ON SOME ALTERNATIVE ESTIMATES FOR SHIFT IN THE
P-VARIATE ONE SAMPLE PROBLEM!

By PETER J. BICKEL

University of California, Berkeley

1. Summary. The vector of medians M, and the vector of medians of averages
of pairs W, are investigated as competitors of the vector mean X, in estimating
the location parameters in the p-variate one-sample problem.

These estimates are found to be asymptotically normal and unbiased. Neces-
sary and sufficient conditions for the degeneracy of the asymptotic distribution
of M,, and W, are given. For W, , in the case p = 2, these reduce to the con-
dition that one coordinate variable be a monotone function of the other. Suffi-
cient symmetry conditions are given for the asymptotic independence of the
coordinates of these estimates.

W. and M, when compared to X, in terms of the Wilks generalized variance
are robust in the case of asymptotically independent coordinates. But for p = 3
they can have arbitrarily small efficiency even in the non-singular p-variate
normal case, if the underlying distribution is permitted to approach a suitable
degenerate distribution arbitrarily closely. For p = 2, in the normal case, W,
is highly efficient, although M, can have arbitrarily small efficiency. However,
W.. is also shown to have arbitrarily small efficiency for a suitable highly cor-
related family of distributions even in the case p = 2. On the other hand, W,
becomes infinitely more efficient than X, as a given fixed distribution is mixed
with an increasingly heavy gross error distribution. The behavior of these esti-
mates is also considered for other non-normal families.

2. Introduction. If Z,, --- ,Z, is a sample from a univariate population
with distribution F(z — 6), where F and 6 are both unknown and F is symmetric
about 0 and continuous, then several consistent and asymptotically normal
point estimates, 8,(Z; , - - - , Zs), of 6 are known. In a recent paper [3] Hodges
and Lehmann proposed a general method of obtaining such estimates from the
test statistics used in this problem.

Now suppose X;, ¢ = 1, --- ,n, where X; = (Xy;, -, X,i), is a sample
from a p-variate distribution F(x; — 6;, --- ,z, — 6,), where 8 = (6;, - - -, 6,)
is unknown, F is symmetric about 0, and F is continuous. Then a natural es-
timate of 0 is

2.1) 0, = (6u(Xuy o, X)), 5 0(Xpr, v Xom))-
We shall be particularly concerned with the following three estimates: the
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“classical estimate,”

(2.2) 0(Zyy v+ s Zn) = (Zn+ -+ +Zn)/m,

(2.3) 0,(Zy, -+, Zn) = median,,... n Z; ,

and

(24) 0.(Zy, -+, Zn) = median <i<j<n 5(Zs + Z;).

The corresponding vector estimates are denoted by X, , M, , and W, , respec-
tively. The first two estimates are well-known. Thelast has been shown by Hodges
and Lehmann in [3] to share the robustness of the Wilcoxon test, even as the first
two estimates are intimately connected with the ¢’ and sign tests, respectively.

3. Asymptotic Normality of M, , W, ,X, . The first two parts of the following
theorem are well known. Both parts (2) and (3) may be established by a straight-
forward generalization of the arguments used in [3] to derive the corresponding
univariate distributions and by an application of Lehmann’s version of the
Hoeffding theorem on U statistics (Lehmann [4]).

Let 6 = (6, --+,0,) beal X p vector, 0 be the zero vector, and let Py de-
note the probability measure under which the X; are independent and have
distribution F(x; — 61, -+ ,Zp — 0p).

TueEOREM 3.1.

(1) Suppose Eo(X%) < w,i =1, ---,p, where Ey indicates that the expected

value is taken under Py , and 0 is as above. Then
(3.1) limye Po(n'(Xn — ) S 1) = Proor;ur(u, - 5 Up)

where ®po,10,;11 ¢S the cumulative of the p-variate normal distribution with mean 0
and covariance matrix ||os;|| and oi; = Eo(Xa , Xj) tn our case.

(2) Suppose the marginal distribution of Xa , Fi(x), is absolutely continuous for
{=1,---,p and its derivative at 0 denoted by f:(0) exists. Then

limye Py(n! (M, — 0) S 1) = Progr11(s, =<+ 5 Usp)
where
ri; = 1/4f1(0), = J,
= {PoXa > 0, X > 0] — }}/£:(0)£;(0), T # j.

(3) Suppose the marginal distribution of Xu vs absolutely continuous, ¢ = 1,
-+, p. As above its density is denoted by fi . Then

(3.2)

lim,, Po(n}(Wa — 0) < 1) = Pp,1yi;11(ur, ==+ 5 up)
where
vii = 1/12l[Zafi(x) dal’, =7
(3.3) _ [Zaf %P (2)Fi(y) dF: (2, y) — % i

([2ufi(z) dz) ([Zf3(y) dy)
and F; ; is the joint distribution of (Xa , Xj) under Po .
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We now examine conditions under which the distributions of X, , M,, W,
asymptotically (a) have independent coordinates, and (b) are degenerate.
We say that a bivariate random vector (X, Y) is totally symmetric if

(34) (X’ Y), (—Xr _Y) and (X7 —Y)

have the same distribution.

We then have
- TarorEM 3.2. A sufficient condition for the asymptotic independence of the

components of (1) Xn, (2) My, (3) W, s the total symmetry of (Xua, Xj1) for
every pair (4, 7).

Proor. By the hypothesis, every pair of coordinates of X, , W, , or M, must
possess the total symmetry property and, by consideration of either characteristic
or distribution functions, so must every pair of coordinates of the respective
limiting normal distributions. But if (X, ¥') is totally symmetric the correlation
of X and Y is 0 and our result follows.

Examples of symmetric distributions possessing this property are those with
pairwise independent coordinates and those with densities f(z;, - -+, x,) such
that f(x:, --- ,x,) = f(F£x:, -+, %x,) for any choice of 4, for example, a
uniform distribution on the p sphere or any mixture of distributions with pair-
wise independent coordinates.

TueoreM 3.3 Let X;, 1 = ¢ = n, be random vectors satisfying the hypotheses
of Theorem 3.1 on a space (2, Q). Then the asymptotic distribution of (1) X, ,
(2) Wa, (3) M, is k-variate normal, k < p, if and only if, for some j, a.s. [Po),
respectvely,

(3.5) (1)  Xa = > a Xu,

k#j
(3.6) (2)  Fi(Xnp) = kfé,- adFu(Xu) — 3 + 3,
(3.7) (3) I(Xh) = ; all(Xih) — 3+ 4,

where the distribution of X; is computed under Py , F'; is the marginal distribution of
Xaand I(XT) = 14f X is positive and O otherwise.

Proor. We observe that the covariance matrices of the limiting distributions
of X,, W, , M, are the moment matrices, respectively, of the random vectors
X, {alFi(Xu) — 31, -+, eolFo(X ) — 31}, ¢ # 0, and {e[I(XHy) — 3], -+,
ealI(X5) — &1}, cf = 0. The result is then a consequence of Frisch’s theorem
(see Cramér [1], p. 297), which states that the moment matrix of a multivariate
distribution is of rank r < p, if and only if the distribution is carried by an r
dimensional subspace of R” and r is the minimal dimension of such a subspace.

Consequently we obtain

TuEOREM 3.4. Necessary conditions that the asymptotic distributions of (1) M, ,
(2) W, be degenerate are, respectively, that under P :

(1) X, has its distribution carried by at most 2° — 2 of the 2° orthants of R”.
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(2) Xp = f(Xa,alli 5= j) for somej. If p = 2 Condition (1) becomes sufficient
for the asymptotic degeneracy of M, .

The following Condition ( 2%) becomes both necessary and sufficient for the asymp-
totic degeneracy of Wy, if p = 2.

(2%) Condition (2) holds and the f in Condition (2) is strictly monotone on o
Borel set A such that Po(Xse A) = 1.

Proor. Suppose (1) does not hold. Then

Po[X¢1>0,i=1,"’,p]>0

which from (8.7) implies that ) o = 1. But this implies that Po[X,; < 0,
Xa > 0,all 7 # j] = 0, a contradiction. (2) is a consequence of the following
lemma.

LemMa 3.5. Let X be any random variable with continuous distribution func-
tion F. Let A, = F'({z}), D(F) = {z| A, contains more than 1 point}. Then
P[X € ngp(p) Az] = 0.

Proor. Since F is continuous and monotone, A, is a degenerate or nonde-
generate closed interval. Then x ¢ Dy if and only if 4, is nondegenerate. But
A, N4, = ¢ if z # y. Hence D(F) is countable. But P[X ¢ 4,] = 0 for every
x. :

Now let 8 = {F;j(X;) 0, 1] — D(F;)}. Then Po(S) = 1 by Lemma 3.5.
But on F;*{[0, 1] — D(F;)} F;is 1-1. Let F;" be the pointwise inverse of F; on
[0, 1] — D(F;). Thenon S N (@ — N),

Xn=F'}}+ k;jak(Fk(Xkl) - )]

where (3.6) holds on @ — N, and Po(N) = 0. (2) now follows.

The sufficiency Condition (1) is immediate. For, if the distribution of (Xu,
Xy ) is carried by two quadrants, Po[Xu > 0, Xa1 > 0] > 0] = 0 or Po[Xy >
0, X» < 0] = 0 giving, in conjunction with symmetry, I(Xh) = I(x X4)
respectively. Condition (3) of Theorem 3.3 is then satisfied.

We first show that for p = 2 Condition (2¥) is necessary. (3.6) reduces to

(3.8) Fi(Xn) = 3(1 — @) + aFy(Xu) onQ — N.

Suppose Po[Xu > 0, Xz > 0] > 0. Then we choose {wn} ¢ @ such that Fi[Xyu
(wn)], Feo[Xo(w,)] tend to 1 and (3.6) holds, giving & = 1. Now let 4 = {z |
Fy(z) €[0, 1] — D(Fy)}. Then f(z) = Fi' Fy is well defined on 4 and Xy =
f(X2) on [ — N] N [Fi(Xu) €0, 1] — D(Fy)]. Clearly f is strictly increasing
on 4 and 1 = Po{(ﬂ — N) n [Fl(Xu) & [0, 1] - D(Fl)]} = Po[leé‘A]. On
the other hand, if Po[X1; < 0, Xz > 0] > 0, upon applying the above results to
(X1, —Xu) we obtain f strictly decreasing on A. Thus necessity is proved.
Now suppose f is as specified with f strictly increasing on A. Then, for

z e f(4),
Po[Xy < 2] = Pof[Xu < 2] N[2 — NI} = PolXu <77 (2)]
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by the monotonicity of f. Hence
Fy(Xu) = Fo(f7 (Xu))  onf2— NINX3 (4)
= F; (Xu),

since on @ — N, Xy = f(Xun).

If f is strictly decreasing, the result follows by considering (X, —X») and
observing that Fy(z) = 1 — Fi(—2),7 = 1, 2.

We remark that, if p = 2, Condition (3.5) implies Condition (2*) of Theorem
3.4, which implies Condition (1) of Theorem 3.4, and the reverse implications
need not hold.

If p > 2, then the example of Proposition 4.1 shows that Condition (3.5) need
not imply (3.6) and similar examples showing that neither (3.6) nor (3.5) need
imply (3.7) can also be constructed.

4. Asymptotic efficiency of W,, M, with respect to X,. We employ
as a measure of the asymptotic “scatter’” of multivariate estimators which are
asymptotically unbiased their asymptotic “generalized variances”, a concept
introduced by Wilks (see Cramér [3], p. 301). The “generalized variance” of a

p-variate random vector (X, ---, X,) with nonsingular covariance matrix,
lpijoics]|, is defined to be
(4.1) Var X = o} - - - o det [|p:],

where “det” denotes determinant.

Then it is natural to define as the (asymptotic) efficiency of a p-variate
(asymptotically) unbiased estimator 7' of 8 with (asymptotically) nonsingular
covariance matrix with respect to a similar estimator S, the limit (if any) of the
inverse ratio of sample sizes required to reach equal (asymptotic) generalized
variances. Thus if the (asymptotic) covariance matrix of S is ||psj0.0; and that
of T is ||pssrirs|, the efficiency of S with respect to T is

(4.2) oS, T) = [(r1 - -+ 75/d% - -~ o) (det [|p5]|/det [|pis] )"

By substituting from (3.2) and (3.3) we therefore have, in the nonsingular case,
(43) e(W,,X,) = [,Ii 1267 ([ Zufi(2) dx)2:|p l [det [|pis]/det [|p3][17™"
where ||p;jo40|| is the covariance matrix of X; and where
pii = 12 [[Z0 [Z0 Fi(x)F(y) dF i (z, y) — 1], T j,
=1, i =j.
Similarly, we have

(4.4) e(M,, X,) = [III 403f3(0):|r [det [|oss]|/det [lo¥¥][17”"

i=
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where
pr = 4[Po[Xq > 0, X;1 > 0] — 1].

We remark immediately that if X, , W, , and M, have asymptotically inde-
pendent co-ordinates, for instance under the conditions of Theorem 3.2, we have

(4.5) e(M,,X,) = 4 (ﬁl a%ﬁ(ﬂ),)p ]

(4.6) e(W,,X,) = 12 (Ii o1 ([Zafi(2) dx)2>p_l
and hence from a result of Hodges and Lehmann [2]

(4.7) infreg e(Wh , Xa) = .864,

(4.8) infpege e(Ma , Xa) = .33,

where F is the set of all totally symmetric continuous p =variate distributions and
F* is the set of all unimodal totally symmetric continuous p-variate distributions.
Unfortunately the favorable result above is offset by
ProrosiTiON 4.1. For p > 2,

(4.9) infpe, e(Wa, X.) = 0,
and forp = 2
(4.10) infgep e(M, , X,) = 0,

where ¢ is the family of all nonsingular p-variate normal distributions.
Proor. We prove (4.9). The proof of (4.10) is delayed to the next section,
It suffices to prove the result for p = 3.
Take X, with underlying distribution tri-variate nonsingular normal,

pi; =0 5,Jj =12,
= (1 —a)27? i # j otherwise,
= ]_ 2. = j.

As a — 0 clearly det ||o:j] — 0, det ||pi;]| > 0 and (4.9) follows.

We conclude that in the independent case the behavior of these estimates is
excellent and essentially equivalent to the univariate situation.

Now, Proposition 4.1 indicates that for p > 2 in the general normal case M,
and W, are not competitive. However, it is always true that

(4.11) o(M,, %) 2 [H 403f3(0)]p_ fdet [lol 1"
and
(4.12) e(Wa,Xa) 2 [LII 1207 (J Zof () dx)ﬂp_l[det llpes 1P

(see Cramér [1], p. 296).
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Hence for distributions that are sufficiently nondegenerate i.e. for which
det ||pij|| is considerably greater than 0 in absolute value, the behavior of W,
and M,, is similar to that in the univariate case.

Thus the efficiency of W, is large for distributions with heavy tails and, in
fact, Theorem 6.1 can clearly be extended to the general p-variate situation.

It also seems clear that, for distributions satisfying (3.6) but not (3.5), W,
is infinitely more efficient than X, . Simple examples of such distributions are
ones concentrating all their mass on non-linear monotone curves contained in
one of the co-ordinate planes. Similar remarks apply to M, .

Yet another special case that is of interest occurs when the distribution of
(Xa, X5) is independent of 7 and 7 when 8 = 0. In this case, from a well-known
formula for determinants, we obtain

1—p—1 p—1
5 _ 2 02 P12 1+ (p — 1)P12:|
(413) (M., X,) = 401f1(0)[———*;] [w

P12
and
(413) &(Wa, X,) = 126}(f2ufi(2) o)’ [1 — 21:] E’%:i—))g‘]p

If, in particular, following Stuart [6] we have X = Z;,; — Z; where the Z;,
J=1---,p+ 1form a set of independent, identically distributed, symmetric
random variables, then

oot | Pt l:r_l 2 2
e, x) = 327 [2E1T o)
which tends to 3¢31(0) from above as p — . From Theorem 2 in Lehmann [5]
we also see that in this case

601([Zufi(z) dz)’(p + 1)7" < e(Wa, Xa) < 1203([Zufi(z) dz)*.

It follows from Table 7a in Lehmann [5] that, if Z; is normal or rectangular,
¢(W. , X,) is lower bounded by .925 and .88, respectively, for all p.

There would, thus, despite Proposition 4.1 seem to be many situations in which
W.. and M, are preferable to X, even for p > 2 and which could bear further in-
vestigation. In this paper, however, we from now on restrict ourselves to the
simpler case p = 2.

6. Efficiency in the case p = 2 (Normal case). Suppose that the underlying
distribution F is in fact nondegenerate bivariate normal (0, o1 , o3 , p). Then the
efficiency behavior of M, and W, with respect to X, is described by the following

theorems. )
TraEOREM 5.1. The efficiency of M, with respect to X, 1s independent of o1 and o,

and ts given by

_ 2 3
(51) (a') e(Mn ) X )(P) [ (1 __1 (2/:,) cos—! ,D) ]
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or in the analytically simple form
(5.1) (b)  e(M,, X.)(u) = sin uw/[u(r — u)]}

where u is determined by the relation p = cos u. The function e(M, , X.) s (1)
Monotone decreasing for 0 < p < 1 and (2) Symmetric about p = 0 and hence
unimodal.

Finaily, lim;,1 e(M, , X,)(p) = 0.

Proor. In the bivariate case if p1z = p, (4.4) reduces to

(5.2) e(M,. , Xa) = 40105£1(0)/2(0)[(1 — p*)/1 — (4pre — 1)

where p; = Po[X1u > 0, Xa > 0].
In the normal case we have

(5.3) £i(0) = (2na))™
and
(54) p = cos pr where p =1 — 2pp.

Of these, (5.3) is self-evident and (5.4) is a well-known result due to Sheppard
(see [1], p. 290). Simplifying and letting w = pm we obtain (5.1)(a) and (b).
To see (1) let f(u) = sin® u/u(x — u). Then

(5.5) llog f(w)] = 2cotu — [u™ — (7 — w)7]

vanishes for v = 17 and we see

(5.6) [log f(w)]” = —2escu +ul+ (r—u)7=0 foru < im,
since

cscu = 1/u +u/6+ - + [2(2 — 1)/2n]Bu®™ ™ + - - -

where the B, > 0.

Statement (1) now follows readily. Statements (2) and (3) are immediate.
We note that this third statement is essentially (4.10).

TaEOREM 5.2. The efficiency of W, with respect to X, is independent of o1 and o,

and is given by
; 3 1—p ’
()  e(Wa, X)(p) = 2 5 p
1-— 9(1 - —cos—1£>
T 2

(5.8)

or in the analytically convenient form

— (14 2cos 3(r + u))]%

®) oW, T () = | TLF om0

where u is determined by p = 2 cos (u + 7)/3. The function e(Wn , X,) is (1)
monotone decreasing for 0 < p < 1 and (2) symmetric about p = 0 and hence uni-
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modal. Finally we have
limypps e(We , X,)(p) = (3/7 sin /3)F = 91.

Proor. (4.2) in the bivariate case reduces to
(5:9)  e(Wa, X)) = 120100 [Z0f1(2) do [2uf3(2) dal(1 — p°)/(1 — 71)]!
where vi; is given in (3.3). To prove (5.8) (a) we remark first that

2o [0 Fi(x)Fa(y) dF (z,y) = Po(X — X' > 0,Y — ¥” > 0) where X', ¥”
are independent of each other and (X, ¥) and have the same distribution as X
and Y, respectively. Now if (X, ¥) has a ®(0, o1, 03 , p) distribution, (X — X',
Y — Y”) has a ®(0, 261 , 203 , p/2) distribution. The result now follows upon
employing (5.4) and
(5.10) (1/270%) [ exp {—2*/0%} dz = 1/20%;.
We obtain (5.8) (b) by substitutingu = #{3(1 — 2Po[X — X' >0,V — V" >
0]) — 1} in (5.9).

To prove (1) consider

fu) = —[1 + 2 cos 3(u + =)/u(r — u).

Then

_ #sin 3(u + mulr — uw) + (r — 2u)[1 + 2 cos 2(x 4+ u)])
(5.11) f’(u) = (T — u)?

vanishes for 4 = 7/2.
It suffices to show g(u) = 0,0 < u < 7/2 where

(5.12) g(u) = §sin 3(u + m)[u(r — w)] 4+ (7 — 2u)[1 + 2 cos 2(x + u)].
Now
(5.13) g (u) = —cos 2(u+ 7)§ v’ — Bru + 4] — 2,

¢’'(0) = 0and ¢'(x/2) < 0.

Since g(0) = g(m/2) = 0, it is sufficient to show that ¢'(u) changes signs
exactly once in [0, 7/2].

Changing variables tov = © — 2(u + #) we find

(5.14) g'(u) = h(v) = 2cosv(®® — [r/9 — 2]) — 2,

where 0 < v < 7/3.
Now h(v) changes signs if and only if

(5.15) s(v) =secv —v* + 77/9 — 2

does. The theorem is now readily established by triple differentiation of s(v).
Thus in the bivariate case, with an underlying normal law, e(W, , X,) and

e(M., , X,) behave quite similarly on the whole. Both depend only on p and have
a unique maximum when p = 0. However, as in the univariate case W, is appre-
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ciably better than M,, if the underlying distribution is normal and the discrepancy
is accentuated as |[p| — 1. In subsequent robustness considerations we restrict
ourselves to W, .

6. Robustness. In this section we exhibit first some of the advantages of W,
with respect to X, . In particular, we show that as the underlying distribution of
X; becomes highly contaminated with “gross errors” e¢(W,, X,) tends to .
More precisely, we have

TurorEM 6.1. Let A, ¥ be any nonsingular bivariate distributions that are con-
tinuous and symmetric and have marginal densities. Let 0 < € < 1,x = (71, 79).
Define

(6.1) Fer(z,y) = (1 — OA(, y) + ep(x/m1, y/72)
and
(6.2) e(e, z) = e(Wn, Xa)

where F. 5 is the underlying distribution of X; under Pp .

Then, for every 0 < € < 1, liMe, (w0, €(€, £) = + 0.

ProoF. Let p(e, ©) be the correlation coefficient of (Xu;, Xa) and oi(e, ),
o3(e, ©) be the variances of Xy; and X3 , respectively, under F. . . Then we have

[20file, 7 x) de = (1 — €)? [2,74(0, 1, z) da
(6.3) + (/1) J2efi(1, 1, 2/70) do
+ [2e(1 — €)/7] [20£i(0, 1, z)fi(1, 1, /7;) dzx
where 1 = (1, 1). Applying the Schwarz inequality we find that
2w £i(0, 1, 2)fi(1, 1, z/7;) dx
is o(7;) and hence

lim 12 [*3 f1(e, =, 2) dx [Z0 f3(e, =, 2) da

T>00
= 12(1 — )" [2.£1(0, 1, z) dz [2.£3(0, 1, z) da,

which is positive for ¢ < 1.

Upon remarking that limg.e 0% (e, ©) = o for ¢ > 0 and that limg.. p(e, ) =

o(1, 1), where |p(1, 1)| < 1, we conclude from (5.9) that
e(e,®) = (1201(e, v)as(e, ®) [Zufi(e, 7, 2) dx [20fi(e, =, x) dz) —
agt — o,

It may readily be shown that the same result is obtained if we let only one of
71, 72 tend to « keeping the other fixed. A similar result can clearly be estab-
lished for M, .

Unfortunately, we also have the following theorem showing not only that
even in the case p = 2 there exist distributions for which (W, , X,) is arbi-
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trarily small but that they may arise from contamination models similar to the
one above. These remarks are embodied in the statement and proof of

THEOREM 6.2. Let & be the family of all continuous symmetric bivariate distribu-
tions. Then

(6.4) infreg e(W, , X,) = 0.

Proor. Let A(z, y), ¢(z, y) be two distributions on the line z = y such that
both are continuous, symmetric, and have unit variances. Let A;, A, be the
marginal distributions of X1 , Xa , respectively, under A, and similarly let ¢ ,
¥» be the marginal distributions of X3; , X under . Denote expressions of the
form [, [2, Ai(2)As(y) dA(z, y) by (A, As, A). We observe that there
exist A, ¥ such that
(65) 3(A17 A2) A) - [(AI)‘//2) A) + (A17 AZ"ﬁ) + (‘pl’ A2’ A)] # 0.

(?.5) is achieved for instance, by taking A uniform on the interval (—(6)%,
(6)*) onz = y, and ¢ double exponential on the same line.
Consider the family of bivariate distributions

Fep(@y) = (1 — Az, y) + ebd(z, y) + (1 — b)a(z)¢a(y).

Let oi(e), Fi(e, z), fi( ¢, ) denote the variance, marginal distribution and mar-
ginal density of X; when the joint distribution of (X1, X») under Py is given

by Fen(z, y)-
Clearly o7(e) = 1, Fi(e, ) and fi(e, z) are independent of b. Moreover,

[2afie, @) de — [213(0, z) da

as e — 0.
Denote quantities such as

2w JZa F1(0, 2)F5(1, y) dF oy (z, y) by (F1(0), Fo(1), F(0, b)).
Now applying L’Hopital’s rule and (5.9) we find
(6.6) limeoe(Wa,%a)(e,b) = 12 (J2.11(0,2) dz [Z.£3(0, ) da) (1 — b)/H (D)
where
H(b) = 3(A1, Az, A)
—[(F1(0), F»(1), F(0, b)) + (F1(0), F2(0), F(1,b))
+ (F1(1), F»(1), F(0, b))].
Now as b — 1, H(b) tends to the expression in (6.4). Hence we conclude
(6.7) limgy limesg e(Wo , X,) (b, €) = 0

and our result follows.
Thus it would seem that, despite our encouraging result on gross errors, on the
whole W, tends to misbehave badly when different highly correlated bivariate
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random variables are mixed and, hence, should not be used even in the presence
of gross errors for |o| too close to 1. Of course (4.6) and Theorem 6.1 would sug-
gest that W, is a more acceptable estimate than X, for |p| close to 0. This is con-
firmed by the elementary observation made in Section 4 that e(W,, X,) =
86 (1 — p))t Of course, the remarks made in connection with the case p = %
for general p also apply here.

The pathological behavior of M,, and W,, may in part be due to their lack of
affine invariance, a property which the problem, of course, possesses.

It is also interesting to note that if quadratic loss, rather than generalized
variance, is used as a criterion of efficiency, the univariate results carry over
verbatim, as might be expected, since this really reduces to consideration of the
case when the components are independent.

In a forthcoming paper we shall examine Hotelling type tests based on these
estimates and on the corresponding nonparametric tests, and compare them to

Hotelling’s T* test.
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