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Summary. In the first nontrivial case, dimension p = 3 and sample size
N = 3 or 4 (depending on whether or not the mean is known), it is proved that
the classical level @ normal test of independence of the first component from the
others, based on the squared sample multiple correlation coefficient R*, maximizes,
among all level « tests, the minimum power on each of the usual contours where
the R’-test has constant power. A corollary is that the R’-test is most stringent
of level « in this case.

1. Introduction. Let X1, - -+ , X be independent normal p-vectors with com-
mon mean vector £ and common nonsingq_lar covariance matrix =. Write NX =
dY¥X;and 8 = 27 (X: — X)(X; — X)'. Partition = and S as

<211 212> d <Su S12>

2 oo S 8w/’

respectively, where Sy and Sp are (p — 1) X (p — 1). Write p* = Z1255 201/Z1 .
Let 5(0 < & < 1) be specified. For testing the hypothesis H, : p° = 0 against
H, : p* = & at significance level , a commonly employed procedure is the test
based on the squared sample multiple correlation coefficient R?, which rejects
H, when R? = 815872:821/Su > C, where C is chosen so as to yield a test of level
a. Throughout this paper 0 < @ < 1,sothat 0 < C < 1.

In this paper we are interested in a minimax question regarding the R*-test,
namely, whether or not that test maximizes, among all level « tests, the minimum
power under Hy. We succeed in proving that, for each possible choice of § and
a, the answer is affirmative in the first nontrivial case, p = 3, N =4 (or N = 3
for the corresponding problem where £ is known).

Our method of proof parallels that of Giri, Kiefer, and Stein (1963) (hereafter
referred to as GKS) for the corresponding 7”-test result; the steps are the same,
the detailed calculations in the present case being slightly more complicated.
The remarks in GKS on the indications that the result holds for general p and N
(in particular, from the local results of Giri and Kiefer (1962)), but of the
inadequacy of the present method, apply also here. The reader is referred to
GKS for a discussion of the Hunt-Stein theorem, its validity under the group of
real lower-triangular matrices and its failure under the full linear group, and for
other comments. Anderson (1958) is referred to for multivariate theory and
Lehmann (1959) for testing (including invariance and minimax) theory.
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1476 N. GIRI AND J. KIEFER

It is well known that among tests based on the sufficient statistic (X, S),
the R’-test is best invariant under the group G of transformations of the form
(¢, 2, X,8) — (At + b, AZA’, AX + b, ASA") where A is nonsingular and
Ap = A5 = 0. (For p > 2, this does not imply our minimax result, because of
the failure of the Hunt-Stein theorem.) Simaika (1941) showed that the R’-test
is uniformly most powerful among all level a tests whose power is a function only
of p’, a result which is also implied by stronger results of Wolfowitz (1945) as
well as by the best invariant character just mentioned. When p = 2 we have the
well known properties of the standard two-tailed test based on the sample cor-
relation coefficient; and when N < p if £ is unknown or N < p — 1if £is known,
it is easy to see that the infimum over H; of the power of every test equals the
size of the test (for example, in this case z, = 1in (2.2), so that the distribution
of 2z does not depend on the correlation between first and last components).
Hence, the case p = 3, N = 4 (or N = 3 if £is assumed known) is the simplest
one to be considered.

We now outline briefly our method of proof. We may restrict attention to the
space of the minimal sufficient statistic (X, S). In the next section we shall first
reduce the problem to the case where ¢ is known and N is reduced by one, and
shall then apply the Hunt-Stein theorem for an appropriate group Grof p X p
matrices (essentially the direct sum of the (p — 1) X (p — 1) lower triangular
matrices and the nonzero reals), which is solvable. (See Kiefer (1957), Lehmann
(1959), p. 345.) Thus, there is a test of level o which is almost invariant (hence,
in the present problem, there is such a test which is invariant; see Lehmann
(1957), p. 225) under G and which maximizes, among all level « tests, the mini-
mum power over H, . Whereas R’ was a maximal invariant under G, with a single
distribution under each of H, and H,, the maximal invariant under G is a

(p — 1) dimensional statistic R = (Rs, ---, R,)" with a single distribution
under H,y but with a distribution which depends continuously on a (p — 2)-
dimensional parameter A = (35, -+ -, 8,), 8;: = 0, 2.2 6; = & (fixed), under H; .

Thus, when N > p > 2 (or N = p > 2 if £is known), there is no UMP invariant
test under Gy as there was under G. We compute the Lebesgue densities fx and
f& of R, under H, and H; . Because of the compactness of the reduced parameter
spaces {0} and T' = {(85, ---, 8,):8; = 0, D %5, = 6} and the continuity of
fA in A, it follows (see Wald (1950)) that every minimax test for the reduced
problem in terms of R, is Bayes. In particular, the R*-test, ) .# R; > C, (where
Y% R, is what is usually called R*), which is G'r-invariant, maximizes the mini-
mum power over H; if and only if there is a probability measure X on I' such that,
for some constant K,

Falra, -+, 1)
(L1) R Ty (dA) >, =, <K
' rfo(Tz,"',’fp)
according to whether ) % r; >, =, < C, except possibly for a set of measure zero.
(Here C depends on the specified «, and A and K may depend only on C and the
specified value § > 0.) An examination of the integrand in (1.1) will allow us to
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replace (1.1) by the equivalent

ok
(1.2) I, o 0m) s (gpy = K i b = C.
Pﬁ(’l‘z, 7‘,,)

We are able to evaluate the unique value which K must take on in order that
(1.2) can be satisfied, and are then faced with the question of whether or not there
exists a probability measure A satisfying the left half of (1.2). The development
thus far, which holds for general p and N > p, is carried out in Sections 2 and 3.
In Section 4 we then obtain a A and carry out the proof that it satisfies the left
half of (1.2) in the special case p = 3, N = 4 (or N = 3 if £ is known).

2. Reduction of the Problem to (1.2). Throughout this paper, we shall find
it convenient to index the components of (p — 1)-vectors by subscripts
2,3, ---, p, with a corresponding convention for (p — 1) X (p — 1) matrices.

For testing H, against H; we need only consider test functions which depend
onthestatistic (X, S), sufficient for (&, =). It can easily be verified that the group
H of transformations (¢, =, X, 8) — (¢ + b, =, X + b, 8) leaves the testing
problem in question invariant, that H is normal in the group G* generated by H
and the group of transformations Gr considered below, and that Gr and H
(and hence G*) satisfy the Hunt-Stein conditions; the action of the transforma-
tions in H is to reduce the problem to that where ¢ = 0 (known) and S =
DL XX © is sufficient for =, where N has been reduced by 1 from what it was
originally. Using the standard method of reduction in steps, we can therefore
treat this latter formulation, considering X;, X», -+, Xy to have zero mean.
We assume also N = p = 2, it having been shown in Section 1 that, in the de-
generate case N < p, the maximin value of the power equals the size. Further-
more, with this formulation, we need only consider test functions which depend
on the sufficient statistic § = D Y., X;X;, the Lebesgue density of which is

(2.1) fo(su, sz, sm) = c(det Z)™" exp [—(3) tr = %] X (det )2~

where

P
-1 _ 2Np/2ﬂ_p(p—1)l4H I‘((N +1 - 7/)/2)
=1

We now consider the group Gr of nonsingular lower triangular matrices (zero
above the main diagonal) whose first column contains only zeros except for the
first element. A typical element g of G+ can be represented as g = <gu gi)
where g2 is (p — 1) X (p — 1) lower triangular. As we have stated earlier, it is
easily seen that this group operating as (S; =) — (gS¢’; g=¢’), leaves the prob-
lem invariant. We now compute a maximal invariant of S under the action of
the group Gr in the usual fashion: If a function ¢ of S is invariant under Gr,
then ¢(S) = ¢(gSg ) for all S and all geGr,ie., ¢(Su, Sz, Se) = ¢(g11S11g11 :
guSugzz , gzzSzzgzz) We may consider the domam of S to be symmetric positive
definite matrices, which have probability one for all =; then there is an F in Gr
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with positive diagonal elements such that FF' = (g“ Sg) . Putting g = LF'
where L is any diagonal matrix with values =1 in any order on the main diagonal,
we see that ¢ is a function only of LxF338:L1:/F1 and hence, because of the
freedom of choice of L, of |Fz8s/Ful; or, equivalently, of the (p — 1)-vector
whose ith component Z;(2 < ¢ < p) is the sum of squares of the first 7 com-
ponents® of |Fa; Se/Fu| (Whose components are indexed 2, 3, ---, p). Write
by for the (¢ — 1)-vector consisting of the first ¢ — 1 components of the (p — 1)-
vector b, and c¢p; for the upper left hand (¢ — 1) X (¢ — 1) submatrix of a
(p — 1) X (p — 1) matrix ¢. Then Z; can be written as (F3aSe/Fu1) -
(F2_21821/F11)[i] . Since (Fzz[i] )_1 = (Fz_zl)[i] , We have, for 2 = 7 =< P,

— 4
Sizti1 (Faatar) (Faagiy) " Staray

Z; =
Sll
(2.2) .
= Sl2[i] S2_2['£] S21['£]
Sll
The vector Z = (Z,, -++, Z,)  is thus a maximal invariant under G if it is

invariant under Gr, and it is easily seen to be the latter. Z; is essentially the
squared sample multiple correlation computed from the first ¢ coordinates of the
X;. Let us define a (p — 1) -vector R = (Rs, Rs, -+ , R,) by

(2.3) 2 Ri=127 2=i=p;
2

ie., R; = Z; — Z;_1 where we define Z; = 0. It follows trivially from above that
R is also a maximal invariant under G . It is easily verified that R; = 0 for
each j, >4 R; < 1, and of course ) % R; = S1»8% 82/ is the squared sample
multiple correlation coefficient between the first and other components (usually
denoted by R?). We shall find it more convenient to work with the equivalent
statistic R instead of with Z.

A corresponding maximal invariant A = (8, -+-, 8,)" in the parametric
space of 2 under G» when H, is true is given by

(2.4) 228 = Zua(Zara) " Zura/Zu, 2

2

IIA
1A

T = p.
It is clear that ; = 0 and D% 3; = p°, the squared population multiple correla-
tion coefficient. The corresponding maximal invariant under H, takes on the
single value 0 = (0, ---, 0)’. It is well-known that the Lebesgue density func-
tion fA of the maximal invariant depends only on A under H; and is a fixed fo
under H, . We must now compute fa and fi. Actually we need only obtain the
ratio f/fs for use in (1.2), so we could proceed without keeping track of factors

3 On page 1527 of GKS, Z; should be defined similarly, instead of as the square of the ith
component.
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not depending on A in this computation. However, it is not much extra work to
keep track of these factors, so we shall do so. There are several ways of com-
puting fx . For example, one method different from that which we shall use, but
parallel to the method used by Anderson for computing the distribution of
R?, is to use the Bartlett decomposition to write

R: / (1 - é R,.> = [(1 - ; @)i N+ 63~x~—¢+2:|2 / (1 = 8)xX¥—pt

where N; are normal, x; is a chi-variable with j degrees of freedom, and all
N ; and x; are independent, and then to integrate out on the x»—_i;2 and, finally, on
2

XN\_KZ;;lt;an assume Zy; = 1, Zpp = I (the (p — 1) X (p — 1) identity matrix),
and 2y = (8}, - -+, 85)" = 6™ (say) in (2.1), since fx depends on = only through
A. For this choice =* (say) of =, (2.1) can be rewritten as
Ser(su, Si2, Se2)

(25) = ¢l — ) exp [~} tr (Ausu + Ausie + Alssie + Awsw)]

X (det (s))(N-—p—l)/z
where

Ay = (Zu — ST Zn) L = (1 -7

Ap = (ZuZnZn — Zu) Zuln = —(1 — o))",

Ap = (Zp — Zn30uZp) " = (I — §"%%)7.
Let B be the unique lower triangular p X p matrix belongingto G'» with positive

diagonal elements b;;(1 < ¢ < p) and such that Ss = BB, , Su = biy, and
let V = Bz Sa . One can easily compute the Jacobians

? ) ?
98/0Bw = 2" II (b:)™'™',  8Su/9V = ]] bu,
2 2
and 0811/8by = 2by , so that the joint density of by, V, and Bs is

P

(2.6) hex(bis , v, bas) = 2pfz*(bil ) Ulbéz , bzzbgz)bng bE
Putting W = (Wa, -+-, W,) with W; = |Vi| (2 £ % < p), and noting that
the (p — 1)-vector W can arise from any of the 2” ~! vectors V = MW where
Myisa (p — 1) X (p — 1) diagonal matrix with diagonal entries =1, we can
My O

0 M 22
matrices in G, ; we obtain for the density of W, writing §;; (+ = j = 2) for the
components of ge ,

write g = bM where M = > with M, = =+1 and g ranging over all
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p .
B3e(w) = 27 ffz*(gil , ’w,g;2 , !]229;2) IIz |gulp+2ﬂ|gu{ X ‘2sz dg:; dgu
= 125>

Ii

o (1 — 2) 97, f exp {—[2(1 — )™ tr (¢ — 5*w'ghn

— 0¥mw + (1 = )T = 6%") g ghn)
2 .

X T 1gad ™ lgu(1 — w'w/gh) ¥V
=2 )

1

\ dgi; dgu

IV
v

J

Writing W = ¢,,U, we obtain from (2.7) that the density of U is
B ) = (1= )7"2% [exp (—201 - AT 1
(28) (g — gud™Wge — gudgmu + (1 — o)) (I — 6*5") "gugn)}

p y —
X lgu"! I=Iz lgiilN-H_l(]- — )PV H2 dgs; dgu

=¥

the range of integration being from — = to = in each variable. It is easily checked
that Uj = R;(2 < j < p). Hence, the density of R = (s, -- - , R,)’ is given by

2\—N/2
740 = 02220 [ o (21—
11+

=2

(gi1 — 298" goar™ + (1 — P)(I — 5*5*,)_1922922)}
b3 (N—p—1)/2 1 15 —
X <1 - ,Z=; Ti) lgul™" I=Iz |gs: Y

where r* = (1}, -+ ,15) . Let € = (1 — p*)™}(I — §*™). Since € is positive
definite, there exists a lower triangular (p — 1) X (p — 1) matrix T with posi-
tive diagonal elements T:i(2 < ¢ < p) such that T7CT’ = I. Writing b = Tgss ,
we obtain 0h/dgss = JI7 T'i7". Let us define v:(2 < 5 < p) by

(2.9)

\ dgs; dgu

iz7z

(2.10) w=1—Z;a,., m=1
=
(sothat vy, = 1 — ¢°) and ai(2 < ¢ < p) by
(2.11) ai = [Beyp/virril'.
Writing @ = (a2, -+, a,)’, a simple calculation (similar to that used to ob-

tain (2.3) of GKS) shows that (T1a8ti) (T1asla) = v»(1 — v:)/vs, sothat
a = Ts*. Since C5* = 6 by direct computation, we obtain @ = TCs* = T7V5*,
From this and the easy computation det C = (1 — °)*?, we obtain
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2 —1
fz("') - 20(1 _ pZ)—N(p—I)/ZH 7‘;‘2
2
X /exp (=21 - PO tr (gfl - 2g1la/hr* + hh')}
yJ (N—p—1)/2 Vet D N1
X <1 - ; rf) |g11| - I=I |hu| e H dh“ dgu

12522
" » (N—p—1)/2
(2.12) = 2c(1 — p°) N ”’2H n <1 - > r >

=2

X [ esp {=giy/2(1 = #)}jgul

x A [ e (=121 = AT ¥ W) - 2001}yl

izjz2

p .
X I_I ks 0 | dhii} dgu,

12522

the integration again being from — « to « 1n each varlable For ¢ > j the in-
tegration with respect to hy; yields a factor (27 ) (1 — p*)* exp [« righ/2(1 — o).
For 2 = j, we obtain a factor

(27,-)%(1 _ )i exp [airigﬁ/?(l — )]
(2.13) X E(X%(agrigfl/(l — ph))Hmamy [2(1 — pt)|@-i+on
X TN =i+ 2)/2)6((N — i+ 2)/2, %, ralgl/2(1 — p%)),

where xi(8) is a noncentral chl-square variable with one degree of freedom and
noncentrality parameter 8 = Ex;(8) — 1 and where ¢ is the confluent hyper-
geometric function (sometimes denoted by .F;),

.y _ S~ Ia + 5)r)e’
¢(a, b; z) = ;)I‘—(aw'

Thusforre H = {rr; 2 0,2 <5 < p; 2.8 < 1} we have (noting that the
exponent of the factor (1 — p°) vanishes)

fE(r) = (27)® 02N <1 _ i rj>(N_p_D/2
agy X217 [ ew {[—[20 — A7k (1 NS> ai)}

j=2 1>7

X fI RYFTIPP(N — i+ 2)/2)¢(N — i + 2)/2, 3102 gha/2(1 — o)

=2

X |$]11|N_1 dgu .
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Integrating with respect to gu , the density of » can be written as

» (N—p—1)/2
(1-— )" <1 -2 m)
fZ(T) = 2 N;2=1
(1 + 2l = 0)/v - 1)) T((N — p + 1)/2)x*™""

(2.15) X3 1 X Z Z T <Z B;i + N/2>
II (AT — i +2)/2)) Ff=0  Fm0 \i=

=2

? — 3 . o Bi
X 1I=I? P((N 2;1??/2 + ﬂl) X - 411”1 @ : .
1+ ; (L = p")/v;i — 1)

Hence
fa(r) _ (1 — )"
- »
f:’k(r) <1+z=:27_l((1 _5)/75_1)>N/2
»
216) B r(S e+ n2)
fa=0  f,=0 I'(N/2)
2 AT(N — i+ 2)/2 + B 4r; ol 8i
I = me | e .
1+ ZZ (1 — 8)/y; — 1)
=
The continuity of f4 in A over its compact domain T' = {(8s, -+ -, 8,): 0; = 0,
21—2 8; = 8} is ev1dent so we conclude that the minimax character of the crltlcal
region Y %y R; = C is equivalent to the existence of a probability measure A

satisfying (1.1). Clearly (1.1) implies (1.2). On the other hand, if there is a A
and a K for which (1.2) is satisfied and if 7 = (7, - - - , 7,) is such that ) % r; =
C' > C, writing f = fi/fe and # = C7/C’, we see at once that

f(7) = J(C'#/C) > f(7) = K

because of the form of f/f¢ and the fact that C'/C > 1 and Y 57 = C. It is
to be noted that v;'(1 — 8) — 1 = — D_;5:8,;/vs and that v; > 0. This and a
similar argument for the case C' < C show that (1.1) implies (1.2). The remain-
ing computations of the paper are somewhat simplified by the fact that for
fixed C and & we can at this point easily compute the unique value of K for which
(1.2) can possibly be satisfied.

3. Evaluation of K. Let B = (Ry, -+, Rp-1)” and write fA(# | u) for the
version of the conditional Lebesgue density of R given that » % R; = u, which
is continuous in # and » for s > 0, > 2 'r; < u < 1, and is O elsewhere; also
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write f3 *(u) for the Lebesgue density of R* = D_% R; which is continuous for
0 < u < 1 and vanishes elsewhere (and which depends on A only through §).
Then (1.2) can be written as

(31) [ 1oy ana) = [Kf: ()

7*(0)
forr; > 0and > 4" r; < C. The integral of (3.1), being a probability mixture of
probability densities, is itself a probability density in #, as is fo (# | C'). Hence
the expression in square brackets equals one. It is well known that for0 < C < 1

]fé"(MC)

" _ (1 — &)™’ r(N/2) -91201 _ o\ N—p=D/2
o O = oarG - ¢ 17O

X F(N/2,N/2; (p — 1)/2; Cs),

where F(a, b; ¢; x) is the ordinary (oF1) hypergeometric series, given by

oy _ @ T(a + 1T + r)T(e)
Fla,b;.6,9) = &4~ o F BT T 1)

_ <= (a)e(b)r o
—r=0 (C)TT! <

where we write (a), = T'(a + r)/T(a). (See Anderson (1958) or use (2.15).)
Hence from (3.1) the value of K which satisfies (1.2) is given by

(3.4) K= (1—8"FWN/2, N/2; (p — 1)/2; C).
Hence by (3.4) and (2.16) the condition (1.2) becomes

2 (DN — 4+ 2)/2 + B)) 4r; s
X H — 1 , X D dn(a)
=3 {I‘((N 1+ 2)/2)(26)! [1 + Z (1 — 8)/y; — 1)] }

(3.3)

)

(3.5)

= F(N/2,N/2; (p — 1)/2; Co)

for all 7 with 7; > 0 and D_% r; = C. Unlike the corresponding equation (2.8)
of GKS, (3.5) does not yield an obvious conclusion regarding the dependence of
A on C and é only through €8, although we shall obtain this conclusion in the
case treated in the next paragraph.

4, The case p = 3, N = 3 (or N = 4 if ¢ is unknown). In this case (3.5)
can be written (as can be seen, for example, by writing ¢(3, %;z) = (1 + 2z2)¢”
for s = 21in (2.14), and then carrying out the integration) as
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o (1 + 2’]?/) 7”353 "
7'252(1 - 5)(2n + 1)(2n + 3) 7303 "
(1 — 8)(1 — ry0)t ((1 — &)1 — 726)> }d)‘(A)

= F(3, % 1; Co).

One could presumably try to solve for A by using the theory of Meijer transforms
with kernel (%, §; 1; z). We proceed instead, as in GKS for the 7" problem, by
expanding (4.1) in an appropriate power series. Write I'; for the unit one-dimen-
sional simplex {(8;, B2): B8: = 0, >_18: = 1} and make the change of variables
h=r/(L =), ti+ta= (ratr)/[1 — (r2+r3)],m = 6/(1 — &), m +m2 =
8/(1 —8) =4 (say), " = C/(1 =€),y = /(1 + & + &)(1 + %),
and B; = 7:/8 (i = 1, 2). Write \* for a measure for 8; on T'; associated with A
in the obvious way, and denote by u; = f% B3 AN*(B,) the sth moment of \*.
Finally, write 2 = €6 = C*'/(1 4+ C*)(1 4 &'). We then obtain from (4.1)

(4.1)

+

(1= T 0" @0+ Do+ ¢ = 9) 2 9" n + D20 + )

X (pn — pni1) = (1 — 2)'F(3,3;1;2)(1 — )7

Writing B, = (1 — 2)*F (%, #; 1; 2), we obtain upon equating coefficients of like
powers of y on the two sides of (4.2), the following set of equations as equivalent
to (4.1):

(a) 1 —|— 2z — 32/.0,1 = Bz
(4.3) (b)) —(2n — Dpar + 2n + 220 + 2))pn — 2(2n + 3)puns

Ir'(n+ })
r(3)n! ’

(4.2)

= B, 1.

v

n

(Of course wo = 1 for \* to be a probability measure.) It is clear from (4.3)
that \¥, if it exists, depends on C and & only through their product. One could
now try to show that the sequence {u;} defined by o = 1 and (4.3) satisfies the
classical necessary and sufficient conditions for it to be a moment sequence of a
probability measure on [0, 1] or, equivalently, that the Laplace transform
> ni(—t)’/7! is completely monotone on [0, « ), but we have been unable to
proceed successfully in this way. Instead, we shall obtain, in the next paragraph,
a function m,(z), which we then prove in the succeeding paragraphs below to be
the Lebesque density d\*(z)/dz of an absolutely continuous probability measure
N satisfying (4.3) (and hence (4.1)). That proof does not rely on the somewhat
heuristic development of the next paragraph, but we nevertheless sketch that
development to give an idea of where the m.(z) of (4.8) comes from.

The generating function ¢(t) = 2 j=ou;t’ of the sequence {u;} satisfies a
differential equation which is obtained in the usual way by multiplying (4.3)
(b) by t"* and summing with respect to n from 1 to oo :
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a4 2(1 — t)(t — 2)¢' (1) — (& — 2t + 2)o(t) ) )
=B(1—-t)" —1—2a".

This is solved by treatment of the corresponding homogeneous equation and by
variation of parameter, to yield

(45) #0 - [(1 ;t]%/ot [2(1 —%(Tj —er

T 1
- d
) Il o e e a]*
The constant of integration has been chosen to make ¢ continuous at 0 with
#(0) = 1, and (4.5) defines a single-valued analytic function on the complex
plane cut from 0 to z and from 1 to . Now, if there did exist an absolutely con-
tinuous A* whose suitably regular derivative m, satisfied

1
(4.6) f m.(z) do/(1 — tw) = $(8),
0
we could obtain m, by using the simple inversion formula
(4.7) ma(e) = —lim [6(z + de) — (@™ — ie)].
2mI% €0

Since there is nothing in the theory of Stieltjes transforms which tells us that an
m, satisfying (4.7) does satisfy (4.6) (and hence (4.1)), we will use (4.7) only
as a formal device to obtain m. which we shall then prove, in the remaining
paragraphs, satisfies (4.1). From (4.5) and (4.7) we obtain, for 0 < z < 1

(1 — z2)? {Bz e du

2rai(l — x% b (1 — u)(1 — zu)?

m.(z) =

1
(4.8) + f [(1 T u)(z F u)t + [w(l 4+ w)(z + w)]t

u (1 — z2)?

(1 + w)i(z + u)%] du} 2r(x(1 — z))* {B.Q.(z) + ¢.} (say).
¢, can be evaluated by making the change of variables» = (1 + )" and using
(4.11) below. We obtain

. = 3BF (3, 1;8;1 —2) +7F(3, 51,1 —2) — aF(3,3;2;1 — 2)

z

and
Q.(z) = 2(1 — )71 — (1 — z2)7}

S -+ -2 1-@0-=2
+ (1 —2) IOg[(l—zx)%—(l—z)i'1'+(1—z)%]'

Now to show that d\*(z) = m.(z) dz (with m, defined by (4.8)) satisfies
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(4.1) with \* a probability measure, we must show that

(a) m,(z) = 0 for almost all 2,0 < z < I;

) [ mia) do =1

(4.9) 1
(e) w = f xm.(x) dr satisfies (4.3)(a);
0

1
(d) pa = / 2"m.(2) dz satisfies (4.3)(b) forn = 1.
0

Condition (4.9) (a) will follow from (4.8) and the positivity of B, and c,
for 0- < z < 1. The former is obvious. To prove the positivity of ¢, , we first note
that F(2, 3;1;2) = (1 — 2)7%; this is seen by comparing the two power series,
the coefficients of z’: being [(2);/7!] and (5 + 1), and the ratio of the former to
the latter being [[i=1 (¢ + )?/4(¢ + 1) = 1. We thus have B, = 1 — z. Sub-
stituting this lower bound into the expression for ¢, and writing v = 1 — 2,
the resulting lower bound for ¢, has a power series in % (convergent for |u| < 1)
whose constant term is 0 and whose coefficient of w’ for j = 1is (j + )™ —
I’(j + 1)/T(G)T(G + 1) + 1); by the well known logarithmic convexity of
the T-function, T?(j + 1) < T'(j)T(j + 1), so the coefficient of u’ for j = 1
is>G+L8T =G+ 1) > 0. Hence, ¢, > 0for0 < z < 1.

To prove (4.9) (d) we note that m.(xz) defined by (4.3) satisfies the dif-
ferential equation

1 — 2z 4+ 2r’
(1 — 2)(1 — 2zx)
so that an integration by parts yields, for n = 1,
—2(n + patr + (L + 2)(0 + Dpa — npa—

1

= f {—2(n 4+ 2)2"™" + (1 + 2)(n + Da” — na" ym.(2) de

0

(410)  mi(z) + m.(x) [ ] — B2n(1 — )1 — 2),

1

- / (1 — (1 + 2)z + 2ad)mi(e) de

1
_ %{—un—l + 2un = 21 + B'PW(TZ_PJ?—))}

which is (4.3) (b).

The proofs of (4.9) (b) and (c) rely on certain identities involving hyper-
geometric functions. In the next paragraph we list some of the properties of
hypergeometric functions which will be used in these proofs.

The material presented in this paragraph can be found in Erdélyi (1953),
Chapter 2. The hypergeometric function F(a, b; c; z) has the following integral
representation when Re (¢) > Re (b) > 0:
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. e . P(C) ! b—1 c—b—1 —a
(411) F(a,b;c;2) = mfo £ = (1 — )™ dt.
We will also use the representation ’
(4.12) log (i—__l_iD = 22F(%, 1; §; 2)

and the identities
(4.13) F(a,b;c;z) = F(b, a;c;x);
¢c—a— 1)F(a, b;c;z) + aF(a + 1, b; c; x)
(4.14) ( ( (
— (¢ = 1)F(a,b;¢— 1;2) =0,
Hmc»—n[r(c)]—lF(a’ b; ¢ x)

4.15
( ) =%—%’;—Hx"“F(a+n+ Lb+n+ 1;n+2;2) forn=0,1,2,--- .

c(l — z)F(a,b;¢c;2) — cF(a — 1,b;¢;2)

+ (¢ — b)zF(a,b;¢c+ 1;2) = 0;
FG+MN—3 =14+ A+ ma)FG =N+ wl4+v+pl—2)
+FGHNT—nl+ A+ mo)F(=5—N3+y14v4u1 — 2)
1) — PG+ NE = w1+ A+ PG =N+ n 1+ v+ 1—2)

_ T+ N+ w1+ v+ p)
TN+ p+ v+ 3T+ )’

(4.18) F(a,b;c;z) = (1 — 2) " F(c — a, ¢ — b; ¢; 2).

We are now in a position to prove (4.9) (b) and (¢). From (4.8), using (4.11)
and (4.12), we obtain

(4.16)

1
/ m.(z) dz = (1 — 2)'F($, % 1; )F(—3%, % 1; 2)
0
XN =FG,1531—2) + 31 —-2)F3% 151 —2)]
(419) — (1= 2)'F$, % L2) + (0/DFG, 51, 1—2) — F(3, 52,1 —2)]
X F(—3%,%1;2)

! (1 — zz)f 14+ (1 =21 —2z)?
+ Bzfo or(l = P — ) ° <1 (-2 = zx)—%> .

The first expression in square brackets in (4.19) vanishes, as is easily seen from
the power series (3.3). Using the power series for log (1 + «*)/(1 — u}), the
integral of (4.19) can be written as
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1 (1 —2)" /1 dzx
(1l —2)2= 2n 4+ 1 5 28(1 — 2)}(1 — zx)"

U U= Y LD 51

Z T 1
=(1-2)7"+ Z_.,(zl +3 O+ 151
(420)  _ (4o ;_oz,,(@,))z’"z u *;7'23!533 =
-0t T [t
12 ¢ dt

= — »)! 1(1 — »)#
= (1 =27+ (a/4)(1 — 2)7'F(4, 4, 2; 1 — 2).
Hence, from (4.19) and (4.20) after cancellation one gets

(4.21) /o m.(z) de = (r/2)F(=%, % 1; 2)[F(3, 3 1;1 — 2)

—F($,3;2;1 — 2)] + (v/4)(1 — 2)°F($, §; 1;2)F($,3;2; 1 — 2).
Using (4.14) witha = 3,b = %, ¢ = 2,and (4.18) witha = b = %,¢ = 1, we
obtain from (4.21)

1
m.(z) de = (r/$){F(=%,% L2)F (3,5, 2;1 — 2)
(4.22) _£ w/ { 2) 2 2,2
+ F($,%,2,1 — 2)[F(—3%, — 3;1;2) — F(—3,5;1;2)1}.
By the use of (4.14) witha = b = —%,¢ =1 + eand (4.15) withn = 0
¢ = ¢ — 0, (4.22) reduces to

(n/ANF(—3, 3;1;2)F (3, 5;2; 1 — 2)

(4.23)

+ (2/2)F(27 272 1- Z)F(27 2)2 z)}
Now, by (4.17) with p = 1, A = —1, » = 0, the expression (4.23) equals one
if we have

F(3,3:2;1 = 2)[F (=3, %; 15 2)

— F(—3 =% 1;2) + (2/2)F(3, 3;2;2)] = 0.
The expression inside the square brackets is easily seen to be zero by using (3.3)
and computing the coefficient of 2. Thus (4.9) (b) is proved.

We now verify (4.9) (¢). We proceed from (4.8) in a manner parallel to that
used to obtain (4.21). The integrand of (4.19) is altered by multiplication by =z,
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and in place of (4.20) we obtain (1 — 2)7/2 — 27Y/3 + [r/42(1 — 2)}]-
F(—%,3%;2;1 — 2). The analogue of (4.21) is
= / am.(z) do = (r/4)F(—1, 4 2; 2)

X F(m 5L 2)F(—3%,%; 2; 1—2) = [(1 = 2)%3IFG, 315 2).

To verify (4.9) (¢) we then have to prove the following identity (using (4.3)
(a)):

(1+2Z)/3Z= (77/4)]7( 27 272 z)[F(27 25 1—2’)
(4.25) ~F(3,%2;1 = 2)] + (r/H(1 — 2)/z]
XF(3 5 1;2)F(—4%,5;2;1 — 2).

Using (4.18) with ¢ =1, a = b = £, then (4.16) witha = £, b =—% ¢ = 1,
and then (4.17) with A = u = 0, » = 1, (4.25) can be reduced to

(4/3m)(1 + 22) = 2F(—3,%;2;2)[F(3,5; 151 — 2)
—F3 521 —2)] + (32/2)F(3, —%;2;2)F(—4%,3;2;1 — 2)
+ (4/3m)(1 —2) + (1 — 2)F(3, 3;2; 1 — 2)[F(3,—3%; 1;2)
— F(3 —3%;1;2)].

Using (4.14) witha = —%,b = 1, ¢ = 1 + ¢ and then (4.15) with n = 0,
¢ = ¢ — 0, the expression 1n51de the square brackets in the last term of (4.26)
can be further reduced to $2F(—1, £; 2;2). Hence we are faced with the problem
of establishing the identity

4/ = F(—%,%;2;2)F (%, %, 1;1 —2) + 3F(%, —3%;2;2)
(427) X F(—=%,%:2;1 —2) — [(e + 1)/2)F(3, —%, 2; 2)
X F(3,52;1 — 2),
which finally by (4.11) with A = » = —1, u = 2 reduces to
=F(—%%22)FG 5 L1 —2) +3F(3, —3;2;1 — 2)
—3F(3 —521—2)+ (1 —2)/2 — 1)F(3, 3;2;1 — 2)].

The expression inside the square brackets in (4.28) has a power series in 1 — 2,
the value of which is easily seen to be zero by computing the coeflicients of
various power of 1 — z. Hence (4.9) (c¢) is proved.

It

(4.26)

(4.28)
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