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DISTRIBUTION OF THE ‘GENERALISED’ MULTIPLE CORRELATION
MATRIX IN THE DUAL CASE

By C. G. KgaTr}
Gugarat University

1. Introduction. Let there be two variable vectors X' = (21, %2, - , %p) and
y = (y1, 92, -+, yo) With zero means. Let X = (z):p X nand Y = (y;):
g X n be n independent observations on these variables. Considering the variables
of x as fixed, we have the usual multivariate linear regression analysis of y set
on x-set in the following table:

Source ' Matrix (of order ¢ X q)
of s.s. and s. p.
Linear regi‘ession coefficients p . YXXX)'XY =B
of y-set on x-set :
Residual n—p |[YY —YX' XX)'XY =A-B
Total due to y-set n YY = A

Now let us define a matrix L by the relations
(1) B = TLT and A = TT',

where T: ¢ X ¢ is a non-singular matrix and as a special case, if need be, T can
be looked on as a triangular one. Since T is the matrix square root of A in a
certain sense, L is called the ‘generalised’ multiple correlation matrix of the
y-set on the x-set, for if ¢ = 1, it is the square of the multiple correlation of y
on the x-set. It may be noted that we may consider any other type of the matrix
square root of A, namely, A = T? where T: ¢ X ¢ is a symmetric matrix and
denoted by T = A, Also, it may be noted that a nonzero characteristic root of
L gives us the square of a canonical correlation coefficient between the y-set and
the x-set.

When ¢ = 1, Bartlett [3] pointed out the duality of relationship between the
distributions of the multiple correlations between y and the x-set (i) when the
x-set is fixed, and y is normal and (ii) when y is fixed and the x-set is normal.

The purpose of this paper is to point out that such a duality exists for the
distribution of L under appropriate null hypotheses only. This is done by ob-
taining the null and non-null distribution of L (for a linear case only) under the
assumption of a linear regression of the x-set (being normal) on the y-set con-
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sidered as fixed, and under the assumption of a linear regression of the y-set
(being normal) on the x-set considered as fixed. Application of this distribution
in discriminant analysis is also given.

2. Non-null distribution of L (in the linear case). Under the assumptions given
above, the distribution of X when Y is fixed is written as

(2) constant exp[—3 tr /(X — @Y)(X — @Y)'] dX, (—o =X £ =),

where X: p X p is positive definite and §: p X ¢ is a regression matrlx

Since T'Y = M; : ¢ X n is an orthonormal matrix (i.e. M1M1 = Iq), we can
find a matrix My : (n — ¢q) X n of rank (n — ¢) such that M’ = (M; M) is an
orthogonal matrix. Using the transformation XM’ = (Z,Z,),Z,:p X q and
Z,:p X (n — q), the joint distribution of Z; and Z, comes out as.

(3) constant exp[—3 tr =2, — 8T)(Z: — BT) — & tr X~ Z2Z;] dZ,dZ,,
and the matrix L, given by (1), can be written as
(4) L = Zu(ZiZ1 + Z:Z3)"'Z: .

In (3), we first use Hsu’s theorem (Anderson, Lemma (13.3.1.), ([1], p. 319))
for deriving the distribution of S, = Z.Zs and then use the transformation

(5) =8, 4+ Z:Z and W = S7%Z; .

The jacobian of the transformation isJ(Sz, Z; ; S, W) = J(S; ;S)(Z1; W) =
[S|** (refer Khatri [5]). Hence, we derive the joint distribution for S and W as

constant ISP("_”—D]IP — Ww’,%(n—q—p—l)
exp[—1 tr=7IS — In + tr(T'3'E7'S'W)] dS aw

where dS = []isjdsi;, Sand I, — WW’ are positive definite A = tr(=7'8Ag’),
and L = W'W.

We shall consider the rank of § as one only. In this case, we can write the
matrix T'3'=7's? as
(7) T'3'=7'S! = 5,(s 0)A.,

where A; : p X p is an orthogonal matrix, & is a column vector of ¢ elements
such that 8;5; = 1 and O on the right is a null row vector with (p — 1) elements.
Usmg the transformation V = A;W and denoting v the first column vector of
V', the jacobian of the transformation is umty and the joint distribution of V
and S with the help of [I, — VV'| = |I, — V'V| can be written as

(8) constant [S[}" 0L, — V "V PDexp(—§ tr=T'S — 3N+ sv's;) dV dS,

where S and I, — V'V are positive definite, and L = V'v.

Now, we may note that when ¢ < p, the distribution of L is simple and de-
rivable from ¢ > p with necessary changes in the parameter. Hence, we shall
only consider the case for ¢ > p and finally write down the result for ¢ = p.
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When ¢ > p, the rank of L: (¢ X ¢) is p. Let us write V = (V; V;), where V; :
p X pand Vz: p X (¢ — p). Let us use the transformation

(9) Vi = GiA;and Vs = GuA,,

where G : (¢ — p) X p, G1 :p X p is a lower triangular with diagonal elements
g > 0, and Az : p X p is an orthogonal matrix. Using the jacobian results
given by Roy ([10], Appendix 5 and 6) or Olkin [9], the jacobian of the trans-
formation given in (9) is

p .
(10) J(Vl y Vz H G’l y Aa, G’z) = J(Vl 5 G1 5 As)J(Vz 5 G’z) = 21’ I_Igﬁ—V(Ag),

where J(A;) is a function of the elements of A;. Let § be a first column vector
of Az and let v = s(Gy G3)3; . Also, by an indirect method similar to that given
by Roy ([10], p. 197), it is easy to verify that

0

ay fA exp (v 8) J(As) das = X i(j) o

sAg=I =0

where ¢;(7) is a positive constant depending on j and p, and & = v'v = ;L85> =
tr(='8TLT'3'E™"S), L being (&1)(G1 Gy). .
Moreover, we may note that

[ (e PS)Y 8P exp (—3 tr =71'S) d
S

(12) = coe. of (#/71) in [ SP""™ exp [~ tr (=™ — 26P)8] dS

= (constant depending on X, n, p, 7) X (tr PX)’,

if the rank of P is one and P is symmetric.

Now, we use the transformation (9) in (8). Then, integrating first with A;
and then with S with the help of (11) and (12), we obtain the joint distribution
of G’l and G’z as

had . 1, — p .
(13) 2° exp(-%x); ¢o(7)[tr(TLT'8'=7'8))°|I — L}~7o? Ilg"‘ dG, dG,,
7= =

where (I — L) is positive definite, and ¢,(j) is a constant possibly depending on
X, p, n, g and j.
Let us finally consider the transformations

(14) Li=G,Giand Ly, = G, G,.

The jacobian of the transformation is

p .
J(G’l , G, 4 Ly , le) = J(Gz ) Lm)J(Gl ; Lu) = 27" H g:i(p_ﬂ-l)_(q_p),

=1

and
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L= (2 P
Lo LipLiLe/’
Lyu:p Xpand Lz : p X (¢ — p), (see Roy [10] or Olkin [9]).
Using these results in (13), we get the distribution of L as

(15) exp(—3 %)Z ex()[tr(TLT'3'278))T — L2 |Lyy )~ dL,; dLy,

where I — L and Ly; are positive definite, rank of g is one, ¢ > p, A = tr(='8A8’)
and ¢z(7) is a positive constant depending on 7, p, ¢, 7 and possibly on X. If we
integrate over Ly and L;., we can get c(j) or if we carry out the explicit ex-
pressions of the constants from the beginning, we arrive at

() = T(3n +4) (#0121 (" - q) rGe+))”

A (= I (=) ()]

We shall call the distribution of L given by (15) as ‘pseudo’ non-central
multivariate beta distribution, the word ‘pseudo’ being used in the same sense
as that used in ‘pseudo’ Wishart distribution defined by Roy and Gnanadesikan
[9].

Now, when p = ¢, L is positive definite and so we shall get the non-central
multivariate beta distribution (see Kshirsagar [6]) which can be written as

(16)

(17) exp(—$0) 2 es(ltr(TLT'§ =TI — L P[Le™ dL
where L and I — L are positive definite and

A= (=) (=)

Now, for establishing the duality relationship as mentioned in Section 1, let
us assume that the columns of Y: ¢ X #n are independent normals with covariance
matrix X; and E(Y) = 8X when X: p X n is fixed. Then it is easy to verify
that the joint distribution of R: ¢ X ¢ = YY and U: ¢ X p = TT¥YX'(XX')7,
(T being given by TT' = R), is
(19) constant |Rl#(n—q-—l)llq _ U—U'[}(n—-p-q—l) exp[—ltrxflR — 1]

1
X exp[trT'=76:(XX")'U’] dU dR,
where R is positive definite and A; = tr(=7'8:XX'81). Note that L = UU’ and
(19) is comparable with (6). It is easy to see that when 3, = O and 3§ = 0 in
(19) and (6) respectively, then the distributions of L in the two situations are

(18)
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identical. If the y-set in (6) is random, and the x-set in (19) is random, then §; =
0 or 3 = O implies the independence of the x and y sets, but otherwise they
have different meanings. Now, for the non-null distribution of L (for a linear
case) from (19), applying the technique used from (6) onwards, we find that
the form of the distribution of L is different from (15) or (17) except when
g = 1, but it is interesting to note that the forms of the distribution of the ch.
roots of L for the non-null case in two situations are the same except for the
non-central parameters—in the first case, they depend on the ch. roots of
(8’=7'8YY’): ¢ X g., while in the latter case, they depend on the ch. roots of the
(812178 XX’): p X p. This shows that the duality relationship for the distribu-
tion of L exists only in the null case (appropriately framed).

3. Application in discriminant analysis. Let there be (p 4 1) populations. The
multivariate analysis of variance table for ¢ characters y' = (41, %2, ***» ¥a)
will be of the form:

Source d.f. matrix of s. s. and s. p.
Between Populations P B
Within Populations S m—0p A-B

Total n A

The p degrees of freedom can be looked upon as corresponding to p dummy
variables X' = (1, %2, -*-, ,), (see Bartlett [4]) and the matrix B as the
matrix of ss. and s.p. due to regression of y on x. The problems of direction and
collinearity factors considered by Kshirsagar [6], [8] and Bartlett [4] are on the
y-space, but there are situations in discriminant analysis, where the hypothetical
discriminant functions are specified on dummy variables x. For example, in the
discriminator considered by Barnard [2] in the case of Egyptian skull data,
‘time’ was a variable in the space of dummy variables x. The Section 2 shows
that we can use the test procedures for testing ‘direction’ and ‘collinearity’
factors or a hypothetical discriminant function in dummy variables x, exactly
in the same way as we do when they are considered in the y-space.

4. Acknowledgment. I thank Dr. A. M. Kshirsagar for suggesting the problem
and also for the application suggested in Section 3.
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