PROPERTIES OF POLYKAYS OF DEVIATES1

By P. S. DWYER

University of Michigan

- 1. Introduction and summary. The purpose of this paper is to present formulae and to examine fundamental properties of polykays of deviates which are here called d-statistics. In particular, formulae for d-statistics in terms of polykays having no unit subscripts are presented, relations involving the d-statistics are derived, and application is made to finite moment formulae involving the sample mean.
- **2. Notation.** The term polykay, following Tukey [9], [10], is used to denote a quantity whose expected value is a product of cumulants [4]. Other terms are generalized k-statistic [11], l-statistic [6], and multiple k-statistic [8]. Following MacMahon [7], any partition of p may be represented by $p_1^{\pi_1} \cdots p_s^{\pi_s}$ where $p_1 > p_2 > \cdots > p_s$. Using P to represent the partition, we may say that the weight of P is $p = \sum_{i} p_i \pi_i$ and that the order of P is the number of parts $\sum_i \pi_i = \pi$. Then the augmented monomial symmetric function [3] is represented by [P] and the average augmented monomial symmetric function, which Tukey [9] indicated by $\langle p_1^{\pi_1} \cdots p_s^{\pi_s} \rangle$, may be represented by $M_P' = [P]/n^{(\pi)}$. The combinatorial coefficient, the number of ways in which the partition can be formed from p distinguishable units, is represented by $C(P) = p!/(p_1!)^{\pi_1} \cdots (p_s!)^{\pi_s} \pi_1! \cdots \pi_s!$. For a specified P with $k_P = k_P(x_1, \dots, x_n) = k_P(x)$, [11] we define

$$(2.1) d_P = k_P(x - k_1)$$

and for a finite population as n becomes N, k_P becomes K_P , and d_P becomes D_P we have

$$(2.2) D_P = K_P(x - K_1).$$

For the purpose of this paper it is convenient to use P to denote a partition with no unit parts and P' to represent any partition of p. Then π is used to indicate the order of either P or P', unless the orders of both appear in the same equation in which case π' indicates the order of P'. Then the general partition of any number q can be written Q = P1' where r may be zero.

3. Formulae for d_{P1r} . In case r=0, Tukey has shown [10] that $k_P(x-k_1)=k_P(x)$. Hence we have

$$(3.1) d_P = k_P.$$

We next find expressions for d_{P1^r} in terms of k's. One method is to express $k_P k_1^r$ as a linear sum of polykays, see page 5 of [11], the values of x being replaced by $x - k_1$, to give linear relations between the d's. Thus from $k_P k_1 = (1/n) k_{P \oplus 1}$

Received 30 October 1962; revised 26 February 1964.

¹ This work was supported in part by the National Science Foundation Grant G-18870.

1168 P. S. DWYER

 $+k_{P1}$, p>0 we get $d_{P1}=-(1/n)k_{P\oplus 1}$ where $k_{P\oplus 1}$ is the sum of the functions which result from adding unity in turn to each element of the specified P. Thus if $P=p_1p_2$, $k_{P\oplus 1}=k_{p_1+1,p_2}+k_{p_1,p_2+1}$. In this way, using $k_{P\oplus 1\oplus 1}=k_{P\oplus 2}+k_{P\oplus 1}$ we get

$$d_{P1^2} = (1/n^2)[k_{P\oplus 2} + k_{P\oplus 11}] - (1/n)k_{P2}$$

where $k_{P\oplus 2}$ is the sum of the π k-functions having subscripts which result from adding 2 in turn to each of the π parts of the specified P, and $k_{P\oplus 11}$ represents the sum of the $\pi^{(2)}$ k-functions which result from adding the ordered pairs of unit elements in turn to the subsets of the p_i having 2 elements, the remaining subscripts being the other p_i . Thus if P has 3 parts, and the unit elements are indicated by a, b, the ordered pairs of elements are a, b and b, a; and $k_{P\oplus 11}$ features $3^{(2)} = 6$ k-functions

$$k_{P\oplus 11} = k_{p_1+a,p_2+b,p_3} + k_{p_1+a,p_2,p_3+b} + k_{p_1,p_2+a,p_3+b}$$

+ 3 additional terms in which the a and b are interchanged.

Continuing in this way we get, for $r=3, 4, \cdots$ formulae which are special cases of the general formula

(3.2)
$$d_{P1r} = \sum_{U} {r \choose u} C(U) \sum_{T} (-1/n)^{r-\tau} [\prod (t_i - 1)] C(T) k_{P \oplus U, T}$$

in which u is any integer satisfying $0 \le u \le r$, t = r - u, the inner summation is over all unit-free partitions T (for all t), τ is the order of T, and the first summation is over all partitions U (for all u) of order $v \le \pi$. Finally $k_{r \oplus U, T}$ is itself the sum of the $\binom{\pi}{v}v! = \pi^{(v)}$ k-functions having subscripts which are formed by adding the v! permutations of the v parts of U to each of the $\binom{\pi}{v}$ subsets of P containing v elements, and then adjoining the remaining $\pi - v$ parts of P and the τ parts of T.

The general proof of (3.2) is based on a combinatorial argument. From the expansion of $k_{P1}r-1k_1$ we get

$$(3.3) d_{P1r} = (-1/n)d_{P\oplus 1,1^{r-1}} - [(r-1)/n]d_{P21^{r-2}}.$$

The value of d_{P1} is obtained by placing r=1 in (3.3), the value of d_{P1} by applying (3.3) to the first term on the right and placing r=2, etc. The general term of d_{P1} has u of the r units, which may be selected in $\binom{r}{u}$ ways and may be collected into U in C(U) ways, combined with the parts of P. The remaining r-u=t units may be collected to form T in C(T) ways. Hence the combinatorial factors of the formula. From (3.3) it is seen that a factor of (-1/n) appears when a unit is combined with a non-unit and a factor of -(r-1)/n when a unit is combined with each of the (r-1) other units in a group of r units. In forming the factor associated with the collection of t_i units into a partition part, there is a factor of $-(t_i-1)/n$ followed by t_i-2 factors of (-1/n). Hence the factor associated with t_i is $(-1/n)^{t_i-1}(t_i-1)$ and the factor associated with T is $(-1/n)^{t-r}\prod (t_i-1)$. Since the corresponding factor associated with $P \oplus U$ is

	TABLE 1	
Value of	$\binom{r}{u}$ [$\prod (t_i -$	1)]C(T)

t = r $- u$	T	τ	C(T)	$\Gamma^{(T)}_{\Pi(t_i-1)}$	$\binom{r}{u}[\Pi \ (t_i-1)] \ C(T)$								
					r = 1	r = 2	r = 3	r = 4	r = 5	r = 6	r = 7	r = 8	
0	0	0	1	1*	1	1	1	1	1	1	1	1	
2	2	1	1	1		1	3	6	10	15	21	28	
3	3	1	1	2			2	8	20	40	70	112	
4	4	1	1	3				3	15	45	105	210	
	2^2	2	3	3				3	15	45	105	210	
5	5	1	1	4					4	24	84	224	
	32	2	10	20					20	120	420	1120	
6	6	1	1	5						5	35	140	
	42	2	15	45						45	315	1260	
	3^2	2	10	40						40	280	1120	
	23	3	15	15						15	105	420	
7	7	1	1	6							6	48	
	52	2	21	84							84	672	
	43	2	35	210							210	1680	
	32^2	3	105	210							210	1680	
8	8	1	1	7								7	
	62	2	28	140								140	
	5 3	2	56	448								448	
4	4^2	2	35	315								315	
	42^{2}	3	210	630								630	
	$3^{2}2$	3	280	1120								1120	
	2^4	4	105	105								105	

^{*} $\prod (t_i - 1)$ is taken as 1 when t = 0 to extend the notation to this case.

$$(-1/n)^u = (-1/n)^{r-t}$$
, we have $(-1/n)^{r-t}(-1/n)^{t-r}\prod (t_i - 1) = (-1/n)^{r-r}\prod (t_i - 1)$ as indicated in (3.2).

The values of $\prod (t_i - 1)C(T)$ are presented in Table 1 for values of T through weight 8 as are the values of $\binom{r}{u}[\prod (t_i - 1)]C(T)$. The values of r and τ are also featured so that the values of $(-1/n)^{r-\tau}$ can be written easily.

The formulae for d_{P1^r} , $r \leq 8$, are implicit in Table 1. In order to condense the more explicit form for a specific r, the roman numeral for the integer u is used to indicate the sum for each partition of the integer weighted with C(U). Thus $k_{P\oplus II}$ is $k_{P\oplus I} + k_{P\oplus II}$ so $k_{P1^2} = (1/n^2)k_{P\oplus II} - (1/n)k_{P2}$. For r = 5 we have

(3.4)
$$d_{P15} = (-1/n^5)k_{P\oplus V} + (10/n^4)k_{P\oplus III,2} + (20/n^4)k_{P\oplus II,3} + (15/n^4)k_{P\oplus I,4} - (15/n^3)k_{P\oplus I,22} + (4/n^4)k_{P5} - (20/n^3)k_{P32}.$$

A similar argument can be made when P is null to get

(3.5)
$$d_{1r} = \sum (-1/n)^{r-\rho} [\prod (r_i - 1)] C(R) k_R$$

where R is a partition of r of order ρ and r_i is one of its parts. Actually (3.5) is a special case of (3.2) with P null, U null, and T = R. Thus from (3.5) or from

the last block of entries in the r = 5 column of Table 1,

$$(3.6) d_{15} = (4/n^4)k_5 - (20/n^3)k_{32}.$$

Coefficients for the explicit expansions of all d-statistics of weight 8 or less are given in Table 2. For any Q', $d_{Q'}$ may be written

$$d_{Q'} = \sum (-1/n)^{\chi'-\chi} a_{Q',Q} k_Q.$$

The numerical coefficients $a_{Q',Q}$ and the orders χ' , χ are given in Table 2. Values of Q' appear in the left column and the corresponding unit-free partitions, Q, appear in the top row.

4. Some relations involving d-statistics. The recursion formula (3.3) with P = p is useful in determining or checking expansions such as those of Table 2 since an element of d_{P1r} can be obtained from the corresponding column or entries of $d_{p+1,1r-1}$ and d_{p21r-2} . Also when P is null, (3.3) becomes

$$(4.1) d_{1r} = [-(r-1)/n]d_{21r-2}$$

and this is useful in relating the last two rows in each of the subdivisions of Table 2. Also we see that if $d_{P;1^r}$ indicates those terms of d_{p1^r} in which no one of the r units is combined with the P

$$(4.2) d_{P;1r} = \sum_{i} (-1/n)^{r-\rho} [\prod_{i} (r_i - 1)] C(R) k_{PR}$$

so that, for these terms, the P may be neglected in computation. Thus the coefficient of k_{2^4} in the expansion of $d_{2^21^4}$ is the coefficient of k_{2^2} in the expansion of d_{1^4} .

In Section 3 we see that multiplication of k_P by k_1 gives $k_{P\oplus 1}$ with a coefficient of 1/n and k_{P1} with a coefficient of 1. Application of the combinatorial argument using these results then gives $k_1^r = \sum (1/n)^{r-\rho} C(R') k_{R'}$ and with $k_1 = 0$ we have

(4.3)
$$\sum (1/n^{r-\rho})C(R')d_{R'} = 0.$$

If we substitute $D_{R'}$ for $d_{R'}$ in (4.3) and eliminate all partitions with unit parts we get

(4.4)
$$\sum_{R'} (1/n^{r-\rho}) C(R') D_{R'} = \sum_{R} A(R) C(R) K_{R}$$

where R does not have unit parts and $A(R) = A_{r_1} \cdots A_{r_{\rho}}$ with

$$A_r = \sum_{j=0}^{r-2} (-1)^j \binom{r}{j} (1/n)^{r-j-1} (-1/N)^j + (-1/N)^{r-1} (N-1).$$

The combinatorial proof is based on the fact that the coefficient of K_r determined from the contributions of all $D_{r-j,1^j}$ terms is A_r , that the coefficient of $K_{r_1r_2}$, with r_1 and r_2 composed of distinct units, is $A_{r_1}A_{r_2}$, etc.

Wishart [11] used α for $A_2 = 1/n - 1/N$. Abdel-Aty [1] used α and gave,

(4.5)
$$A_r = \alpha^{r-1} - \alpha^{r-2}/N + \cdots + (-1)^{r-2}\alpha/N^{r-2}$$

TABLE 2 Orders χ , χ' and numerical coefficients $a_{Q',Q}$ of k_Q in the expansion of $d_{Q'}=d_{P1^r}$, r>0 and $2\leq q\leq 8$

$r > 0 \text{ and } 2 \leq q \leq 8$																	
q = 2	Q	2	_	q = 3	Q	3		q = 4	Q	4	22	_	q = 5	Q	5	32	
	x	1			x	1			х	1	2			x	1	2	
Q'	x'			Q'	x'			Q'	χ'			_	Q'	x'			
11	2	1	_	21 1 ³	2 3	1 2		31 21 ² 1 ⁴	2 3 4	1 1 3	1 3	_	$41 \\ 31^2 \\ 2^21 \\ 21^3 \\ 1^5$	2 3 4 5	$\frac{1}{1}$ $\frac{1}{4}$	$-1 \\ 2 \\ 5 \\ 20$	
q = 6	Q		6	42	32		2 ⁸	-	q = 7		Q	7	52	43		322	
	x		1	2	2		3			-	x	1	2	2		3	
Q'	x'			-					Q'	,	ď						
51 41 ² 321 31 ³ 2 ² 1 ² 21 ⁴ 1 ⁶	2 3 3 4 4 5 6		1 1 - 1 - 1 5	1 1 3 2 9 45	1 2 2 8 40				61 51 ² 421 3 ² 1 41 ³ 321 ² 2 ³ 1 31 ⁴ 2 ² 1 ³ 21 ⁵ 1 ⁷	2 3 3 4 4 4 5 5 6 7		1 1 — 1 — 1 — 1 — 1 6		1 2 2 3 — 11 6 35 210			
q =	8	1	Q	8		62		53	4	<u> </u>	<u> </u>	422	32	2	. 2	4	
<u> </u>			х	1				2	2		-	3	3		4		
Q' x'		-									-						
71 61 ² 521 431 51 ³ 421 ² 3 ² 1 ² 32 ² 1 41 ⁴ 321 ³ 2 ³ 1 ² 2 ³ 1 ² 2 ³ 1 ⁶ 1 ⁸			2 3 3 3 4 4 4 4 5 5 6 6 7 8	1 1 - 1 - - 1 - 1 - 1 - 1 7													

and this has been used by Barton and David [2]. A generalization of (4.4) based on

$$k_P k_1^r = \sum_{U} {r \choose u} C(U) \sum_{T'} (1/n)^{r-\rho} C(T') k_{P \oplus U, T'}$$

is

(4.6)
$$\sum_{U} {r \choose u} C(U) \sum_{T'} (1/n)^{r-r'} C(T') D_{P \oplus U, T'} = \sum_{U} {r \choose u} C(U) \alpha^{u} \sum_{T} A(T) C(T) K_{P \oplus U, T}$$

where α^u results from

$$\sum \binom{u}{j} (1/n)^{u-j} (-1/N)^j = (1/n - 1/N)^u.$$

5. Moment formulae involving the sample mean. With the formulae of Section 4 available it is possible to write down, almost by inspection, some general moment formulae involving the sample mean. Using the formula for k_1^r , $K_R|_{K_1=0} = D_R$, and (4.3) we have

(5.1)
$$M(1^r) = E_N(k_1 - K_1)^r = E_N(k_1 - K_1)^r]_{K_1=0} = E_N(k_1)^r]_{K_1=0}$$

$$= E_N[\sum (1/n^{r-\rho})C(R')k_{R'}]_{K_1=0} = \sum (1/n^{r-\rho})C(R')D_{R'}$$

$$= \sum A(R)C(R)K_R.$$

Special cases of a less compact form of the formula were given by Wishart [11] and Abdel-Aty [1]. An interesting proof for the general case was given by Barton and David [2]. The methods above make possible easy generalization. Thus with r - u = t

$$E_{N}[k_{P}(k_{1}-K_{1})^{r}] = E_{N} k_{P} k_{1}^{r}]_{K_{1}=0}$$

$$= E_{N} \sum_{U} {r \choose u} C(U) \sum_{T'} (1/n^{r-r'}) C(T') k_{P \oplus U, T'}]_{K_{1}=0}$$

$$= \sum_{U} {r \choose u} C(U) \sum_{T'} (1/n^{r-r'}) C(T') D_{P \oplus U, T'}$$

$$= \sum_{U} {r \choose u} C(U) \alpha^{u} \sum_{T} A(T) C(T) K_{P \oplus U, T}.$$

Then

(5.3)
$$M(P1^{r}) = \sum_{u=0}^{r} {r \choose u} \alpha^{u} C(U) \sum A(T) C(T) K_{P \oplus U, T} - K_{P} \sum A(R) C(R) K_{R}$$
$$= \sum_{u=1}^{r} {r \choose u} C(U) \alpha^{u} \sum A(T) C(T) K_{P \oplus U, T} - \sum A(R) C(R) \{K_{P} K_{R} - K_{PR}\}.$$

With r = 0 this gives M(P) = 0 as expected while r = 1 gives $M(P1) = K_{P \oplus 1}$. This formula (5.3) is more general than $M(p1^r)$ for which Wishart [11] wrote the special cases r = 1, 2, 3, 4.

A chief advantage of the use of polykays is in estimation. Thus the estimate of $M(1^r)$ is given by (5.1) with K_R replaced by k_R . The estimate in (5.2) is also immediately obtained. So is the estimate of the result (5.3) with the exception of the last term which requires the expansion of K_PK_R . Combinatorial methods for obtaining such products and a considerable body of results are available in a paper by Dwyer and Tracy [5].

6. Acknowledgment. The author wishes to express his appreciation to the referee who made many valuable suggestions for notation and presentation.

REFERENCES

- [1] ABDEL-ATY, S. H. (1954). Tables of generalized k-statistics. Biometrika 41 253-260.
- [2] Barton, D. E. and David, F. N. (1961). The central sampling moments of the mean in samples from a finite population. *Biometrika* 48 199-201.
- [3] DAVID, F. N. and Kendall, M. G. (1949). Tables of symmetric functions-Part 1. Biometrika 36 431-449.
- [4] DRESSEL, P. L. (1940). Statistical seminvariants and their estimates with particular emphasis on their relation to algebraic invariants. Ann. Math. Statist. 11 33-57.
- [5] DWYER, P. S. and TRACY, D. S. (1964). A combinatorial method for products of two polykays with some general formulae. Ann. Math. Statist. 35 1174-1185.
- [6] KENDALL, M. G. and STUART, A. (1958). The Advanced Theory of Statistics, 1. Griffin, London.
- [7] MacMahon, P. A. (1915). Combinatory Analysis, 1. Univ. Press, Cambridge.
- [8] SCHAEFFER, ESTHER and DWYER, P. S. (1963). Computation with multiple k-statistics. J. Amer. Statist. Assoc. 58 120-151.
- [9] Tukey, J. W. (1950). Some sampling simplified. J. Amer. Statist. Assoc. 45 501-519.
- [10] Tukey, J. W. (1956). Keeping moment-like sampling computations simple. Ann. Math. Statist. 27 37-54.
- [11] Wishart, J. (1952). Moment coefficients of the k-statistics in samples from a finite population. Biometrika 39 1-13.