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A NOTE ON THE POISSON TENDENCY IN
TRAFFIC DISTRIBUTION

By TorBJORN THEDEEN

Royal Institute of Technology, Stockholm

In a paper [1] by Leo Breiman it is shown that, under rather weak assumptions,
the number of cars in an arbitrary interval I with the length |I| will be asymptoti-
cally Poisson distributed with the mean o|I|, as the time ¢ tends to infinity. Here
¢ is a constant. Under the same assumptions as those of Breiman it will here be
shown that the cars as the time tends to infinity will be distributed according to a
Poisson process with the intensity o. The assumptions and notations will be the
same as those of [1]. By the well known representation of a Poisson process we
will formulate our main theorem in the following way:

THEOREM. Let Iy , Is., - - - I, be n disjoint but otherwise arbitrary intervals on the
space axis, with their respective lengths |I| ||, - - - |I.|. Under the assumptions
(a), (b) and (c) of [1] then ,

lim s P{Nt(Il') = jl' yv=12--- n} = vI—Il ()\i’/j,,!)e_)"’,
where \, = o|I,| and where N ,(I,) is the number of cars at time t in the interval I, .

For the proof we need a slight generalization of the theorem of Section 3 in [1].

Consider for every m an infinite sequence of trials Z{™, Z{™, ..., which
are independent for fixed m and result in one of the outcomes ‘““success of type
v’ =8,,v=1,2 +---, n or failure F with the corresponding probabilities
P(Z™ =8,) =P, v=1,2---,nand PZ{ = F) = 1 — > 1 P{P.
Let the number of S, in the mth sequence be denoted by N, .

Lemma, If

(1) 2ma PSP — N asm— o forv=1,2, -+, m,

(ii) sups P\ — 0asm — o for v = 1,2, -+, m,
then for fived j1, Ja 5 *** Jn

lim o P{Nvm = jv y V= 1’ 2) Tty n} = H ()‘iv/jl‘!)e—)‘v'
r=1

The lemma is very easily shown by using the technique of generating func-
tions for n-dimensional random variables. For sake of completeness the proof is
given in the appendix.

In the proof of the main theorem we have then only to show that

(1) impw g PIXi() eI, | X1, Xa, --+} = N

(11) lim,_,w‘Supk P{Xk(t) el, | X1 ) X, y ° } =0
for »=1,2,.---,m.
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The proof of these two relations can be done in exactly the same way as in
Section 4 of [1].
APPENDIX

ProoF oF THE LEMMA: Denote the generating function of the random variable
(Nim, Nomy -+ y Num) by Hu(s1, 82, « - - 8a). If we can show that

limMmsw Hm(S1, 82, -, Sn) = €Xp {—Zl M1 — s,)}, -

then the lemma, is proved. We have

Hm(81)82, "',Sn) = H(l —ZIP](;T)(]. —Sp))

k=1

Taking the logarithms we get

log Ho(s1,8, -+, 8:) = 2 log (1 -2 P — s»)
k=1 y=

For fixed ¢ > 0 and sufficiently large m, Do P5, < € uniforﬁxljr in k by Con-
dition (ii). Thus for large m we have ,

n n n o 2
og (1 - 5 PIP(1 = 8)) = —3; PP —8) + 3 (S rra - o)
r=1 =1 y=1
where 4] < 1 and
n ® © n 2
IOgHm(slys2, e ,81;) = —;lkz:lpl(‘?)(l - 8,) + 0; (Z; Pl(s:‘)(l - SV)> ’

where 8| < 1. By Condition (i) the first term in the right member tends to
— 3" M1 — 5,). We now must show that the second term tends to 0.

For any numbers a, , such that 0 < a, < o« the following simple inequality
holds:

n 2 n
(Z ay> < n(supi<r<a a5) 21 a .
L

y=1
Using this inequality we get for 0 < s, < 1 that
© n 2
> (Z P(1 - sy)> < n(supigrgn sups PS7).  2opes 2 P — 0

k=1 \r=1

by Condition (i) and (ii), as m tends to infinity. Thus the proof is complete.
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