, 1.11 · ·

A NOTE ON THE POISSON TENDENCY IN TRAFFIC DISTRIBUTION

By Torbjörn Thedéen

Royal Institute of Technology, Stockholm

In a paper [1] by Leo Breiman it is shown that, under rather weak assumptions, the number of cars in an arbitrary interval I with the length |I| will be asymptotically Poisson distributed with the mean $\sigma |I|$, as the time t tends to infinity. Here σ is a constant. Under the same assumptions as those of Breiman it will here be shown that the cars as the time tends to infinity will be distributed according to a Poisson process with the intensity σ . The assumptions and notations will be the same as those of [1]. By the well known representation of a Poisson process we will formulate our main theorem in the following way:

Theorem. Let I_1 , I_2 , \cdots I_n be a disjoint but otherwise arbitrary intervals on the space axis, with their respective lengths $|I_1|$ $|I_2|$, \cdots $|I_n|$. Under the assumptions (a), (b) and (c) of [1] then

$$\lim_{t\to\infty} P\{N_t(I_{\nu}) = j_{\nu}, \nu = 1, 2, \cdots n\} = \prod_{\nu=1}^n (\lambda_{\nu}^{j_{\nu}}/j_{\nu}!)e^{-\lambda_{\nu}},$$

where $\lambda_{\nu} = \sigma |I_{\nu}|$ and where $N_t(I_{\nu})$ is the number of cars at time t in the interval I_{ν} . For the proof we need a slight generalization of the theorem of Section 3 in [1]. Consider for every m an infinite sequence of trials $Z_1^{(m)}$, $Z_2^{(m)}$, \cdots , which are independent for fixed m and result in one of the outcomes "success of type $\nu'' = S_{\nu}$, $\nu = 1, 2, \dots$, n or failure F with the corresponding probabilities $P(Z_k^{(m)} = S_{\nu}) = P_{k\nu}^{(m)}$, $\nu = 1, 2, \dots$, n, and $P(Z_k^{(m)} = F) = 1 - \sum_{\nu=1}^{n} P_{k\nu}^{(m)}$. Let the number of S_{ν} in the *m*th sequence be denoted by $N_{\nu m}$.

LEMMA. If

(i)
$$\sum_{k=1}^{\infty} P_{k\nu}^{(m)} \to \lambda_{\nu} \text{ as } m \to \infty \text{ for } \nu = 1, 2, \cdots, n,$$

(ii) $\sup_{k} P_{k\nu}^{(m)} \to 0 \text{ as } m \to \infty \text{ for } \nu = 1, 2, \cdots, n,$

then for fixed j_1, j_2, \dots, j_n

$$\lim_{m\to\infty} P\{N_{\nu m}=j_{\nu}; \quad \nu=1,2,\cdots,n\} = \prod_{\nu=1}^{n} (\lambda_{\nu}^{j_{\nu}}/j_{\nu}!)e^{-\lambda_{\nu}}.$$

The lemma is very easily shown by using the technique of generating functions for n-dimensional random variables. For sake of completeness the proof is given in the appendix.

In the proof of the main theorem we have then only to show that

(i)
$$\lim_{t\to\infty} \sum_{k=1}^{\infty} P\{X_k(t) \in I_{\nu} \mid X_1, X_2, \cdots\} = \lambda_{\nu}$$

(ii)
$$\lim_{t\to\infty} \sup_k P\{X_k(t) \in I_\nu \mid X_1, X_2, \cdots\} = 0$$
 for $\nu = 1, 2, \cdots, n$.

Received October 3, 1963.

1823

The proof of these two relations can be done in exactly the same way as in Section 4 of [1].

APPENDIX

PROOF OF THE LEMMA: Denote the generating function of the random variable $(N_{1m}, N_{2m}, \dots, N_{nm})$ by $H_m(s_1, s_2, \dots s_n)$. If we can show that

$$\lim_{m\to\infty} H_m(s_1, s_2, \cdots, s_n) = \exp\left\{-\sum_{\nu=1}^n \lambda_{\nu}(1-s_{\nu})\right\},\,$$

then the lemma is proved. We have

$$H_m(s_1, s_2, \dots, s_n) = \prod_{k=1}^{\infty} \left(1 - \sum_{\nu=1}^{n} P_{k\nu}^{(m)}(1 - s_{\nu})\right)$$

Taking the logarithms we get

$$\log H_m(s_1, s_2, \dots, s_n) = \sum_{k=1}^{\infty} \log \left(1 - \sum_{\nu=1}^n P_{k\nu}^{(m)} (1 - s_{\nu})\right)$$

For fixed $\epsilon > 0$ and sufficiently large m, $\sum_{\nu=1}^{n} P_{k\nu}^{(m)} < \epsilon$ uniformly in k by Condition (ii). Thus for large m we have

$$\log\left(1-\sum_{\nu=1}^{n}P_{k\nu}^{(m)}(1-s_{\nu})\right)=-\sum_{\nu=1}^{n}P_{k\nu}^{(m)}(1-s_{\nu})+\vartheta\left(\sum_{\nu=1}^{n}P_{k\nu}^{(m)}(1-s_{\nu})\right)^{2}$$

where $|\vartheta| \leq 1$ and

$$\log H_m(s_1, s_2, \cdots, s_n) = -\sum_{\nu=1}^n \sum_{k=1}^\infty P_{k\nu}^{(m)}(1-s_{\nu}) + \vartheta \sum_{k=1}^\infty \left(\sum_{\nu=1}^n P_{k\nu}^{(m)}(1-s_{\nu})\right)^2,$$

where $|\vartheta| \leq 1$. By Condition (i) the first term in the right member tends to $-\sum_{\nu=1}^{n} \lambda_{\nu} (1-s_{\nu})$. We now must show that the second term tends to 0.

For any numbers a_{ν} , such that $0 \le a_{\nu} < \infty$ the following simple inequality holds:

$$\left(\sum_{\nu=1}^n a_{\nu}\right)^2 \leq n(\sup_{1 \leq \nu \leq n} a_{\nu}) \sum_{\nu=1}^n a_{\nu}.$$

Using this inequality we get for $0 \le s_{\nu} \le 1$ that

$$\sum_{k=1}^{\infty} \left(\sum_{\nu=1}^{n} P_{k\nu}^{(m)} (1 - s_{\nu}) \right)^{2} \leq n \left(\sup_{1 \leq \nu \leq n} \sup_{k} P_{k\nu}^{(m)} \right). \quad \sum_{\nu=1}^{n} \sum_{k=1}^{\infty} P_{k\nu}^{(m)} \to 0$$

by Condition (i) and (ii), as m tends to infinity. Thus the proof is complete.

REFERENCE

[1] Breiman, L. (1963). The Poisson tendency in traffic distribution. Ann. Math. Statist. 34 308-311.