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1. Introduction and summary. In this paper we shall consider mathematical
models motivated by chemical process control problems in which we wish to
control the process to hold some property of the output material as nearly con-
stant as possible. For example, we might control the viscosity of the process out-
put by varying the setting of a valve in the cooling water line to a heat exchanger.
We shall suppose that the viscosity is observed at equally spaced times and that
these observations form a sequence Yi, Y,, Y5, ... The control procedure
specifies the valve setting X; to be used during the time interval (0, 1]. Then,
immediately after observing Y, , we reset the cooling water valve to the position
X1 in accordance with the control procedure. The value of X,,; may depend
on the prior values X;, ---, Xy, and Y1, - -+, Y, . In choosing X, ; we hope to
hold Y, as close to a fixed value Y, as possible. More specifically, our objective
will be to keep values of the loss E(Y, — Y,)® small.

In this paper it is assumed that time lags attributable to process dynamics are
negligible when compared with the interval between observations. Parts of the
theory are being generalized to allow for the presence of such time lags and no
serious difficulties have as yet been encountered in this type of generalization.

The basic process and the general control procedure are deseribed in mathemati-
cal terms in Sections 2 and 3. The concept of a system consisting of the process
and the control procedure is then introduced in Section 4.

The specific type of control procedure we shall consider is a generalization of
the simple proportional control procedure discussed by Box and Jenkins [1]. This
procedure requires that we specify X; and then recursively specify X, =
X, — a,(Y, — Y,). We may place bounds on X, as in (8) below. The sequence
{a,} is a sequence of positive numbers which may be specified a prior: as in
Section 5 or sequentially as in Section 9.

In Sections 6 and 7 we study the performance of certain processes when the
sequence {a,} is specified ¢ priori. Most important are cases where a, converges
to a small value @ near zero. With the class of processes used in this paper, it
turns out that this procedure for choosing X, is quite similar to the stochastic
approximation procedure first presented by Robbins and Monro in 1951 [7] and
later generalized by Dvoretzky [5] and other authors. A comprehensive review of
work on stochastic approximation is contained in a recent article by Schmetterer
[8].

In Section 8 we specialize to the study of certain stationary processes. At-
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tention is focused on the asymptotic performance of the controlled process as a
function of the limit a of the sequence {a,} in our control procedure. Of particular
interest is the asymptotic loss given by lim,.. E(Y, — Yo)%

A procedure for the sequential choice of the sequence {a,} is proposed in Section
9 and its theoretical properties are studied in Section 10. Conditions are given
under which both a, and E(Y, — Y,)® converge. It turns out that this procedure
for the sequential choice of a, is also a stochastic approximation procedure of the
Robbins-Monro type. Numerical examples given in Section 11 indicate that the
asymptotic loss obtained by using this procedure for sequentially choosing a.
may be nearly as small as the asymptotic loss obtained when the sequence {an}
is chosen a prior: to converge to the value of @ that minimizes the asymptotic loss.
However, when a, is chosen sequentially, we need much less @ prior: knowledge
of the process.

2. The process. The basic process, which we shall call a process of type 1, is de-
fined in terms of the sequences {X,}, {¥,}, a function M (x) measurable on the
real line and a stochastic sequence {Z,}. In this paper we shall assume that the
process can be described mathematically as follows:

(a) The basic equation defining Y, is

(1) Y, = M(X,) + Z,, n=12 .
(b) We shall assume that there exist two known bounds X and X™ such

that

2) Xy £ X, £ X5, n=12";

but we shall take special note of the effect of removing these bounds on X as we

state each theorem.
(¢) We shall also assume that there exist two fixed bounds 8« and 8* (not
necessarily known) such that for any two distinct x, 2’ in the interval [X , X*]

we have
(3) 0<Bsx = (Mz) —M@E))/(z—2a') 26"
(d) The distribution of {Z,} is described in terms of a sequence of conditional
distribution functions (not usually known) defined as
(4) Fu(Zn|21, oy Zna1, @1, o0, ), n=12"-.-.

The desired output of the process is Y, where Y, is known. The loss at any
time 7 is given by the expectation E(Y, — Y,)°. We assume that there exists 6
in the interval [X 4 , X*] such that

(5) M) =Y,.

3. The control procedure. Any control procedure must specify X; within the
interval [X x , X*] and must define a sequence of measurable functions {p,} which
permit us to specify subsequent values of X, in terms of prior values of X, and
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Y, as
(6) Xﬂ=pn(le"')Xn—lyYI:"'yyn—l)-
The general objective of control will be to reduce the loss E(Y, — Y,)>

4. The system. Once a process and a control procedure are defined, we have a
system whose stochastic behavior is completely defined. By using (1), (4), (6)
we can define the joint distributions of any finite number of elements of the
sequences {X,}, { Y.}, or {Z,}. In this paper we do not require detailed knowledge
of these distributions. We need to define them only in order to be able to specify
certain restrictions on them.

5. Control procedure of type P1. We now define the first type of control pro-
cedure which we shall call a procedure of type P1. First specify a prior: a sequence
of positive numbers {a,} such that

7 limy.e @, = @ = 0, > s = .

n=1

Then specify a value of X in the interval [X , X*] and proceed to define X,
sequentially as :

Xn+l=X* if Xn_an(Yn_ YO) <X*
(8) =X, — a,(Yo — Yy) if Xe 2 Xp—an(Vo—Tp) £ X*
= X* if X, — aa(Ya — Vo) > X%

A procedure of type P1 is intuitively appealing because it permits us to decrease
X, when the observed Y, is above ¥, and vice versa. When a equals zero the loss
always tends to EZ% and this may be the best choice of @ for control of many
processes. However, we shall see in the examples in Section 11 that when a is
positive we can continue indefinitely to adjust X, on the basis of recent history
of the process and thus reduce E(Y, — Y,)* when the random errors (Z,) in (1)

are highly positively correlated.
Note that when a = 0, this procedure is like the conventional Robbins-Monro

procedure except that we have omitted the usual requirement that ) n_; a5 < .
We can do this because Condition (3) will prove to be an adequate substitute in

our theorems.
A procedure of type P1 with ¢ > 0 and no bounds on X, is called proportional

control in a recent article by Box and Jenkins [1].

6. Properties of procedures of type P1 when ¢ is small. We shall next consider
properties of the system when ¢ is small. We shall require that a be such that

(9) 0 <a<1/8%

We also require that the stochastic behavior of the system be such that the
following condition holds:
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Conprtion Cl. There exists a sequence {{,} of non-negative numbers such
that

(10) fm—0 as m— o,
(11) E{[E(Zo|Zy, -+ Znen)} S b

Some important properties of procedures of type P1 applied to processes of
type 1 are summarized in the following theorem:

THEOREM 1. Suppose we are given a process of type 1 and form a system by apply-
ing a control procedure of type P1. Suppose further that the control procedure satis-
Jies (9) and that the system satisfies Condition C1. Then there exists an upper bound
n(a) such that:

(12) lim SUppsw BE(X, — 6)® < n(a),
(13) lim SUpnee B(Y, — Z,)* = (8%)n(a),
(14) 7(a) >0 as a—0,

(15) 7(0) =0,

and a possible version of n(a) is '

(B*K + ¢o)ioam + Kimn
B

2
"7(0') = minqn=0,1,--- {aﬁ;K +

(16)
+

B*Ktoa + 0_3'12) }

Bx 26+’
where K = X* — X,

It is shown in [2] that this theorem also holds when X, is unbounded provided
we take K = {o/B+ . This theorem is based on Theorem 4.1 of [2] as generalized in
the appendix of [2]. When all conditions hold except (5), conclusions (12), (14)
and (15) of Theorem 1 still hold provided we identify 6 as X« or X* depending
on whether M (z) > Y, or M(z) < Y, for all z in the interval [X4, X™].

Proor. To simplify notation we shall set Yo = § = 0 throughout the proof.
By setting m = 0 in (11) we have

(17) EZ: < &, n=12---
From (1) and (3) we know that |¥,| < 8% |X.| + |Z.| and hence
(18) [EY.] < B EXL] + [BZ.) s 'K 4+ %, n=1,2---.

We now define 8, = M(X,)/X, so that from (3) we have 8x < 8, < 8% and
we can use (8) to obtain

(19) | Xagl £ |Xn — Y0 = [(1 — @uBa)Xn — aZa], n=12,.--.

Let 7o be the smallest integer such that a,8* < 1 for all n = n, ; the existence of
no 18 assured by (9). We then know that for any n = n,
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(20) 0<1l—af" <1 —aB 21— aBs<1.
From (17), (18), (19), (20) it follows that for all n = n, we have
EXi £ (1 — auBs)’EX5 — 20,E(1 — 0.8) XuZn + a2EZ5,
(21) < EXh — 20,84 EX — 0.8:K%/2 — |EX,Z0|/Bx
— |EBuXnZn| n/Bx — ni0/2B).

From (8) and (18) we know that [E(X,ny — X.)* < e [EYL] < au(B*K + o)
for all » = 1. Thus for any m = 0 and any n = m + ny we can use these results,
(11), and the fact that X,,_,, is completely determined by X;and Z; , - - - , Zp—m—
to show that

|EXwZy| £ |E(Xn — Xoem)Zn| + |EXn-nZ|

n—1
(22) = X |E(Xen = X)Z| + |BEXunB(Zn| Zomes, -+, Z0)]|
n—1
< (8K + )60 20 ai+ Kfmaa .

We also note that |E8,X.Z.| < [ES.XAEZ5) < 8°K¢o .
To establish (12) we must show that for any e > 0 there exists n(e) such that
for all n = n(e) we have

(23) EX% < n(a) + e

If @ > 0, let m be the smallest integer for which the minimum in (16) is attained.
We can now choose n;(e) = mo such that for all n = n;(€) (21) can be written as

(24) EX% < EX% — 20.8+{EX% — n(a) — ¢/2}.

If EX5 < n(a) + efor any n = m;(e), the inequality also holds for all larger n.
If EX% = n(a) + efor any n = ny(e), we know that EXayy < EXo — auBxe.
Because EX2 < K’ atn = my(e) and Q_a_; @, = o, we can always choose n(e)
so large that (23) holds for some n between n;(e) and n(e) and hence (23) holds
for all » = n(e) as required. If ¢ = 0, 9(¢) = 0 and we choose m(e) to make
K¢ ni1/Bs < €/4for allm = m(e). Then we can choose n;(e) and n(e) as before.
With the definition of #(e) in (16) we have now established (12), (14), (15). To
establish (13) we need only use (1) to show that

(25) E(Yn — Zn)" = BEIM(X,)" £ (8*)’EX%, n=12---.

7. Specialized conditions that imply Condition C1. Condition C1 basically re-
quires that the random variables Z, and Z,..» become increasingly independent
as m increases. The usual conditions attached to the Robbins-Monro procedure
for finding the root 6 of the equation M (x) = Y, when observations of M (z) are
subject to measuring error Z, are that foralln = 1,2, - - - we have

(26) BlZn| 2y, - Zpa, X1,y oo, Xu] = E(Z0] X2) =0,
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(27) ElZW|Zyy v Zna, Xy, -, Xa] = E(Z2] X)) 65

These two conditions imply Condition C1 with {,, = 0 for m = 1.

However, Conditions (26) and (27) are unrealistic in the process control
context where Z, and Z,,. are quite likely to be correlated in some rather arbi-
trary way unless m is quite large. It may be more realistic in the process control
context to start by restricting the conditional distributions in (4) so that for all
n =12 --- wehave

(28) Fn(znlzly"'7zn——1)x17"',xn) =Fn(znlzl,"'yzn—l)-

Under this assumption the Z, random variables can be correlated and we can
impose Condition C1 on the process alone because the distribution of the se-
quence {Z,} is independent of the control procedure used.

If we further suppose that the sequence {Z,} is stationary and Gaussian, it is
sufficient for Condition C1 to require this sequence to be regular and to have no
deterministic component. Here we use the terminology of Doob [4].

8. Properties of procedures of type P1 when the process is stationary. In this
paper we shall define a stationary process, which we shall call a process of type 2,
to be a process of type I as described above restricted to cases in which (28) and
Condition C1 hold and in which the sequence {Z,} satisfies the following con-
dition:

Conprtion C2. The Z, random variables form a stationary sequence which
can be decomposed so that Z, = Z° + ZP forall n = 1,2, --- . We require
that EZ’ = EZP = 0 and that the Z$” random variables be independently
and identically distributed and that Z” be independent of Z<’ for all m < n.
Furthermore the distribution function for Z¢” is to be absolutely continuous with
a probability density function f(z) such that 0 < f(z) < f for all z and for some
bound f. We note that Condition C2 implies that EZ, = 0 and that Condition C1
implies that EZ; < ¢;. Therefore the following covariance sequence {R(m)}
exists for any stationary process of type 2:

(29) R(m) = EZnZnim, m=20,1,2 ...

Before we state a theorem covering the properties of stationary processes of
type 2 we define the following sequence of random variables {V.,} generated by
any system.

(30) Vi = —SGN[(Y, — Yo)(Yuu — Yo)l.

We shall need the sequence {V,} and its properties when we consider procedures
of type P2 in Sections 9 and 10.

The important properties of procedures of type P1 applied to stationary pro-
cesses of type 2 are summarized in the following theorem:

TarOREM 2. Suppose we are given a stationary process of type 2 and form a
system by applying a control procedure of type P1. Then the following limits exist
and are continuous functions of a for all a = 0.
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(31)  limpuw BE(X, — 0) = w(a), limpse E(X, — 6)® = B(a),
(32) liMp.w E(Y, — Yy) = w(a), limpe E(Y, — Yo)? = T(a),
linfln_,°° E(Yn — Yo)(Yn+1 - YO) = D(a),

(33) limpaw BV, = u(a).
Furthermore, even if X, is unbounded, this theorem holds provided we require that
a < 2/8%.

For simplicity we have placed restrictions on stationary processes of type 2
which are not necessary for all parts of Theorem 2. However, these conditions
permit us to apply simultaneously several theorems in Sections 4, 5, 6, 7 of [2]
to establish all parts of Theorem 2. Proofs for all these contributing theorems are
included in the main reference [2].

Note that the limits established in Theorem 2 depend on the sequence {a.,}
only through the limit @ and that lim..o B(a) = B(0) = 0 by Theorem 1. The
number T'(a) represents the asymptotic loss for this process when controlled by
a procedure of type P1 with a specified value of a.

We can appraise the asymptotic performance of a procedure of type P1 applied
to a particular stationary process of type 2 in terms of two different efficiencies.
First suppose that we know the entire stochastic structure of the stationary
process. We can then calculate the general least squares predictor Z, =
E(Z,|Z1, -+, Zn) and can choose X, to make Z, = —M(X.,). Suppose this
procedure leads to an asymptotic loss 7'. Now consider the asymptotic loss T'(a)
under a procedure of type P1. Let the value of @ which minimizes T(a) be ax
and let this minimum loss be T’ . The asymptotic efficiency of procedures of type
P1 relative to the ideal procedure can then be defined as &, = T/T . This is the
sacrifice we make to achieve simplicity in the control procedure.

In general we will not know the entire stochastic structure of the stationary
process and will have to apply a procedure of type P1 with a value of a that
differs from a . The asymptotic efficiency of the procedure with the actual
choice of a relative to the optimum procedure of type P1 with ¢ = a, can there-
fore be defined as &(a) = Twu/T(a).

In the main reference [2] other criteria that a good control procedure should
satisfy are discussed. These include performance at small values of n and per-
formance in the presence of various types of superimposed disturbances. It is also
noted that procedures of type P1 are more likely to provide effective control if
the Z, random variables tend to be positively correlated.

9. Control procedures of type P2. When knowledge of the process is incomplete,
it will be impossible to choose the optimum value of @ under a procedure of type
P1. In the main reference [2] the possibility of selecting a reasonably good value
of a on the basis of partial knowledge of the process is discussed. However, it
seems reasonable to hope that the sequence {a,} might be chosen stochastically
in such a way as to converge to a reasonably good value of a dictated by the
actual performance of the system.
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We now define a procedure of type P2 to provide a method for the stochastic
choice of {a,}. First specify two bounds as, a* such that 0 < asx < a*. Also
specify a priori a sequence of positive numbers {A,} such that

0

(34) liMyow Aw = 0, D e = 0.

n=1

Then specify X; in the interval [X s, X*] and @, in the interval [as , @*]. Next
define a, sequentially as

(35) Ony1 = Gx if @y exp(—NVa) < a4,
= an exp(—\V,) if ax £ @, exp(=\V,) £ ¥,
=" if @, exp(—\,V,) > a¥,

where V,, was defined in (30). Once a, has been calculated we can proceed to
define X, 4 sequentially as in (8).

Procedures of type P2 are motivated by the fact that we probably need more
correction (larger a,) if successive values of (¥, — Y,) have the same sign. A
similar idea was employed by Kesten [6] to accelerate convergence of stochastic
approximation procedures. There is a close analogy between a procedure of type
P2 applied to the stochastic choice of @, and a procedure of type P1 with a = 0
applied to the stochastic choice of X, . The analogy between (8) and (35) is
clearer if we transform (35) to obtain log a,+1 = log a, — NV, . We expect that
procedures of type P2 will force a. to converge to the value of a at which
limyse BV, = p(a) = 0. We shall define such a value of a to be ay .

10. Properties of procedures of type P2 when the process is stationary. To
timplify notation we shall restrict ourselves to a special case of the main theorems
in [2] concerning procedures of type P2. We shall require that the process be of
type 2 and that the sequence {Z,} satisfy the following condition:

Conbprrion C3. The sequence {Z,} is a stationary Gaussian sequence which is
regular and has no deterministic component (see Doob [4]). This means we can
express Z, in the form

(36) Zn = ZCiEn—iy n=12"-,
i=0
where {£,-.} is a sequence of independent N(0, 1) random variables, ¢, > 0,
2o led® = ¢5 < « and the equation i cz’ = 0 has no roots z; such that
|z;] < 1. Using this notation, we then require that

(37) > [Z cf:l < o« for some a such that 0 < o < 1.
m=0 |_i=m
Note that Condition C3 implies both Conditions C1 and C2.
In addition to Condition C3 we shall need some conditions on the function
u(a) analogous to Conditions (5) and (3) on M (z). We therefore require that
the process satisfy the following condition:
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ConprrioN C4. When procedures of type P1 are applied to generate u(a),
there exists a unique gy in the interval [a« , a*] such that

(38) w(a) = 0,

and there exist two bounds bx , b* such that for any @ in [ax , *] that is distinct
from a; we have

(39) 0 < bx < ula)/(a—a) b

The important properties of procedures of type P2 applied to our special class
of stationary processes are summarized in the following theorem:

THEOREM 3. Suppose we are given a stationary process of type 2 and form a
system by applying a control procedure of type P2. Suppose further that the process
satisfies Conditions C3 and C4. It then follows that

(40) limpaw E(a, — ap)® = 0,
(41) liMpow E(Y, — Yo)® = T(a),

where T(ay) 1s the asymptotic loss that would result if we applied a procedure of
type P1 with a = ao to the same process. Furthermore, even if X, is unbounded, this
theorem holds provided a* < 2/8%.

Proof of a generalized version of Theorem 3 is included in Section 10 of [2]. A
procedure of type P2 can be viewed as an application of the Robbins-Monro pro-
cedure to achieve convergence of a, to a, . The effectiveness of procedures of type
P2 can be appraised in terms of the efficiency &(a,) = T'x/T (o).

11. Numerical examples. We shall illustrate the performance of procedures of
type P1 and P2 by applying them to a simple class of stationary processes. The
processes will all be such that M (z) = z and such that the value of X, is un-
bounded. We note here that recent studies in which more complex systems have
been simulated on a computer indicate that moderate departures from linearity
in M (z) do not seriously affect the performance of procedures of types P1 or P2.

All the conditions for Theorem 3 will be satisfied in the examples and we shall
take ¢; = ¢'(1 — ¢*)"*in (36) with 0 < ¢ < 1. This means that in (29) we have
R(m) = ¢". Using the notation of Theorem 2, we can say that u.(a) = uy(a) = 0;
and for any given ¢ we can calculate T'(a), D(a), and u(a) as functions of a. In
particular we know that asymptotically the sequence {Y,} is Gaussian and
stationary. Therefore, u(a) = 0 if and only if D(a) = 0 and we can calculate ao
as the value of @ at which D(a) = 0. T(a) and D(a) can be expressed concisely
intermsof r = (1 — a) for —1 <r £ 1las

(42) T(a) = 2(1 —¢)/(1 +7)(1 = re),

(43) D(a) = (1 —o)r(L +¢) = (1 —))/(1 + r)(1 — rc).
Furthermore we have
(44) Ty =1 ifo<e¢=4,

8¢(1 —¢)/(1 + ¢)* ifi<e<l,
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(45) au =0 if0<csi,
= (3¢ — 1)/2 ifi<e¢<1,
(46) T(a) = (1 —¢)(1 4 ¢)*/(1 + ¢,

(47) a = 2¢/(1 + ¢).

We also know that the general least squares predictor in this case has an asymp-
totic loss 7' given by

(48) T=1-¢

The derivation of these and other illustrative examples is covered in the main
reference [2]. The algebraic derivation is similar to that presented by Cox [3]
in an article on exponentially weighted moving average predictors. The connec-
tion between the illustrative examples with M/ (z) = z and the prediction prob-
lem requires that we identify (—X,) with the predicted value Z, of Z, so that
Y, in (1) becomes the prediction error ¥, = Z, — (=X,) = Z, — Zn .

To illustrate the performance of procedures of types P1 and P2 for different
levels of positive correlation among the Z, random variables, some results have
been calculated and presented in Table 1. The smallest value of ¢ is taken to be an
arbitrarily small positive value (0*) in order to represent the case where the Z,
random variables are independent. The more general version of Theorem 3 in
the main reference [2] permits the use of ¢ = 0. Note that in our example a = .5
is good for a wide range of values of ¢. If the slope of M (z) is 8 this corresponds
to a choice of @ = .5/8. However, M (z) must be linear with known slope 8 before
we can take advantage of this choice of a. Table 1 illustrates the fact that the
Robbins-Monro version of a procedure of type P1 (i.e. with ¢ = 0) is minimax
in the sense that it minimizes the maximum loss when we know nothing of the

TABLE 1
Asymptotic loss and efficiency for various procedures

4

Procedure
0+ 1 3 5 7 9
1. Gen. least sq. 7 1.00 .99 91 .75 .51 .19
2. Pl witha = ax: an 0 0 0 .50 .79 .94
Ty 1.00 1.00 1.00 .88 .58 .20
8 1.00 .99 .91 .85 .88 .95
3. Pl witha = 0 T(0) 1.00 1.00 1.00 1.00 1.00 1.00
&(0) 1.00 1.00 1.00 .88 .58 .20
4. Pl witha = .5 T(.5) 1.33 1.26 1.10 .88 .62 .24
8(.5) 75 .79 .91 1.00 .93 .83
5. P2 @ 0 .18 .46 .67 .82 .95
T(ao) 1.00 1.08 1.09 .90 .58 .20
&(ao) 1.00 .93 .92 .98 1.00 1.00
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correlation structure of {Z,} a priori. Any other choice of a will result in a higher
loss when ¢ is close enough to zero. Also @ = 0 seems to be the best choice of a
for control of processes that do not have a rather highly positively correlated Z,
sequence. However, it is also pointed out in [2] that a small value of a may be
a poor choice if the process is not truly stationary. When the correlation structure
of the Z, sequence is unknown, procedures of type P2 seem to lead to an asymp-
totic loss T'(ay) that compares quite well with T , for all values of ¢ and is usually
even better than the choice of @ = .5.
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