NOTES

DISTRIBUTION OF THE 'GENERALISED' MULTIPLE CORRELATION MATRIX IN THE DUAL CASE

By C. G. KHATRI1

Gujarat University

1. Introduction. Let there be two variable vectors $\mathbf{x}' = (x_1, x_2, \dots, x_p)$ and $\mathbf{y}' = (y_1, y_2, \dots, y_q)$ with zero means. Let $\mathbf{X} = (x_{ir}) : p \times n$ and $\mathbf{Y} = (y_{jq}) : q \times n$ be n independent observations on these variables. Considering the variables of \mathbf{x} as fixed, we have the usual multivariate linear regression analysis of \mathbf{y} set on \mathbf{x} -set in the following table:

Source	d. f.	Matrix (of order $q \times q$) of s. s. and s. p.
Linear regression coefficients of y-set on x-set Residual	<i>p</i> .	$\mathbf{YX'} (\mathbf{XX'})^{-1} \mathbf{XY'} = \mathbf{B}$
	n-p	$\mathbf{YY'} - \mathbf{YX'}(\mathbf{XX'})^{-1}\mathbf{XY'} = \mathbf{A} - \mathbf{B}$
Total due to y-set	n	$\mathbf{Y}\mathbf{Y}'=\mathbf{A}$

Now let us define a matrix L by the relations

(1)
$$\mathbf{B} = \mathbf{TLT'} \text{ and } \mathbf{A} = \mathbf{TT'},$$

where $T: q \times q$ is a non-singular matrix and as a special case, if need be, T can be looked on as a triangular one. Since T is the matrix square root of A in a certain sense, L is called the 'generalised' multiple correlation matrix of the y-set on the x-set, for if q = 1, it is the square of the multiple correlation of y on the x-set. It may be noted that we may consider any other type of the matrix square root of A, namely, $A = T^2$, where $T: q \times q$ is a symmetric matrix and denoted by $T = A^{\frac{1}{2}}$. Also, it may be noted that a nonzero characteristic root of L gives us the square of a canonical correlation coefficient between the y-set and the x-set.

When q = 1, Bartlett [3] pointed out the duality of relationship between the distributions of the multiple correlations between y and the x-set (i) when the x-set is fixed, and y is normal and (ii) when y is fixed and the x-set is normal.

The purpose of this paper is to point out that such a duality exists for the distribution of ${\bf L}$ under appropriate null hypotheses only. This is done by obtaining the null and non-null distribution of ${\bf L}$ (for a linear case only) under the assumption of a linear regression of the ${\bf x}$ -set (being normal) on the ${\bf y}$ -set con-

Received January 17, 1963; revised April 6, 1964.

¹ Now at University of North Carolina, Chapel Hill.

sidered as fixed, and under the assumption of a linear regression of the y-set (being normal) on the x-set considered as fixed. Application of this distribution in discriminant analysis is also given.

2. Non-null distribution of L (in the linear case). Under the assumptions given above, the distribution of X when Y is fixed is written as

(2) constant
$$\exp[-\frac{1}{2} \operatorname{tr} \Sigma^{-1} (X - \beta Y)(X - \beta Y)'] dX$$
, $(-\infty \le X \le \infty)$,

where $\Sigma : p \times p$ is positive definite and $\beta : p \times q$ is a regression matrix.

Since $\mathbf{T}^{-1}\mathbf{Y} = \mathbf{M}_1 : q \times n$ is an orthonormal matrix (i.e. $\mathbf{M}_1\mathbf{M}_1' = \mathbf{I}_q$), we can find a matrix $\mathbf{M}_2 : (n-q) \times n$ of rank (n-q) such that $\mathbf{M}' = (\mathbf{M}_1' \mathbf{M}_2')$ is an orthogonal matrix. Using the transformation $\mathbf{X}\mathbf{M}' = (\mathbf{Z}_1 \mathbf{Z}_2), \mathbf{Z}_1 : p \times q$ and $\mathbf{Z}_2 : p \times (n-q)$, the joint distribution of \mathbf{Z}_1 and \mathbf{Z}_2 comes out as

(3) constant $\exp[-\frac{1}{2} \operatorname{tr} \Sigma^{-1}(Z_1 - \beta T)(Z_1 - \beta T)' - \frac{1}{2} \operatorname{tr} \Sigma^{-1}Z_2Z_2'] dZ_1 dZ_2$, and the matrix L, given by (1), can be written as

(4)
$$L = Z_1'(Z_1Z_1' + Z_2Z_2')^{-1}Z_1.$$

In (3), we first use Hsu's theorem (Anderson, Lemma (13.3.1.), ([1], p. 319)) for deriving the distribution of $S_2 = \mathbb{Z}_2\mathbb{Z}_2'$ and then use the transformation

(5)
$$S = S_2 + Z_1 Z_1' \text{ and } W = S^{-\frac{1}{2}} Z_1.$$

The jacobian of the transformation is $J(S_2, Z_1; S, W) = J(S_2; S)J(Z_1; W) = |S|^{\frac{1}{2}q}$ (refer Khatri [5]). Hence, we derive the joint distribution for S and W as

(6) constant
$$|\mathbf{S}|^{\frac{1}{2}(n-p-1)}|\mathbf{I}_{p} - \mathbf{W}\mathbf{W}'|^{\frac{1}{2}(n-q-p-1)}$$

$$\exp[-\frac{1}{2}\operatorname{tr}\mathbf{\Sigma}^{-1}\mathbf{S} - \frac{1}{2}\lambda + \operatorname{tr}(\mathbf{T}'\boldsymbol{\beta}'\mathbf{\Sigma}^{-1}\mathbf{S}^{\frac{1}{2}}\mathbf{W})] d\mathbf{S} d\mathbf{W}$$

where $d\mathbf{S} = \prod_{i \geq j} ds_{ij}$, \mathbf{S} and $\mathbf{I}_p - \mathbf{W}\mathbf{W}'$ are positive definite $\lambda = \operatorname{tr}(\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta}\mathbf{A}\boldsymbol{\beta}')$, and $\mathbf{L} = \mathbf{W}'\mathbf{W}$.

We shall consider the rank of β as one only. In this case, we can write the matrix $\mathbf{T}'\beta'\mathbf{\Sigma}^{-1}\mathbf{S}^{\frac{1}{2}}$ as

(7)
$$\mathbf{T}'\mathbf{\beta}'\mathbf{\Sigma}^{-1}\mathbf{S}^{\frac{1}{2}} = \mathbf{\delta}_{1}(s \mathbf{O})\mathbf{\Delta}_{2},$$

where $\Delta_2: p \times p$ is an orthogonal matrix, δ_1 is a column vector of q elements such that $\delta_1 \delta_1 = 1$ and O on the right is a null row vector with (p-1) elements. Using the transformation $V = \Delta_2 W$ and denoting v the first column vector of V', the jacobian of the transformation is unity and the joint distribution of V and S with the help of $|I_p - VV'| = |I_q - V'V|$ can be written as

(8) constant $|\mathbf{S}|^{\frac{1}{2}(n-p-1)}|\mathbf{I}_q - \mathbf{V}'\mathbf{V}|^{\frac{1}{2}(n-q-p-1)}\exp(-\frac{1}{2}\operatorname{tr}\boldsymbol{\Sigma}^{-1}\mathbf{S} - \frac{1}{2}\lambda + s\mathbf{v}'\boldsymbol{\delta}_1)\ d\mathbf{V}\ d\mathbf{S}$, where \mathbf{S} and $\mathbf{I}_q - \mathbf{V}'\mathbf{V}$ are positive definite, and $\mathbf{L} = \mathbf{V}'\mathbf{V}$.

Now, we may note that when $q \leq p$, the distribution of **L** is simple and derivable from q > p with necessary changes in the parameter. Hence, we shall only consider the case for q > p and finally write down the result for $q \leq p$.

When q > p, the rank of L: $(q \times q)$ is p. Let us write $V = (V_1 V_2)$, where $V_1 : p \times p$ and $V_2 : p \times (q - p)$. Let us use the transformation

(9)
$$\mathbf{V}_1' = \mathbf{G}_1 \mathbf{\Delta}_3 \text{ and } \mathbf{V}_2' = \mathbf{G}_2 \mathbf{\Delta}_3,$$

where $G_2: (q-p) \times p$, $G_1: p \times p$ is a lower triangular with diagonal elements $g_{ii} > 0$, and $\Delta_3: p \times p$ is an orthogonal matrix. Using the jacobian results given by Roy ([10], Appendix 5 and 6) or Olkin [9], the jacobian of the transformation given in (9) is

(10)
$$J(V_1, V_2; G_1, \Delta_3, G_2) = J(V_1; G_1, \Delta_3)J(V_2; G_2) = 2^p \prod_{i=1}^p g_{ii}^{p-i}J(\Delta_3),$$

where $J(\Delta_3)$ is a function of the elements of Δ_3 . Let δ be a first column vector of Δ_3 and let $\mathbf{v} = s(\mathbf{G}_1' \mathbf{G}_2') \delta_1$. Also, by an indirect method similar to that given by Roy ([10], p. 197), it is easy to verify that

(11)
$$\int_{\mathbf{\Delta}_{2}'\mathbf{\Delta}_{2}=\mathbf{I}} \exp \left(\mathbf{v}' \, \mathbf{\delta}\right) J(\mathbf{\Delta}_{3}) \, d\mathbf{\Delta}_{3} = \sum_{j=0}^{\infty} c_{1}(j) \, \alpha^{j},$$

where $c_1(j)$ is a positive constant depending on j and p, and $\alpha = v'v = \delta_1' L \delta_1 s^2 = \text{tr}(\Sigma^{-1} \beta T L T' \beta' \Sigma^{-1} S)$, L being $\begin{pmatrix} G_1 \\ G_2 \end{pmatrix} \cdot \begin{pmatrix} G_1' \\ G_2' \end{pmatrix} \cdot \begin{pmatrix} G_1' \\ G_1' \end{pmatrix} \cdot \begin{pmatrix} G_1' \\ G_1' \end{pmatrix} \cdot \begin{pmatrix} G_1' \\ G_1'$

Moreover, we may note that

$$\int_{\mathbf{S}} (\operatorname{tr} \, \mathbf{PS})^{j} \, |\mathbf{S}|^{\frac{1}{2}(n-p-1)} \, \exp \left(-\frac{1}{2} \operatorname{tr} \, \mathbf{\Sigma}^{-1} \, \mathbf{S} \right) \, d\mathbf{S}$$

$$= \operatorname{coef. of } (\theta^{j}/j!) \operatorname{in} \int \, |\mathbf{S}|^{\frac{1}{2}(n-p-1)} \, \exp \left[-\frac{1}{2} \operatorname{tr} \, (\mathbf{\Sigma}^{-1} - 2\theta \mathbf{P}) \mathbf{S} \right] \, d\mathbf{S}$$

$$= (\operatorname{constant depending on } \mathbf{\Sigma}, n, p, j) \times (\operatorname{tr} \, \mathbf{P\Sigma})^{j},$$

if the rank of **P** is one and **P** is symmetric.

Now, we use the transformation (9) in (8). Then, integrating first with Δ_3 and then with S with the help of (11) and (12), we obtain the joint distribution of G_1 and G_2 as

(13)
$$2^{p} \exp(-\frac{1}{2}\lambda) \sum_{j=0}^{\infty} c_{2}(j) [\operatorname{tr}(\mathbf{T}\mathbf{L}\mathbf{T}'\mathbf{\beta}'\mathbf{\Sigma}^{-1}\mathbf{\beta})]^{j} |\mathbf{I} - \mathbf{L}|^{\frac{1}{2}(n-p-q-1)} \prod_{i=1}^{p} g_{ii}^{p-i} d\mathbf{G}_{1} d\mathbf{G}_{2},$$

where (I - L) is positive definite, and $c_2(j)$ is a constant possibly depending on Σ , p, n, q and j.

Let us finally consider the transformations

(14)
$$\mathbf{L}_{11} = \mathbf{G}_1 \, \mathbf{G}_1' \text{ and } \mathbf{L}_{12} = \mathbf{G}_1 \, \mathbf{G}_2'$$
.

The jacobian of the transformation is

$$J(\mathbf{G}_1, \mathbf{G}_2; \mathbf{L}_{11}, \mathbf{L}_{12}) = J(\mathbf{G}_2; \mathbf{L}_{12})J(\mathbf{G}_1; \mathbf{L}_{11}) = 2^{-p} \prod_{i=1}^{p} g_{ii}^{-(p-i+1)-(q-p)},$$

and

$$\mathbf{L} = \begin{pmatrix} \mathbf{L}_{11} & \mathbf{L}_{12} \\ \mathbf{L}_{12}' & \mathbf{L}_{12}' \mathbf{L}_{11}^{-1} \mathbf{L}_{12} \end{pmatrix},$$

 $\mathbf{L}_{11}: p \times p$ and $\mathbf{L}_{12}: p \times (q-p)$, (see Roy [10] or Olkin [9]). Using these results in (13), we get the distribution of \mathbf{L} as

(15)
$$\exp(-\frac{1}{2}\lambda)\sum_{j=0}^{\infty}c_2(j)[\operatorname{tr}(\mathbf{T}\mathbf{L}\mathbf{T}'\boldsymbol{\beta}'\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta})]^j|\mathbf{I}-\mathbf{L}|^{\frac{1}{2}(n-p-q-1)}|\mathbf{L}_{11}|^{\frac{1}{2}(p-q-1)}d\mathbf{L}_{11}d\mathbf{L}_{12},$$

where I - L and L_{11} are positive definite, rank of β is one, q > p, $\lambda = \operatorname{tr}(\Sigma^{-1}\beta A\beta')$ and $c_2(j)$ is a positive constant depending on n, p, q, j and possibly on Σ . If we integrate over L_{11} and L_{12} , we can get $c_2(j)$ or if we carry out the explicit expressions of the constants from the beginning, we arrive at

$$(16) c_{2}(j) = \Gamma(\frac{1}{2}n+j) \left\{ \pi^{\frac{1}{2}p(q-p)+\frac{1}{2}p(p-1)} j! \, 2^{j} \, \Gamma\left(\frac{n-q}{2}\right) \Gamma(\frac{1}{2}p+j) \right\}^{-1} \cdot \left\{ \prod_{i=2}^{p} \Gamma\left(\frac{n-i+1}{2}\right) \right\} \left[\prod_{i=2}^{p} \left\{ \Gamma\left(\frac{n-q-i+1}{2}\right) \Gamma\left(\frac{p-i+1}{2}\right) \right\} \right]^{-1}.$$

We shall call the distribution of **L** given by (15) as 'pseudo' non-central multivariate beta distribution, the word 'pseudo' being used in the same sense as that used in 'pseudo' Wishart distribution defined by Roy and Gnanadesikan [9].

Now, when $p \ge q$, **L** is positive definite and so we shall get the non-central multivariate beta distribution (see Kshirsagar [6]) which can be written as

(17)
$$\exp(-\frac{1}{2}\lambda)\sum_{j=0}^{\infty}c_3(j)[\operatorname{tr}(\mathbf{T}\mathbf{L}\mathbf{T}'\mathbf{g}'\mathbf{\Sigma}^{-1}\mathbf{g})]^j|\mathbf{I}-\mathbf{L}|^{\frac{1}{2}(n-p-q-1)}|\mathbf{L}|^{\frac{1}{2}(p-q-1)}d\mathbf{L}$$

where L and I - L are positive definite and

(18)
$$c_{3}(j) = \Gamma\left(\frac{1}{2}n+j\right) \left\{ \pi^{\frac{1}{2}q(q-1)} j! \, 2^{j} \, \Gamma\left(\frac{n-q}{2}\right) \Gamma\left(\frac{1}{2}p+j\right) \right\}^{-1} \cdot \left\{ \prod_{i=2}^{q} \Gamma\left(\frac{n-i+1}{2}\right) \right\} \left[\prod_{i=2}^{q} \left\{ \Gamma\left(\frac{n-p-i+1}{2}\right) \Gamma\left(\frac{p-i+1}{2}\right) \right\} \right]^{-1}.$$

Now, for establishing the duality relationship as mentioned in Section 1, let us assume that the columns of $\mathbf{Y}: q \times n$ are independent normals with covariance matrix Σ_1 and $E(\mathbf{Y}) = \mathfrak{g}_1\mathbf{X}$ when $\mathbf{X}: p \times n$ is fixed. Then it is easy to verify that the joint distribution of $\mathbf{R}: q \times q = \mathbf{YY}'$ and $\mathbf{U}: q \times p = \mathbf{T}^{-1}\mathbf{YX}'(\mathbf{XX}')^{-1}$, (T being given by $\mathbf{TT}' = \mathbf{R}$), is

(19) constant
$$|\mathbf{R}|^{\frac{1}{2}(n-q-1)}|\mathbf{I}_{q} - \mathbf{U}\mathbf{U}'|^{\frac{1}{2}(n-p-q-1)}\exp[-\frac{1}{2}\mathrm{tr}\boldsymbol{\Sigma}_{1}^{-1}\mathbf{R} - \frac{1}{2}\lambda_{1}]$$
 $\times \exp[\mathrm{tr}\mathbf{T}'\boldsymbol{\Sigma}_{1}^{-1}\boldsymbol{\beta}_{1}(\mathbf{X}\mathbf{X}')^{\frac{1}{2}}\mathbf{U}'] d\mathbf{U} d\mathbf{R},$

where R is positive definite and $\lambda_1 = \operatorname{tr}(\Sigma_1^{-1} \beta_1 X X' \beta_1')$. Note that L = UU' and (19) is comparable with (6). It is easy to see that when $\beta_1 = 0$ and $\beta = 0$ in (19) and (6) respectively, then the distributions of L in the two situations are

identical. If the y-set in (6) is random, and the x-set in (19) is random, then $\mathfrak{g}_1 = \mathbf{0}$ or $\mathfrak{g} = \mathbf{0}$ implies the independence of the x and y sets, but otherwise they have different meanings. Now, for the non-null distribution of L (for a linear case) from (19), applying the technique used from (6) onwards, we find that the form of the distribution of L is different from (15) or (17) except when q = 1, but it is interesting to note that the forms of the distribution of the ch. roots of L for the non-null case in two situations are the same except for the non-central parameters—in the first case, they depend on the ch. roots of $(\mathfrak{g}'\mathbf{\Sigma}^{-1}\mathfrak{g}\mathbf{Y}\mathbf{Y}'): q \times q$, while in the latter case, they depend on the ch. roots of the $(\mathfrak{g}'\mathbf{\Sigma}^{-1}\mathfrak{g}\mathbf{Y}\mathbf{X}'): p \times p$. This shows that the duality relationship for the distribution of L exists only in the null case (appropriately framed).

3. Application in discriminant analysis. Let there be (p+1) populations. The multivariate analysis of variance table for q characters $y' = (y_1, y_2, \dots, y_q)$ will be of the form:

Source	d. f.	matrix of s. s. and s. p.
Between Populations Within Populations	n - p	В А — В
Total	n	A

The p degrees of freedom can be looked upon as corresponding to p dummy variables $\mathbf{x}' = (x_1, x_2, \dots, x_p)$, (see Bartlett [4]) and the matrix \mathbf{B} as the matrix of ss. and s.p. due to regression of \mathbf{y} on \mathbf{x} . The problems of direction and collinearity factors considered by Kshirsagar [6], [8] and Bartlett [4] are on the \mathbf{y} -space, but there are situations in discriminant analysis, where the hypothetical discriminant functions are specified on dummy variables \mathbf{x} . For example, in the discriminator considered by Barnard [2] in the case of Egyptian skull data, 'time' was a variable in the space of dummy variables \mathbf{x} . The Section 2 shows that we can use the test procedures for testing 'direction' and 'collinearity' factors or a hypothetical discriminant function in dummy variables \mathbf{x} , exactly in the same way as we do when they are considered in the \mathbf{y} -space.

4. Acknowledgment. I thank Dr. A. M. Kshirsagar for suggesting the problem and also for the application suggested in Section 3.

REFERENCES

- [1] ANDERSON, T. W. (1958). An Introduction to Multivariate Analysis. Wiley, New York.
- [2] BARNARD, M. M. (1935). The secular variation of skull characters in four series of Egyptian. Ann. Eugenics 6 352-371.
- [3] BARTLETT, M. S. (1939). A note on tests of significance in multivariate analysis. Proc. Cambridge Philos. Soc. 35 180-185.
- [4] BARTLETT, M. S. (1951). The goodness of fit of a single hypothetical discriminant function in the case of several groups. Ann. Eugenics 16 199-214.
- [5] Khatri, C. G. (1959). On the mutual independence of certain statistics. Ann. Math. Statist. 30 1258-1262.

- [6] KSHIRSAGAR, A. M. (1961). Some problems in multivariate analysis. Ph.D. thesis, Manchester University, England.
- [7] KSHIRSAGAR, A. M. (1961). Non-central multivariate Beta distribution. Ann. Math. Stat. 32 104-111.
- [8] KSHIRSAGAR, A. M. (1962). A note on direction and collinearity factors in canonical analysis. *Biometrika* 33 255-259.
- [9] Olkin, I. (1951). On distribution problems in Multivariate Analysis. Institute of Statistics, Univ. of North Carolina, mimeograph series No. 43.
- [10] Roy, S. N. (1958). Some Aspects of Multivariate Analysis. Wiley, New York.
- [11] ROY, S. N. and GNANADESIKAN, R. (1959). Some contributions to ANOVA in one or more dimensions: II. Ann. Math. Stat. 30 318-340.