ON BIVARIATE RANDOM VARIABLES WHERE THE QUOTIENT OF
THEIR COORDINATES FOLLOWS SOME KNOWN DISTRIBUTION

By Ienacy KOTLARSKI
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1. Introduction. Let X; , X, be a pair of independent random variables, sym-
metrical about the origin, having the same distribution function F(x), and let the
quotient

(1.1) VA =.X1ZX2

follow the Cauchy law. It is known that F(z) may be normal with zero mean.
A number of authors investigated whether the normal distribution can be
characterized by this property. Mauldon [9], Laha [4] and Steck [11] showed
this supposition to be false; there exist distribution functions F(z) differing
from the normal, where the quotient (1.1) follows the Cauchy law. Denote by
C the set of distribution functions F(x) having the above-mentioned property;
Laha [5], [6] and Kotlarski [2] undertook a study of characterizing the set C.
Kotlarski [2] characterized the set C' by the properties of the Mellin transform
h(s) of F(z) given by the formula

+o0
(12) h(s) = f_ el ar(a).

On this subject see also [7] p. 324 and [8] p. 178.

In this paper we shall consider a bivariate random variable (X, Y) having
distribution F(z, i), where the coordinates (not necessarily independent) have
identical marginal distributions F(z, ©) = F(®©, z), (—® <z < 4+« ) and
the quotient

(1.3) Z=X:Y

follows the Cauchy law (Section 3). The set & of such distribution functions
F(z, y) will be described by using their two-dimensional Mellin transforms
(see Section 2).

With the same method we describe in Section 4, the set Y of distribution
functions F(z, y) of bivariate random variables (X, Y) having positive co-
ordinates (not necessarily independent or identically distributed), where the
quotient (1.3) follows Snedecor’s law. On this subject see also [3], [9].

Further in a similar way may be described the set of distribution functions
F(z, y) of bivariate random variables (X, Y) where X has a symmetrical
distribution about the origin and Y takes positive values only, X and Y not
necessarily being independent, where the quotient (1.3) follows Student’s law.

2. The Mellin transforms of bivariate random variables whose coordinates
take only positive values. We define the Mellin transform of a bivariate random
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1674 IGNACY KOTLARSKI
variable (X, Y) having positive coordinates by the formula (see [1])
(2.1) hx,y(u,v) = E[X"Y"] / / 2"y dF(z, y),

where » and v are complex variables. The function h(u, v) is always defined in
the set of pairs (u, ») of complex variables

(2.2) S = {(u,v):a: <Reu < az,b; < Rev < by},
where
(23) a1<0<a2,b1<0<b2.

The Mellin transform A(u, v) defines the bivariate distribution function F(z, y)
of the random variable (X, Y) where X and Y take only positive values uniquely.

If the distribution function F(z, y) has a density f(z, y) = 08°F/dzdy, then
it is given at every point of its continuity by the formula

a+i0  ab+i0
(24) f(z, y) = (2m)2 [a_m fb_m Ly h(w, v) du d,
where
(2.5) o <a<a,b <b<b

and the integrals are taken in the sense of Cauchy.
Taking 7u and % instead of  and » we obtain the characteristic function of the
bivariate random variable (log X, log Y') because of

(2.6) hex, v (tu, w) = E[XWYM] = E[ei(u'logXH'logy)] = Q(oex,l0zr) (U, V).

From the properties of bivariate characteristic functions we see that for u, v
real:

h(7u, i) is continuous on the whole plane (u, v);
(2.7) h(0,0) = 1, |h(2u, )| < 1, h(—1u, —) = h(iu, w);
h(tu, w) is a positive definite function.

The one-dimensional Mellin transforms of marginal distributions of X and Y
are given by

(2.8) hx(u) = h, v (%, 0); hr(v) = ha,n(0, v).

For X and Y to be independent it is necessary and sufficient that
(2.9) h(u, v) = h(u, 0)-h(0, v).

The one-dimensional Mellin transform of the product

(2.10") A Q = a-X*Y? (a positive, p, g real)
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is
(2.10") ho(s) = E[Q'] = E[a’X”'Y"] = hex,v)(ps, gs)+a’.

If we have r independent bivariate random variables having positive co-
ordinates

(211,) (Xl s Yl), (X2 y Yz), DY (Xr ) Yr)
and their two-dimensional Mellin transforms
(2,11") hl(u, 1)), hz(u, 1)), Y hr(u) U),

then for arbitrary real numbers p1, 2, -+, 2r ;q1, g2, * - -, ¢- the two-dimensional
Mellin transform of the pair of products

(2.12") (P, Q) = (XP1eXPtee - o XPr VI o YPuu..aTY)
is
(2.12") heo(u, v) = hi(p, qw)eho(pau, gw)e---oh.(pu, qv).

From the theorem of Cramér and Lévy it follows that the necessary and
sufficient condition of weak convergence of the sequence of distribution functions
Fi(z, y) of bivariate random variables (X;, Y;) whose coordinates take only
positive values to a distribution function Fy(z, y) is the convergence of the
sequence of the corresponding Mellin transforms 7 (u, v) to a function he(u, v)
continuous at the point (0, 0). Fo(x, y) corresponds in this case to ho(u, v).
Hence we see that the integer r in the formulas (2.12) may tend to infinity.

More directly, the Mellin transform of the pair of products

(2.13") (P,Q) = (H xp, I Yﬁ")
k=1 ¥=I

is

(2.13") heo(u,0) = 1T he(pen, g),

where the limes in (2.13") is in the sense of weak convergence, and hee,oy(u, v)
should be continuous at the point (0, 0).

If h(u, v) is the Mellin transform of the bivariate random variable (X, Y)
having density f(z, y), then h(—u, —v) is also a Mellin transform of a bivariate
random variable (X, Y), whose density is 2 % /(27 y ).

3. Determining the set of bivariate random variables where the quotient of
their coordinates follows the Cauchy law.

3.1. Formulating the problem. Let the set * consists of distribution functions
F*(z, y) of bivariate random variables (X* ¥*) satisfying the following con-
ditions;

(3.1.1") F*(y,z) = F*(z,y),
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(3.1.1") F¥(—=,y) = F¥(,y) — F*(z, y),
(3.1.17) Fx/vz = = "arc tg 2.

[In this paper the distribution function F(z, y) of a bivariate random variable
(X, Y)isdefined as F(z,y) = H{P(X <2, Y <y)+PX =2,V <y) +
P(X <z, Y=y)+P(X ==z Y = y)] (see[10])]

The condition (3.1.1") means that the marginal distributions of X*and ¥*
are the same as well as the conditional distribution of one of them when the
other takes a fixed number. The condition (3.1.1"7) with (3.1.1") means that
the distributions of X* and Y™ are symmetric about the origin as well as the
distribution of (X* Y™). The condition (3.1.1”) means that the quotient
Z* = X* : Y* follows the Cauchy law.

The problem is to characterize the set ™. Let us take

(3.1.2) X = |X*,Y =|Y".

In this way we obtain instead of * the set & of distribution functions F(z, y)
of bivariate random variables (X, ¥) having positive coordinates. The distri-
bution functions F*(z, y) and F(z, y) determine one another uniquely.

The conditions (3.1.1) take for F(z, ) the form

(3.1.3") F(0,y) = F(z,0) = 0,

(3.1.3") F(z,y) = F(y, ),

(3.1.3") Fx/v(2) = (2/7) arc tg 2 forz > 0,
=0 forz <0

It should be noted that it is enough to describe the set X instead of o™,

3.2. Characterizing the set X by the properties of Mellin transforms. Taking
Mellin transforms of both sides of equations (3.1.3”) and (3.1.3”) we obtain
conditions for Mellin transforms of distribution functions from & in the form

(3.2.1") h(u, v) = h(v, u),
(3.2.1") h(u, —u) = 1/cos iru (=1 < Reu<1)

Let us take vu and v (u, v real) instead of u, v complex, and let us represent
the unknown function A(w, v) in the form

(3.2.2) h(iu, ) = [ch(ru/2)sch(mv/2)]le> @+ B

where a(u, v) and B8(u, v) are new unknown functions. Substituting (3.2.2) into
(3.2.1) we obtain the following conditions for a(u, v), B(u, v):

(323,) a(u, v) = a(”: u)y B(u, v) = :8(7)’ ’M,),
(3.2.3") a(u, —u) = 0, B(u, —u) = 0.

Taking into account that (3.2.2) should be a characteristic function we see
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that it satisfies the conditions (2.7). Thus we obtain the following conditions:
(3'24,) a<_uy "—U) = a(“y 1)), 6('—“) —v) = _6(u) U),
(3.2.4") a(u, v) < 3og(ch(ru/2)+ch(m/2)),

a(u, v), 8(u, v) should be real and continuous

n
(3.24") on the whole plane (u, v).

So the result may be formulated as a theorem.

TueoreM 1. For a distribution function F(z, y) satisfying conditions (3.1.3),
(3.1.3") to belong to the set % it is necessary and sufficient that its Mellin transform
(2.1) should be represented in form (3.2.2), where a(u, v) and B(u, v) satisfy
conditions (3.2.3) and (3.2.4) and the function (3.2.2) is positive definite.

3.3. Particular cases. Let the distribution F(z, y) be given by the density

f(z,y) = fola® + o) forz > 0,y > 0

(3.3.1)
=0 otherwise’

where the function fy(z) is in such a form, that (3.3.1") is a density function. Its
Mellin transform is

h(u, v) = /0 fo 'y fo(a® 4+ ) da dy

© T 9
/ £ dr f " cos" ¢ sin’ ¢ do
0

0

(33.17) Lo - -
_ (utv) /2 W1 U v
—§for fo(r)drzB( 55 )
_ . 14+ u ] 1+
—H(u+v)I‘< 3 >I‘( 5 >
where
7rf fo(r) dr
(3.3.2) Hw) = —= H(0) = 1/

4T(1 4+ w/2)] °’

We see that the Mellin transform (3.3.1”) satisfies the conditions (3.2.1) and
that is why the distribution given by density (3.3.1") belongs to .
Taking for instance

fo(z) = const fora <z <b

(3.3.3) .
=0 otherwise

where (0 = a < b) we see that the random variable having uniform distribution
on the ring @ < 2° + 3 < b* belongs to a*.

Taking the limit by b —a (¢ > 0) we see that the random variable having
uniform distribution on the periphery of the circle z° 4+ 3* = o belongs to *.
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Now let us take fo(2) = Az% “*a > 0, ¢ > 0. We obtain the density
flz,y) = A@ + y")exp — a(a® + y»)? forz >0,y >0

(3.34)
=0 otherwise

for which the distribution belongs to &. Taking further p = 0, ¢ = 1 we obtain
the bivariate normal distribution, where the coordinates are noncorrelated,
symmetric about the origin, and have equal standard deviations.

Denote

(3.3.5) f(x,y) = (2, 9), h(w, v) = B (u, v)
and according to the end of Section 2
(83.5") B (w,v) = k*(—u, —0),f (2, 9) = (@) (&, y7).
Taking f*(z, y) and h*(u, v) as (3.3.1) we obtain the Mellin transform
W (u,v) = h'(—u, —v) = H(—u, —v)T[(1 — w)/2]T[[1 — v)/2]
= H (v + »)I[(1 — »)/2IT[(1 — 2)/2]

satisfying the conditions (3.2.1). Thus the corresponding distribution given by
the density

(@) = @)@y = (@) +y7)
forz > 0,y >0

(3.3.6")

(3.3.6")

=0 otherwise

belongs to <.
3.4. A method of determining other distributions belonging to X. Let us represent
the Mellin transform (3.3.1”) as a product of a finite or an infinite number of

Mellin transforms
Kt (u, v) = H(u + 0)T((1 + »)/2)T((1 + v)/2)
(34.1) = TLHE(u + o)mm() = TR, 0).

Taking Hi(u + v), v+(u) in such a way that i (u, v) are Mellin transforms of
bivariate random variables having positive coordinates, we see that hx (u, v) =
hif (—u, —v) are also Mellin transforms of such distributions.

Let us devide the set K of integers k into two mutually exclusive and exhaustive
subsets K; and K, . The product

h(w, v) = 11 i (o) T B (i, 0)

= [1H(u + v)w(u)w(v)kg Hy (u + 0)y( —w)yi(—v)

keKy

(3.4.2)

satisfies the conditions (3.2.1) and that is why (3.4.2) is the Mellin transform
of a distribution from .
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Using for instance the known formula for gamma function
(3.4.3) I'(nw) = [n"w-*/(mr)(”-””]kljl Tlw + (k — 1)/n).
we can expend the Mellin transforms (3.3.1”), (3.3.6") in the form

K (u, v) = inIl hi (u, v)

(3.4.4") .
= kI=IIH;'(u + o)T[(2k — 1 + w)/20]T[(2k — 1 + v)/2n),
W 0) = T, v)
(3.44") =

= HHk(u + 0)I[(2k — 1 — u)/20T[(2k — 1 — v)/2n].

The distribution functions Fk (%, ), Fr (z, y) of the pairs (X%, Y¥), (Xz, Y7)
corresponding to the factors ki (u, v), hi (u, v) have densities given by formulag

fi(z, y) = 2™ % g (2™ + y™) for z > 0,y >.0

(3.4.5")
=0 otherwise,
(3.45") fe(x,y) = a7y Hg@™ +y™) forz > 0,y > 0
B =0 : otherwise.

Thus the function
h(u,v) = kIKI B (u, v)kI;! hi (u, v)
(3.4.6") = H Hi(u + o)T[(2k — 1 + u)/2n]T[(2k — 1 + v)/2n]
HH‘(u + 0)I[(2k — 1 — w)]/2n]T[(2k — 1 — v)/2n]

satisfies the conditions (3.2.1) and hence the corresponding distribution be-
longs to &. The bivariate random variable corresponding to (3.4.6") may be
presented in the form

(3.4.6") (X,7) = (H xit I xx, I1 v 11 o),

keKy keKo keKy keKg

where the pairs (X%, Y¥) ke K, (X%, Yk) ke K, are independent and their
distributions are given by densities (3.4.5") and (3.4.5") respectively. Taking
for instance n = 2, (3.4.5”) for k = 1 and (3.4.5") for k = 2 we obtain densities

(3.4.7") fi(z,y) = a7y g (™ +y7*) for (X1, Y1),
(3.4.7") fi(z,y) = g3 («* + o) for (X7, Y3),
and the distribution of (X7X3, Y1Y7) belonging to .
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4. Determining the set of bivariate random variables where the quotient of
their coordinates follows the Snedecor’s law.

4.1. Formulating the problem. Let X; and X, be a pair of independent random
variables having gamma distributions given by densities

fi(x) = [a™/T(pp)]z™ e forz > 0

(4.1.1)
=0 forx =0

respectively, where the constants a, p. are positive. It is then known that the
quotient (1.1) follows the Snedecor’s distribution given by density

g(z) = [B(p1, p)] 12"/ (1 + 2)"**7 forz > 0

(4.1.2)
=0 forz < 0.

In this section we shall consider a bivariate random variable (X, Y) having
distribution F(x, y), whose coordinates take only positive values and are not
necessarily independent, and where the quotient (1.3) follows the distribution
given by density (4.1.2).

We denote the set of such distribution functions F(z, y) by Y. This set will
be characterized by the properties of the Mellin transforms (2.1).

4.2. Characterizing the set Y by the properties of Mellin transforms. Taking on
both sides of equations (4.1.1) and (4.1.2) the one-dimensional Mellin trans-
forms, we obtain the Mellin transforms of X (k = 1; 2), and Z

hx(s) = T(p: + 8)/T(ps), Re s > —ps
hz(s) = [T(p1 + 8)/T(p)]+[[(pe — 8)/T(ps)] —p1 < Res < ps.

Taking on both sides of (1.3) the bivariate Mellin transforms and using (4.2.1)
we obtain the following equation

h(u, —u) = [[(p1 + u)/T(p1)]+[T(p: — u)/T(p2)]
(=p1 < Reu < p2).

(4.2.1)

(4.22)

Hence we see that for characterizing the set Y it is enough to solve the equa-
tion (4.2.2) in terms of Mellin transforms of bivariate random variables having
positive coordinates. In order to do this let us take 7u and v (u, v real) instead
of u, v complex, and let us represent the unknown function A(u, v) in the form

(42.3) hR(iu, @) = [[(p1 + )/T(p)]-[T(p: + ) /T (py)] g™ @ +Bwm

where a(u, v) and 8(u, v) are new unknown functions.
Substituting (4.2.3) into (4.2.2) we obtain the following conditions for

a(u, v)’ B(u, v),
(4.2.4) a(u, —u) = 0, B(u, —u) = 0.

Taking into account that (4.2.3) should be a characteristic function we ob-
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tain new conditions for a(u, v), 8(u, v) in the form
a(—u, —v) = a(u,v),  B(—u, —v) = —f(u, v)
(425) a(u, v) < log [[T(p1)/T(p1 + u)][T(p2)/T(ps + )]|
a(u, v), B(u, v) should be real and continuous on the whole plane (u,v).

The result may be formulated as a theorem.

THEOREM 2. For a distribution function F(z, y) to belong to the set & it is
necessary and sufficient that its Mellin transform (2.1) should be represented in the
Jorm (4.2.3), where a(u, v) and 8(u, v) satisfy conditions (4.2.4), (4.2.5), and the
Sfunction (4.2.3) is positive definite.

4.3. Particular cases. Let the distribution function F(z, y) be given by the
density

Y (2 + y) forz > 0,y > 0;

=0 otherwise,

(43.1') f(=z, y)

where the function fy(2) is 1n such a form that (4.3.1) is a density function. The
Mellin transform of (4.3.1") is

h(u, v) = fo /Ow z"y’f(x, y) de dy

(4.3.17) .
= / / P TP (e ) da dy.
0 0
Substituting
(4.3.2") r = pcos’ &, y = psin® 9,

we see the area of integration will be changed into
(4.3.2") 0<p< o, 0<9<u/2,
and the Jacobian will be

(4.3.2.”) J = 2psin ¢ cos &.

Hence we obtain the Mellin transform (4.3.1”) in the form

® /2
h(u,v) = / PP (p) dp f cos” P17 g gin? @t 5 g
0 ‘ )

® who— 1
(4.3.1") = fo prrrEet Yfo(p) dp + 5 B(p1 + u, p2 + v)

/ PP (0) dp
J— )
T 2T(py + po + u + 0)

I'(p1 + w)T(p: + v).
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Finally we obtain
h(u, v) = H(u + v)I'(p: + w)T(p2 + v),

where

(4.3.3") H( /w o) o
- w) = (021“(201 + p2 + w)

and

(4.3.3") H(0) = [T(p)T(p)] ™.

It is easy to see that the Mellin transform (4.3.1) satisfies the equation
(4.2.2). Thus the distribution function given by the density (4.3. 1") belongs to Y.
Taking for instance fo(2) given by

fo(z) = const forxz> 0,y >0,z +y <a

(4.34) .
=0 otherwise

we see that the distribution function given ’by density
f(z, y) = Az™ 7Y fora>0,y>0,z+y<a

(4.3.5)
=0 otherwise

belongs to Y.
Also the distribution function of a random variable, taking its values on the

linex > 0,y > 0,z + y = a with density

flz,y) = A2y for0 Sz <a,z+y=a

(4.36)

=0 otherwise,

belongs to Y (we see that it is a degenerate two-dimensional random variable).
Now let us take fo(2) = A2°¢ " a > 0, ¢ # 0. We obtain the density

f(x, y) = A(.’E + y)pe—a(x+y)'1xp1~lypz-—1 forz > 0’ y > 0

(4.3.7) .
=0 otherwise

for which the distribution function belongs to ¢y. Taking this further p = 0,¢ = 1
we obtain the bivariate distribution where the coordinates are independent
and have gamma distributions.

Let us take in (4.3.1),

(4.38") h*(u,v) = h(—v, —u) = H(—u —v)T'(ps — u)T(p1 — v).

Thus we also obtain a Mellin transform satisfying equation (4.2.2) and the
distribution function corresponding to (4.3.8") belongs also to . This distribu-
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tion is given by density
i) = @)@ y™) = (@) 2y e 4 )
(4.3.8") ="y "l ( + y)/ay] forz > 0,y > 0
=0 otherwise.

4.4. A method of determining other distributions belonging to . Let us represent
the Mellin transform (4.3.1) as a product of a finite or an infinite number of
Mellin transforms

h(u,v) = H(u + v)T'(p1 + w)T(p: + v)

(4.4.1) - H Hi(u + v)ep(w)i(v) = H P (u, ).

Because every hi(u, v) is a Mellin transform of a bivariate distribution, then
hi(uv) = he(—v, —u) is also a Mellin transform of such a distribution. Let us
divide the set K of integers k into two mutually exclusive and exhaustive sub-
sets K; and K, . The product

h(u, v) = kI;?[ hi(u, v)-kl;[ i (u, v)

442
( : = k;[;[ Hi(u + v)"k(u)'h“(v)kg Hy(—u — ) —u)en(—v)

satisfies the equation (4.2.2) and that is why (4.4.2) is the Mellin transform of a
distribution from ¢y.

Using for 1nsta,nce formula (3.4.3) we can expend the Mellin transforms
(4.3.1) and (4.3.8) in the form

h(u,v) = kI=Ilhk(u, v)

_ fIHk(u+v)r(p1+’“; 1+u>r<p2+k—1+v>
k=1

n

(4.4.3")

B*(u,v) = kH:l R (u, v)

= fIHk(—u—v)I‘(pZ-I_k;1_u>1“<p1+k—l_v).
k=1

n

(44.3”)

The distributions Fi(x, y) and Fi(z, y) of the pairs (X, Yi), (Xi, Y7)
corresponding to the factors ki (u, v), ki (u, v) have densities given by formulas

felz, y) = a0 " ™) forz > 0,y > 0,
=0 otherwise,
falz, y) = g Py o* (" +y ™) forz >0y > 0,

=0 otherwise.

(4.4.4")

(4.4.4")
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Thus the function
h(u,v) = ] me(u,v) H hii (u, v)

keKy keK o
(445") =HH(u+v)r<p1+k—l+u)r<p2+k—1+v>
- keKy k n n
. . Pk —1—u p1+k—1—v)
kng"( u v)I‘< - )p( -

satisfies the equation (4.2.2) and hence the corresponding distribution belongs
to . The bivariate random variable corresponding to (4.4.5") may be presented
in the form

(4.4.5"] (x,7) = (Il x.II x7, H Y. ] vi),

keKy keKg keKy keKq

wherethepairs (X;, ) keK,, (X, Y1) keK, are independent and their distribu-
tions are given by densities (4.4.4) respectively.

Taking for instance n = 2, (4.4.4”) for k = 1 and (4.4.4") for k = 2 we
obtain

(446 fi y)3=x"’2_ly_”‘_’ i@ +yHz>0y>0

=0 otherwise

" = 2"y"g (2" + y°) foraz > 0,y > 0
(4.4.67) fa(z, y) 3_

for (X1, Y1),

for (Xz, Yz)

otherwise

and the distribution of (X7 X, Y7 Y,) belonging to .
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