kl).

For the purpose of this paper it is convenient to use P to denote a partition
with no unit parts and P’ to represent any partition of p. Then = is used to
indicate the order of either P or P’, unless the orders of both appear in the same
equation in which case =’ indicates the order of P’. Then the general partition
of any number ¢ can be written @ = P1" where r may be zero.

3. Formulae for dpi- . In case r = 0, Tukey has shown [10] that kr(x — k1) =
kr(z). Hence we have

(3.1) dp =kp.
We next find expressions for dpi- in terms of k’s. One method is to express

kpki as a linear sum of polykays, see page 5 of [11], the values of = being replaced
by x — ki, to give linear relations between the d’s. Thus from kzk; = (1/n)kper
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1168 P. S. DWYER

+ ke, p > 0 we get dpm = — (1/n)kper where kpg is the sum of the functions
which result from adding unity in turn to each element of the specified P. Thus
lf P = pP1p2, kp@l = ]Cp1+1,p2 + kl’ly?2+1 . In thlS way, using kPéDléDl = kpa)z + kpa)u
we get

dpiz = (1/’/&2)[’01:@2 + keou] — (1/n)kps

where kpgs is the sum of the 7 k-functions having subscripts which result from
adding 2 in turn to each of the 7 parts of the specified P, and kpen represents the
sum of the #® k-functions which result from adding the ordered pairs of unit
elements in turn to the subsets of the p; having 2 elements, the remaining sub-
scripts being the other p;. Thus if P has 3 parts, and the unit elements are
indicated by a, b, the ordered pairs of elements are a, b and b, a; and kpen
features 3® = 6 k-functions

kPéBn = km+a,m+b,p3 + km+a,m,p3+b + km,pz+ams+b

-+ 3 additional terms in which the a and b are interchanged.
Continuing in this way we get, for r = 3, 4, ... formulae which are special
cases of the general formula

32)  dne = 3 (1) 00 T (=1 (e = DI s

in which « is any integer satisfying 0 < u < r,{ = r — u, the inner summation
is over all unit-free partitions 7' (for all ¢), = is the order of 7, and the first
summation is over all partitions U (for all ) of order v < 7. Finally krev,r is
itself the sum of the (J )v! = = k-functions having subscripts which are formed
by adding the v! permutations of the v parts of U to each of the (;) subsets of
P containing v elements, and then adjoining the remaining = — v parts of P
and the 7 parts of 7'.

The general proof of (3.2) is based on a combinatorial argument. From the
expansion of kpir—1k; we get

(33) dp1r = (—1/n)dp@1‘1r—l —_ [(7‘ —_ 1)/n]dP21r—2 .

The value of dp; is obtained by placing » = 11in (3.3), the value of dp:2 by applying
(3.3) to the first term on the right and placing » = 2, etc. The general term of
dpi- has u of the » units, which may be selected in (3, ) ways and may be collected
into U in C(U) ways, combined with the parts of P. The remaining r — u = ¢
units may be collected to form 7' in C'(T") ways. Hence the combinatorial factors
of the formula. From (3.3) it is seen that a factor of (—1/n) appears when a
unit is combined with a non-unit and a factor of —(r — 1)/n» when a unit is
combined with each of the (» — 1) other units in a group of » units. In forming
the factor associated with the collection of ¢; units into a partition part, there is
a factor of — (¢; — 1)/n followed by ¢; — 2 factors of (—1/n). Hence the factor
associated with ¢ is (—1/n)%7'(t; — 1) and the factor associated with 7T is
(—=1/n)""T]J(¢t: — 1). Since the corresponding factor associated with P @ U is
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TABLE 1
Value of (;)[H(ti — DIC(T)

t=r g .o LD P ¢ — 1] C(D)

! e 1)r= r=2 r=3 r=4 r=5 r=6 r=7 r=38
0 0 0 1 ¥ 1 1 1 1 1 1 1 1
2 2 1 1 1 1 3 6 10 15 21 28
3 3 1 1 2 2 8 20 40 70 112
4 4 1 1 3 3 15 45 105 210

22 2 3 3 3 15 45 105 210
5 5 1 1 4 4 24 84 224
32 2 10 20 20 120 420 1120
6 6 1 1 5 5 35 140
42 2 15 45 45 315 1260
32 2 10 40 40 280 1120
28 3 15 15 15 105 420
T 7 1 1 6 6 48
52 2 21 84 84 672
43 2 35 210 210 1680
322 3 105 210 . 210 1680
8 8 1 1 7 7
62 2 28 140 140
53 2 56 448 448
4 £ 2 35 315 315
422 3 210 630 630
32 3 280 1120 1120
2¢ 4 105 105 105

#* I (& — 1) is taken as 1 when ¢ = 0 to extend the notation to this case.

(—1/n)" = (=1/n)"", we have (—1/n)""(=1/n)"" []J(t: = 1) = (=1/n)""
I1 (¢: — 1) as indicated in (3.2).

The values of [[(¢; — 1)C(T') are presented in Table 1 for values of 7 through
weight 8 as are the values of (3)[J[(¢: — 1)]C(T). The values of r and 7 are
also featured so that the values of (—1/7)"" can be written easily.

The formulae for dpi- , r < 8, are implicit in Table 1. In order to condense the
more explicit form for a specific r, the roman numeral for the integer  is used to
indicate the sum for each partition of the integer weighted with C(U). Thus
krorr 18 kros + kpou S0 kpiz = (1/n2)kp@11 — (1/n)kps . For r = 5 we have

des = (=1/0")krov + (10/n)krormr 2 + (20/n")krerrs
+ (15/0)kpare — (15/n)kparze + (4/7")kes — (20/7°)kpss .
A similar argument can be made when P is null to get
(35) dir = 2(=1/n)"* [[I(r: — DIC(R)kx

where R is a partition of r of order p and r; is one of its parts. Actually (3.5) is
a special case of (3.2) with P null, U null, and 7 = R. Thus from (3.5) or from

(3.4)
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the last block of entries in the » = 5 column of Table 1,
(3.6) dis = (4/n" ks — (20/n°)ksy .

Coefficients for the explicit expansions of all d-statistics of weight 8 or less
are given in Table 2. For any Q’, dor may be written

dor = Z( - 1/’”)",_7‘00',0’00 .

The numerical coefficients aq,q and the orders x, x are given in Table 2. Values
of Q" appear in the left column and the corresponding unit-free partitions, @,
appear in the top row.

4. Some relations involving d-statistics. The recursion formula (3.3) with
P = p is useful in determining or checking expansions such as those of Table 2
since an element of dp- can be obtained from the corresponding column or
entries of dpp1,17-1 and dygir—2 . Also when P is null, (3.3) becomes

(4:.1) dlr = [—(7’ - 1)/n]d21r—2
and this is useful in relating the last two rows in each of the subdivisions of

Table 2. Also we see that if dp,1- indicates those terms of dpir in which no one
of the 7 units is combined with the P

(4.2) der = 2 (=1/n) [ [](ri = DIC(R)ker

so that, for these terms, the P may be neglected in computation. Thus the
coefficient of k¢ in the expansion of dyy4 is the coefficient of ks in the expansion
of d14 .

In Section 3 we see that multiplication of k» by k; gives kpe: with a coefficient
of 1/n and kp; with a coefficient of 1. Application of the combinatorial argument
using these results then gives kj = > (1/n) °C(R’)kz and with k; = 0 we have

(4.3) > (1/n"")C(R Ydg = O.

If we substitute Dz for dgs in (4.3) and eliminate all partitions with unit parts
we get

(44) :;a/n"")C(R')DRI = ; A(R)C(R)Kx

where R does not have unit parts and A(R) = 4,, --- 4,, with

r—2

4= 5 (-1 (;’) (1/n) ™ H(=1/NY + (—1/N) WV — 1).

The combinatorial proof is based on the fact that the coefficient of K, determined
from the contributions of all D,_;:; terms is 4,, that the coefficient of K,,,, ,
with r; and 7, composed of distinet units, is 4,,4., , ete.

Wishart [11] used & for A, = 1/n — 1/N. Abdel-Aty [1] used « and gave,

(4.5) Ar=a" =N+ - 4+ (=1) /N



TABLE

2

Orders x, x’ and numerical coefficients ag. g of kq in the expansion of dg: = dp17,
r>0and2 =¢ =8

q=2 2 =3 Q |3 g=4| Q | 4| 22 g=5| Q | 5|32
x| 1 x|l 1 x| 1] 2 x 1] 2
o x| elx| @ lx| | @|x|
11 1 21 2 |1 31 2 | 1| — 41 2 1| —
13 3 |2 212 3 (1] 1 312 3 1] 1
14 4 (3| 38 221 3 |—| 2
213 4 1] 5
15 5 4|20
g=6 Q 6 42 3 2 g=1 Q 7 52 43 322
X 1 2 2 3 X 1 2 2 3
Q' x' Q' x’
51 2 1 — — — 61 2 1 — — —
412 3 1 1 — — 512 3 1 1 — —
321 3 — 1 1 — 421 3 — 1 1 —
313 4 1 3 2 — 321 3 — — 2 —
2212 4 — 2 2 — 413 4 1 3 2 —
214 5 1 9 8 3 3212 4 — 1 3 1
16 6 5 45 40 15 231 4 — — — 3
314 5 1 6 11 3
2213 5 — 2 6 8
215 6 1 14 35 35
17 7 6 84 210 210
¢g=38 Q 8 62 53 4 422 32 2
X 1 2 2 2 3 3 4
Q x
71 2 1 — — — — — —
612 3 1 1 — — — — —
521 3 — 1 1 — — — —
431 3 — — 1 1 — — —
513 4 1 3 2 — — — —
4212 4 — 1 2 1 — — —
3212 4 — — 2 2 — 1 —
3221 4 — — — — 1 2 —
414 5 1 6 8 3 3 — -
3213 5 — 1 4 3 3 5 —
2312 5 — — — — 3 6 1
318 6 1 10 24 15 15 20 —
2214 6 — 2 8 6 15 28 3
218 7 1 20 64 45 90 160 15
18 8 7 140 448 315 630 1120 105

-
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and this has been used by Barton and David [2]. A generalization of (4.4)
based on

ek = 3 (1) 00) T (/) 0T Vhrou

U
is

(46) z («Q C(U) T (1/n) ' C(T")Drov
46) ° r
=2 (;") C(U)a" 32 A(TIC(T)Krov,r

U

where o results from
u u—j i o_ _ u
2 ( j> (1/n)*7(=1/N)" = (1/n — 1/N)"

5. Moment formulae involving the sample mean. With the formulae of
Section 4 available it is possible to write down, almost by inspection, some
general moment formulae involving the sample mean. Using the formula for
ki, Kzlg,—o = Dz, and (4.3) we have

(5.1) M(1") = Ex(ky — K1)" = Ex(ky — K1) lgym0 = En(k1) lxey0
= Ex[ 2 (1/n")C(R Yhrlrymo = 2(1/n"")C(R') Dy
= > AR)C(R)Kx .

Special cases of a less compact form of the formula were given by Wishart [11]
and Abdel-Aty [1]. An interesting proof for the general case was given by Barton
and David [2]. The methods above make possible easy generalization. Thus
withr — 4 = ¢

EN[kP(kl - Kl)r] = ENkPkﬂlq:O

= 5.3 (]) ) T a0 kranr e

Y =2 (Z;) C(U) 35 1/ )C(T") Deu,re
=2 (;’) C(U)a" 3 A(T)C(T) Krov,s-
Then
M(PY) = 3 (;) a"C(U) X A(T)C(T)Krov,r
53) — K» 25 A(R)C(R)Kx

= ; (;) c(U)a* Z A(T)C(T)Kreu,r
— > A(R)C(R){K¢ Kz — Kpz}.
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With » = O this gives M(P) = 0 as expected while r = 1 gives M(P1) =
K pg1 . This formula (5.3) is more general than M (pl”) for which Wishart [11]
wrote the special cases r = 1, 2, 3, 4.

A chief advantage of the use of polykays is in estimation. Thus the estimate
of M(17) is given by (5.1) with K replaced by kz . The estimate in (5.2) is also
immediately obtained. So is the estimate of the result (5.3) with the exception
of the last term which requires the expansion of K»Ky . Combinatorial methods
for obtaining such products and a considerable body of results are available in a
paper by Dwyer and Tracy [5].
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