A BAYES SEQUENTIAL SAMPLING INSPECTION PLAN'

By HErmMAN CHERNOFF AND S. N. Ray
Stanford University

1. Introduction and summary. Given a lot of size N whose items are obtained
from a statistically controlled process with an unknown probability p,0 < p < 1,
of an item being defective, a rectifying sampling inspection problem arises when
the loss involved in sending out the lot with d, 0 < d < N, defectives in it is
kd where k > 0 is the loss involved in sending out a defective item instead of
replacing it with a good one. The cost of inspecting n items (defective items
detected during inspection are replaced by good ones) is ¢n, ¢ > 0. An inspection
plan is to be devised that minimizes (in some suitable sense) the risk (expected
loss plus inspection cost).

Let ¢ denote any sequential inspection plan, which determines sequentially
the (random) number 9T of items to be inspected. If the lot is sent out after
inspecting 7 items, the cost of inspection incurred is nc and the expected loss due
to the defectives remaining in the lot is (N — n)pk. Then the risk is

(N — n)pk + nc = Npk + nk(c/k — p),
and hence the risk associated with the plan ¢ is given by
(1.1) R(p,¥) = Npk + k(c/k — p)E,(9).

Since E,(N) = 0 for every p € (0, 1), it follows from (1.1) that if p were known
then the optimal plan (which we denote by ¢,) would be to inspect the whole
lot or not to inspect at all according as p > or < py = ¢/k. The risk R(p, ¢¥,)
of this plan is given by

R(p7 ll/p) = Npk: for Y4 = Do,
= Ne, for p > po

(see Figure 1).

Let d be the number of defectives observed in the first n items inspected when
p is unknown. Since d is a sufficient statistic for p based on “the past history,”
the decision to stop or continue inspection may be made to depend on d. Thus
we may restrict our attention to plans defined by two mutually exclusive and
exhaustive sets in the (n, d) plane called the continuation and stopping sets. If
at any stage the current position (n, d) belongs to the continuation set we inspect
another item from the lot. If it belongs to the stopping set we stop inspection
and send out the lot. Obviously all the points with n = N or with d = N are
stopping points. We now define the boundary set as the set of stopping points
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Fi1a. 1. Risk for optimal plan where p is known,

which are accessible from some continuation point. Because of the monotonic
nature of the two types of cost associated with a plan one would expect that for
an admissible plan, the boundary set consists of points {(%, d,)} with d, mono-
tonically nondecreasing in n and the points (n, d) are stopping or continuation
points according as d < d, or d > d, . Such plans are thus defined by a set of
boundary points {(n, d.)} or equivalently {(d, n4)}.

Anscombe [1] considers a class of linear plans where nq is defined by

(1.2) ng = Ny + do, d=0,1,2---,[(N — n)/(w+ 1)],

([ ] denoting the greatest integer part). He considers the problem of choosing the
integers ng and w so that the following conditions are satisfied :

(1) Whatever the unknown number of defectives in the lot, there is at most a
preassigned risk that after inspection the lot will contain more than a specified
number of defectives.

(2) The average number of items inspected is as small as possible for some
range of values (or simply for a fixed value) of the unknown number of defectives.

It is to be noted that Anscombe’s problem as formulated above, is typical
of the classical Neyman-Pearson theoretic formulation and as such differs from
our decision theoretic formulation of minimizing (in some suitable sense) the
risk associated with a plan. In fact, Wurtele, was first to consider this formulation
in her thesis [7]. She gives a characterization of the Bayes sequential
plan {(d, 74)} as a multiple sampling plan which is a consequence of the fact
that 7, is an increasing function of d. She presents algorithms for obtaining the
large sample behavior of the optimal (Bayes) boundary in the limiting case
appropriate for the Poisson approximation.

We shall concern ourselves with the Bayes sequential plans for beta prior
distributions. To study the large sample behavior of the optimal boundary and
associated risk we formulate the following associated normal version of the
sampling inspection problem.

We observe X;, a Wiener process with unknown drift x4 per unit time and
variance one per unit time. Let 7 be the time at which observation is stopped.
Subject to T' < ¢, it is desired to locate a stopping set which minimizes E(Tu)
(where E denotes the expectation operator over the marginal distribution of the
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data with a normal prior distribution for u). If u were known, an optimal proce-
dure would be to stop immediately if » = 0 and to continue as long as possible
if w>0.

The associated problem is then tackled with the help of techniques developed
by Chernoff [3], [4], [5] in connection with the sequential testing for the sign of
p. The results are then related to the original sampling inspection problem.
Numerical computations are given comparing the boundary and the risk calcu-
lated using the asymptotic formulae with the exact ones.

Lastly, the optimal (Bayes) plan is compared with the optimal plan among
the class of linear plans (1.2). Here the optimum 7y and w are approximated by
the solution of the corresponding Wiener process problem.

2. Bayes solution. It is well known [2] how to obtain the Bayes procedure for
a truncated sequential decision problem. In our particular problem, the Bayes
risk with respect to a beta prior density with parameters (ao, by) is given by
kon(ao, bo) where py(a, b) is computed recursively from the equations:

po(a,b) =0
and
pi(a,b) = min [p.*(a, b), [¢/(a + b)]pis(a + 1,b)
+ [b/(a + b)lpizi(a, b + 1) + po

for ¢ = 1, where p.*(a, b) = ia/(a + b). There is a Bayes stopping rule for the
above prior distribution which calls for stopping after n observations if and
only if

pN_,,(ao + d, bo + 7') = Prl—-n(ao + dy bO + 7')

where d and r are respectively the number of defectives and the number of non-
defectives in the n items inspected.

It is to be noted that the Bayes risk and hence the Bayes stopping rule depend
on ay,by,d,r, and N and this dependence can be expressed in terms of
a=a +d,b=by+randM = N + ay + bpalonesince N —n =M — a — b.
Thus a single set of stopping points in the (a, b)-plane calculated for a fixed M
suffices to give the stopping rules for various combinations of beta prior densities
with parameters (ao, b, ) and lot sizes N’ such that ay + b, + N = M. In
other words, the Bayes risk with respect to a beta prior density with parameters
(a, b) for the problem with the lot size M — a — b is given by kp(a,b) where
o(a, b) satisfies the recursion relation p(a,b) = 0 fora + b = M,

(2.1) p(a,b) = min [p*(a,d), [a/(a + b)lp(a + 1,b)
+ [b/(a + b)lp(a, b+ 1) + p] fora+b=M -1,

and where p*(a,b) = (M — a — b)a/(a + b) corresponds to stopping. Further-
more the point (a, b) is in the stopping set if and only if p(a, b) = p*(a, b).
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A set of stopping points in the (a, b)-plane may easily be reinterpreted as a
set of stopping points in the (a, m)-plane where m = a + b. In other words,
shifting the origin in the (d, n)-plane to a point (ay, ap + by) in the (a, m)-plane,
the boundary points {(a, f.)} for a fixed M give the set of boundary points
{(d, fia)} for the problem with lot size N = M — ay — b, .

For some of the details of the characterization of the optimal boundary the
interested reader is referred to Wurtele’s thesis (loc. cit.). We shall, however,
indicate certain facts which are useful in programming efficiently the computation
of the optimal boundary and the optimal risk.

Let

a* =M —b* = Mp, if Mp, is an integer
= [Mpo + 1 otherwise.
It can be shown that '
p(a,b) = (M — a — b)a/(a +b) forb = a*+1
=(M—-a—0b)p - for a = a*.

Thus the recurrence relation (2.1) is needed for computing p(a,b) only for
(a, b) in the rectangle a < a* — 1, b < b*.

Furthermore, it can be shown that the optimal boundary lies below the line
a/b = po/(1 — po) and to the left of b = b*. (The a-axis is vertical and the
b-axis is horizontal.)

3. A free boundary problem related to the Bayes solution for large M. In this
section we indicate heuristically that for large M, the problem of obtaining the
optimal boundary and the Bayes risk, reduces to a free boundary problem
(FBP) involving a diffusion equation.

Let

(81) 0'(a,b) = p(a,b) +a — Ma/(a +b)
= p(a, b) - p*(a, b): 0=sa+bs= M.

It follows from (2.1) that p(a, b) satisfies the following recursion relation in the
continuation region:

(32) ¢'(a,b) = min [0, [a/(a + b)}¢'(a + 1,b)
+b/(a+ b))’ (a,b + 1) + po — a/(a + b)].
We now normalize with the following transformation:
z = [a(1 — po) — bpol/[Mpo(1 — po)]*
(3.3) = [a — (a + b)pdl/[Mpo(1 — po)T},
t=(a+b)/M,
B'(z,t) = o'(a,b)/[Mpo(1 — po)]".
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In the continuation region, we have
B'(z,t) =3B’ (z+aM >t + M) + B'(z + &M} t + M)
(34) +[(2po — 1) + 2[po(1 — po) (/)M RIB'(z + &M, t + M)
—B'(z+ &M t+ MY — /)M,
where

& = (1—po)/lpe(1l — p)I, & = —po/Ipe(1 — po) .

Now assuming B’(z, t) smooth enough to be differentiated with respect to both
of its arguments the first few times, (3.4) may be simplified to

(3.5) 1B+ B/ + (2/t)B.) — (2/t) = {(2po — 1)/2lpe(1 — po)1}} ((2/1)B..
+3BLOM + O(M™).

Thus in the limit as M — =, B'(z, t) satisfies the following partial differential
equation:

(3.6) iB.. + B/ + (¢/t)B.) — (2/t) = 0
in the continuation region in the (2, t)-plane,
(3.7) z = 2(1), 0=st=1

where 2(t) is the unknown boundary to be determined along with B’'(z, t).
(See Figure 2.)

A boundary condition at z = 2(¢) is given by the continuity requirement as
(38) B, l2=5('3) = 0

Another boundary condition is obtained by the following argument: Suppose
(a, b) is on the boundary, while (a, b + 1) is outside and (a + 1, b) is inside the
continuation region. Then p'(a,b) = 0 = p'(a, b+ 1) so that (3.2) suggests
that
(3.9) [e/(a+b)lp'(a+1,b) ~a/(a+b) — po.

Using the transformation (3.3), expanding B’ about (z,¢) and remembering
that B’(z,¢) = 0 for (a,b) on the boundary, the formal application of (3.9) as

z /7,
Contmuatlon

Reglon /
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z(t)
Stoppmg Region
Fig. 2.
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an equality leads to

(3.10) B. |oczy = (2/t)[po(1 — po)I M + O(M™),
which suggests that in the limit as M/ — «, we expect
(3.11) B, |.zp = 0.

Thus the problem of obtaining the optimum boundary with the corresponding
risk reduces in the limit to the following free boundary problem:

To solve for 2(¢) and B'(z,t) where B'(z,t) satisfies the partial differential
equation (3.6) in the region (3.7) subject to the boundary conditions (3.8) and
(3.11).

It should be noted however that (3.3) is not the only transformation for which
we arrive in the limit to the above mentioned free boundary problem. If, for
example, we define ¢ slightly differently as

t = [a(l — po) + bpol/2Mpo(1l — po)

instead of by (3.3) [both are the same when p, = 3] it may be verified by going
through the same type of algebra that (3.10) remains unaltered whereas the
right hand side of (3.5) is changed to

{(2po — 1)/2[po(1 — po)}BBLa: + (2/8) (B + B + (2/t)B. — 2/t))M
+o(M™).

Thus up to the first order of approximation either definition of ¢ yields the same
equation. It is an interesting question, however, to ask which normalization
gives a better fit to the exact solutions in the discrete case. However, we shall
henceforth use the first normalization because of computational simplicity.

For the sake of conformity with the notations of [3], [4], [5], we transform to

(3.12) z = —z,
(3.13) B(z,t) = B'(z,t) + 2,

and restate the free boundary problem as follows:
To solve for #(¢) and B(z, t) where B(z, t) satisfies

(3.14) 3B, + (2/t)B. + B, =0
in the continuation region,

(3.15) z = &(1), 0=st=1
subject to the boundary conditions on z = (t):
(3.16) B =z,

(3.17) ’ B, = 1.

We notice that this free boundary problem differs from that of [4] in having the
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cost rate c¢(z,t) = 0, the stopping risk D(z,t) = z, and a single boundary. In
so far as the techniques developed in [3], [4], [5] do not depend on the particular
cost and risk functions they are equally applicable to this problem.

The similarity of the two free boundary problems immediately prompts us to
notice that the FBP stated above also arises in the following Wiener process
problem mentioned in the introduction.

We observe a Wiener process with unknown drift u per unit time and variance
1 per ‘unit time. Given that u has a prior normal distribution with mean u, and
variance oy, it is convenient to originate the process from the point (o, &),

= po/oo’ and t, = 1/0¢’. Then the posterior probability distribution of u given
X: = z is normal with mean z/t and variance 1/¢. It is desired to minimize the
“risk” E(Tu) where T is the stopping time, subject to &, < T < 1. If we let
B(xo, ty) represent the risk associated with the optimal plan, the equation
B(z,t) = E{B(X4s,t+ 8)} + 0(8) is valid in the continuation region and
implies Equation (3.14). The boundary conditions (3.16) and (3.17) follow as
in [4]. The first condition is also valid for non-optimal procedures.

Since the free boundary problem is exact and not approximate for the Wiener
process problem, we shall describe asymptotic behavior of the solution of the
Wiener process problem. These will then be translated to approximate solutions
of the sampling inspection problem.

4. Asymptotic behavior of the solution of the free boundary problem near
¢t = 1. In this section we formally develop asymptotic expansions for the stopping
boundary &(¢) and the risk B(z, ) for { near 1 by using techniques similar to
those used by Breakwell and Chernoff [3]. It can be proved as in [3] that these
formal expansions do represent asymptotic approximations.

We use the following transformation of variables on the FBP of (3.14)-(3.17):

y = z/t,
(4.1) s=1/t -1, 0=s<
u(y,s) = B(z, 1) — y.
Then u(y, s) satisfies the heat equation

(42) %um[ = Us
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ih the region y < #(s) with the boundary conditions on the boundary §(s):
(4.3) =y(l/(s+1) - 1),
(44) u, =1/(s +1) — 1,

for ¢ near 1, i.e., for small s, the right hand sides of (4.3) and (4.4) may be
expanded in a power series of s. We are thus led to seek saparable solutions for »
of the form

(4.5) s"'Ga(y/s'), n=1,2,8 -,

where G,(§/s'), may itself be expanded in a power series of /s, for small s.
Solutions of the heat equation (4.2) of the form (4.5) may be obtained by
considering a distribution y"/n! of heat sources along the positive y-axis giving
rise to

46) [35¥o(y —v)/s) /) dy = (s*/nl) [Z5 (B + €)"e(e) de,

where

(4.7) o(e) = (2m)Fexp (—€/2),
B8 =y/s.
Thus ‘
(48) : Gu(B) = (1/n1) [Z5 (8 + €)"o(e) de.

Note that G,'(8) = G,—1(8) for n = 1 and that G.(B) is meaningful for real
(not necessarily integer) n > —1. While the integral (4.8) fails to exist for
n < —1, we may extend the definition to negative n by the above differentiation

property, obtaining
(49) Gn(B) = Pn(ﬁ)é(ﬂ) + Qn(ﬂ)ﬁo(lg)’ n = 07 =’=17 =’=2: R}

~ where ¢(8) and ®(8) are respectively the standard normal density and the
corresponding cdf and P.(8) and Q.(B)’s are certain polynomials in 8. We write
below the first few of these polynomials to be used later.

Py, =1, Q =0,

P, =8, v Q=1
P,=g/2+4% Q: = B/2,

P; = 8/6 + 6/2, Q = £/6 + 4,
P.=p/24+6/4+% Qi = B°/24 + (5/24)8,

(4.10) Py = §°/120 + B°/12 + /8,
Qs = /120 + (3/40)6* + 1/15,
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= 6°/720 + B'/48 + £°/16 + 1/48,
= £°/720 + (14/720)8° + (11/240)8,
= £7/5040 + B°/240 + (/48 + B/48,
Q. = 6°/5040 + B'/252 + (87/5040)8° + 1/105.

We now take

(4.11) u(y, ) = a0 6as""Ga(B),
(4.12) B(s) = 2on-0cas™
where

(4.13) §(s) = B(s)s',

and the coefficients @, and c, are obtained alternately by matching the co-
efficients of equal powers of s in the following equations obtained by substituting
(4.11) and (4.12) in the boundary conditions (4.3) and (4.4):

(414) 8 aus™ G cms™ = (8 cms™)S[—s + & — & + -],
(4.15) D 8 ans™? o[ Dt Cms™] = S [—s+ & =+ -+ ].

Expanding the G,’s around ¢, and matching coefficients we arrive at the
following equations:

(4.16) a =0 =a, n=2012---
¢o is the unique solution of the equation
(4.17) Gs(co) — cGz(co) = 0.

a =2c/(5+a),
e = (1/2e0)[1 + (9 + c’)el’
(4.18) — [7(5 4+ 10cs” + ')/ (35 + 16¢,” + ¢o)(1 + )],
as = —2(1 — o’)/®(c0),
as = 40(1 — ")/ (5 + ") ®(c0),
ar = [—1680(1 + ¢*)/(eo* + 16¢,° + 35)]- (1 — &) /®(co)-

y(s) &

7/ /7
Contmuatlon y(S)

Reg:on

° ////////// /7

Fi1a. 4.
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Numerical values of these coefficients, correct to 5 significant figures are as

follows:
c = 0.63883, a; = —1.6029,

(4.19) a= 0.23625, as = 5.9278,
c: = —0.089257, a; = —3.4094.

Thus we have,
TuEOREM 4.1, The asymptotic expansions for the optimal boundary Z(t) and the
optimal risk B(z, t) within the continuation set are

(420)  &(t) =[t(1 — O)Pfeo + (1 — 1)/t + (1 — 8)/8)" + -+ ],
(4.21) B(z,t) = z/t + as((1 — t)/t)*Gs(z/1t(1 — OIF)
+ as((1 — 8)/8)*Gs(x/1t(t — 1Y) + -+

where the c, , a, , Gn are determined by Equations (4.14) and (4.15).

Translating this theorem in terms of the original sampling inspection problem,
we refer to the equations at the beginning of Section 3, and (3.12) and (3.13).
Denoting the set of optimal boundary points in the (m, a) = (a + b, a) plane
by {m, @.}, we have for m/M close to one,

(4.22)  @m= mpo + [mpo(1 — po)F[1 — m/M[co + cx(M/m — 1)
+a(M/m—1)"+ -],

while the risk ko(a, b) = ko(a, m — a) is given by

(4.23) p(a,b) = a(M/m — 1) — [Mps(1 — po)'[B(z, 1) — 2]

for (a,b) on the continuation set. In particular, along the critical line
a/b = po/(1 — po), z = 0 and

(4.24) p(a, [(1 = po)/pola) = Mpo — a + [Mpo(1 — po)'B(0, a/ Mpy)
which is easily approximated using (4.21).

6. Transformations of the free boundary problem. Some remarks are in order
concerning the choice of the transformations in Section 4 which led to the heat
equation. It has been noted [3] that the prior distribution of p makes ¥ = X/t
a Wiener process in the —1/¢ scale. From this it naturally follows that B(z, t)
satisfies the heat equation in the (y, 1/t) variables. For convenience in Section
4 we translated the 1/t scale so that the ¢t =1 would correspond to
s = 1/t — 1 = 0. The translation does not affect the heat equation. The bound-
ary condition B = z along ¢ = 1 could be simplified by subtracting a solution
of the heat equation for which B = z when ¢t = 1 and < 0. Such a solution is
not unique and the term y (which coincides with z along ¢ = 1) was selected as
a matter of convenience. It would have been quite natural to use the solution
generated by the heat sources equal to z along s = 0; i.e.,

(51) = syty/s) = [LasTo((y =)/, s=¢1—1
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These remarks are pertinent to the study, in Section 6, of { — 0. Here the
untranslated 1/t scale is algebraically slightly simpler to deal with. While sub-
tracting ¥ would make the boundary condition zero along the negative part of
the vertical axis ¢ = 1, the ¢ term has an advantage in that it does not get
very large as x — + . What is important, is to make sure that we subtract
from B a solution of the heat equation such that the difference approaches zero
as * — — o along ¢ = 1. Otherwise the boundary condition along ¢ = 1 could
transmit a large effect to ¢ — 0({ — ). While subtracting (5.1) seems most
appropriate —t_éx[/"L(yt*) is more convenient to deal with algebraically and is
also adequate, since as y — — oo along ¢ = 1, y + ¢+ (y) = o(y) + y®(y) — 0.

This correction term has a statistical interpretation. The prior distribution of
wis given by £(u) = 9(y, ). When ¢ is small, x has large variance, [u| is almost
certainly large and little observation time is required to decide the sign of .
Then the Bayes risk is approximately that associated with the action which
would be correct if the “random’” value of u were given to the statistician. This
risk is
(52)  [7 tuel(s — )0 du + [2 wol(s = )1 du = 9™ (y") — 797 (t)).

The latter part of this expression is dominant and is our correction term.

These remarks are intended to point out that there is a certain amount of
freedom in choosing appropriate transformations of scale and risk. At the same
time we may recall that the asymptotic solution for ¢ near 1 involves a dis-
tribution of heat sources for positive y at ¢ = 1. We may also anticipate that, as
in [5], the asymptotic solution for ¢ near 0 will invoke a distribution of heat
sources at ' = 0. In the present application the sources will be restricted to
positive y.

6. Asymptotic behavior of the Bayes solution for small ¢. Here we transform to

(6.1) y =zt s=1" a = y/s’,

(6.2) u*(y,8) = B(z, 1) + s (y/s).

Then the free boundary problem is given by

(6.3) U = Fgy

(6.4) wt =ast4 s%:VL(a) on the boundary a(s),

(6.5) wet = s — [l — ¥(a)] on the boundary a(s).
Following Chernoff [5] we consider solutions of the heat equation of the form
(6.6) w* = Kosp(a) + g(a, )

where

(6.7) g(ey ) = [§ lp(a = D)I(sD) b,

while the boundary will be represented by an expansion of the form
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(6.8) B=1logs=0a"/2+loga -+ ke + ki + kea*
+ - =d/2 4 loga+k+ 1

where the unknown coefficients k; are to be determined along with the function
f with the help of the boundary conditions (6.4) and (6.5).

Note that for small ¢ we expect @ to be large. Then along the boundary the
term Kos p(a) is relatively negligible. Also in the integral (6.7) the dominant
part comes when b is close to . Usmg the expansions for large «, of g(a, s),
ga(e, 8), ¥ (a), 1 — &(a), as given in Chernoff [5] the boundary conditions (6.4)
and (6.5) reduce to

f(sa) + (s/20)fP (sher) + (1-3/41)57¥ (s%a)
(6.9) + (1-3-5/6)s7® (sa) + -
~ s o + (2r) M1 — 307t 4+ 1507 — 1050° + - - - },
(6.10) s (s\a) 4+ (1-3/31)sV(sha) + (1-3-5/51)s'® (sar) + - -
A =5 =1+ (2m) 7l — '+ 807 — 15" + - ).

Starting with the approximation fo(z) = 2logz’/z the main terms match in
Equations (6.9) and (6.10) if (2r)*exp (ko) = 2 or ko = (log 87)/2. We
apply the resulting approximation

(6.11) : BB = o’/2 + log & + (log 87)/2

to (6.9), substituting s'a for z in the argument of f and we obtain a discrepancy
[right side of (6.9) minus left side] which is

—(s*a)'l{3 log o® + log 87 — 1 4+ 0*(a%)}

where 0*(04'2') is used to represent an expression which is bounded by some
power of log o’ divided by o’ as & — . To compensate for this dlscrepancy we
apply a correctlon to fo making use of the approximations so’ = 2’
log o’ & log [2 log «*]. This gives

(6.12) filz) = z7Y{2log 2® — 3 log [2 log 2*] — log 8= + 1}.

This approximation combined with (6.11) yields a certain discrepancy in (6.10),
the main part of which is compensated for by the approximation

(6.13) BB =a’/2 4 loga + (log87)/2 + o,

With one more step in the iteration we obtain the following formal expansions
for B and f:

(614) B=logs~a’/2+loga+ilog8r+a+dat+ -,
(6.15) f(x) ~z '{2loga’ — 3log (2loga’) — log 8 + 1
+ (2log z*) '[9 log (2log z’) +3log8r — 4] + --
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Using this expansion for fin (6.7), we may obtain a formal expansion for g(«, s)
and hence for the optimal risk B(z, ) as

(6.16) B(z,t) ~ —s¥t(a) + Kos Yo(a) + [o o(a — b)f(sb® + 2)* db
where @ = z/tf and s = ¢
As in [5] it may be proved that the formal expansions (6.14) and (6.16) yield

asymptotic approximations as ¢— 0. Also the main term in (6.16) after
—s' " (a) is asymptotically

(6.17) s} (log 5)%p(a)/2.

Finally, it may be verified that the K, term in (6.16) depends on the order of

the approximation. Thus if we use f, in place of f and u,*(y, s) = g,(ys, s) in
place of g(ea, s), K, is replaced by

(6.18) Ko = [a 4" (7, 8) — uhy(§ 9)1ds + *(3, 8) — ™ (4, 9)1dg

where B is the optimal boundary including the vertical section from y = — o
to 0 along s = 1. (This dependence on r could be evaluated by noting that for
rz3, Ky— Kp= f?f [fo(2® + 2)F — fo(2® + 2)dx where f, contains the
terms of the expansion through those of order (z* 4 2)*[log (z* + 2)I"** and
g 1s the corresponding integral as in (6.7).)

It is noteworthy that the main term in (6.16) corresponds to the main term
obtained in the case of certainty, i.e., where the statistician is informed of the
value of u after it is selected according to the prior probability distribution with
mean z/t and variance 1/t, (see (5.2)).

These results may be interpreted for the sampling inspection problem by
transforming variables. Applying the transformation (3.3), (3.12) and (6.1),
Equation (6.14) expresses the optimal boundary points (G, m) in the (a, m)-
plane, for m/M small, by

log (m/M)* + (@n — mpo)*/mpo(1 — po)
(6.19) + log [(@m — mpo)’/mpe(1 — po)] + log 8
+ 2mpo(1 — o)/ (@m — mpa)® + [mpo(1 — po)J*/ldm — mpol* 0
from which follows the very rough approximation
(6.20) m = mpo — [2mpo(1 — po) log (M/m)]'.

Of special interest is the cut-off point o , the value of m for which a = 0 would

suffice to stop sampling.
Substituting @, = 0 in Equation (6.19) leads to the simple approximation

(6.21) mo = [(1 — po)/palllog (Mps’/8r(1 — po)°)
— 3log {log (M’ps*/8x(1 — po)*)}].
7. The optimal linear boundary. An unpublished result of M. V. Johns involves
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the use of a linear boundary in the sampling inspection problem. Since one would
expect a good linear boundary in the (n, d) scale to go from some cut-off point
(n0,0) through a point close to (N, Np,), Johns computes an asymptotic
approximation to the best among all linear boundaries through (N, Npo).
This computation invokes a prior distribution for p, large N, and the Poisson
approximation to the binomial process. The result is “peculiar” in that the
optimal linear boundary is quite sensitive to the prior distributions. Thus if the
optimal linear boundary were recomputed on the basis of the posterior dis-
tribution after a single observation, it would be changed substantially. Pre-
sumably this effect occurs because (1) linear boundaries are not optimal among
all boundaries and (2) the risk is relatively insensitive to variations in the linear
boundary.

In this section we evaluate the optimal linear boundary for the normal version
of the problem as ¢t — 0 and compare the risk with that of the optimal (non-
linear) boundary. Note that a straight line through (N, Npo) in the (n, d)-plane
corresponds to a straight line in the (z, t)-plane, through (0, 1).

Let the continuation set be given by the points in the (z, t)-plane below the
linear boundary

(7.1) | (1) = 6(1 — 1) 0<t=<1,6>0.

The corresponding risk By(z, t) satisfies the partial differential equation (3.14)
and the boundary condition

(7.2) By(z,t) =z on the boundary.

Applying

(7.3) s=1/t—1, y =z/t

the straight line boundary transforms into

(7.4) ' 9(s) = 6s 0<s< ,0>0

and the transformed risk
(75) do(y, 8) = Bo(x, t) - Y,

satisfies the heat equation (4.2) on the continuation set with the boundary
condition

(7.6) de(y,s) =0 for s=0,y<0

= —sf(s)/(s+1) = —05/(s+1) for 0<s< ,
Since Y is a Wiener process in the —s scale, it follows (see [6]) that
(7.7) @o(y, ) = Eto(Y, S)

where (Y, S) is the random point at which the path of a Wiener process going
backwards in the s scale from (y, s) first crosses the boundary and E denotes the
expectation operator over the collection of paths starting from (y, s).
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It is well known (see Chernoff [5]) that the first passage time for a Wiener
process from (0, 0) to cross a straight line y =+" — 6s,4" = 0,6 = 0 has the
following probability density

(78) fyro(s) = b'/@m)Yl " exp (—3(v'/s" — 65)7,  0<¢ <
Using (7.6), (7.7) and (7.8) it follows that
(7.9)  —1(y, s)

= [yo/@2m)"1[5 [(s — &)/ (s — 8 4+ 1)} exp {—3(v/s" — 6s™)"} ds’
where

(7.10) y=10s—y>0.

Equation (7.9) gives the risk #¢(y, s) associated with the linear boundary
(7:4), as a function of the slope 6 and the starting point (y, s). The optimum
slope, 6*(y, s), if there is any, maximizing the right hand side of (7.9) will in
general depend, on the starting point (y, s), i.e., on the particular prior dis-
tribution one starts with. Since the closed form evaluation of the integral in
(7.9) seems intractable we obtain below an asymptotic expansion (for large s
and hence for small ¢) for the integral in inverse powers of s. The expansion, to
be useful for our purpose, has to be valid uniformly for ¢ in some appropriate
range covering the optimum 6. Heuristic considerations based on the original
problem lead us to expect 6 to be small for large s. We proceed below with a
formal expansion from which the maximizing 6* is obtained by differentiating and
then we check to determine that the expansion is valid for that order of magnitude
of 6*. It turns out that the proper parameter in inverse powers of which the
expansion should be developed is given by

(7.11) p=v0=(8s—1y)§ > 0.
Let
o' = (8/y)s' = 6s'/(6s — ),
v=(0/v)s=0s/(6s—y) =1+y/v
With this transformation, (7.9) becomes
(7.12)  —da(y, s) = (v/0) o/ @0) 1 [3 (v — v')/ (v = V' + 6/7)]
" exp {—3p(1 — o)’} .

We write the first factor in the integrand above as the sum of three com-
ponents as follows:

(713) (v =)V /(v —=v +8/y) = —v —0/y + (6/7")/(v =V + 6/7)]
=1—-v 4+ -0/ + (/7)1 =)+ (y+ 6)/v]
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Finally, using the transformation

w' =g (1 — o),

w = p(1 —v)/o* = —y/s
from which it follows that

ldw'/dv’| = (61/2) ()71 + ),
()" = (1 + w?/4p) — w'/24",
2/(1+v') =1+ (w'/20") (1 + w"/4p) 7%,
(1 =)/ +0) = =1 +2/(1 +') = (w/26")(1 + w*/40)7,

and

1= = wo"/p = (/o)1 + w"/4p)" — w'/26".
Then (7.12) may be written as
(7.14)  —to(y, s) = (v/0)I(w) + [o'(y — 0)/4I(w) + p(6/%)s(w)]

where

(7.15) Ii(w) = [2w'(1 4 w"/4p) o(w')
(7.16) Lw) =[5l + (w'/26") (1 + w"/4p) o(w') dw’
and

(117) I(w) = [o [l + /201 + w?/4p)7
A1+ w/40)7 — w'/20Y] + Py + 6) /) Te(w') duw'.

Expanding in inverse powers of p and retaining only the first few terms we
have from (7.11)

(7.18) 6 =sHll — w/2 + W/ — (1/128)w'/s" + -]

and hence

(7.19) v = 0s —y = so'll —w/2 + $w'/p — (1/128)w'/p’ + - -] + ws'.
Applying (7.18) and (7.19) we have

(7.20) (v/8)* = $'[1 + w/20' + w'/8p — -]
and
(7.21) oy — 0)/y = —w + /2" — /8 — pls + ---.

Also we have

(7.22) L(w) = Ji(w) — (1/8p)Ja(w) + (3/1280")J5(w) + ---
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and
(7.23) L(w) = Jo(w) + (1/2)J2(w) — (1/16p")J5(w) + ---
where
(7.24) Ta(w) = [owe(w') dw'.
By repeated integration by parts we have, for the first few n,

Jo(w) =1 — &(w),
(7.25) Ji(w) = o(w),

Jo(w) = we(w) + [1 — &(w)],

Ji(w) = (v + 2)e(w).

Ignoring the I; term which will turn out to be negligible, we substitute the
expansions (7.20) to (7.23) in (7.14) and using (7.25) we have

(7.26) —do(y, s) = s (y/sh) — (1/40)e(y/s") — (b'/s)@(y/sh) + ---)
where
(7.27) Vv (a) = o(a) + a®(a).

Setting the derivative of the first few terms of (7.26), equal to zero, we find
the optimal value of p to be

(7.28) 0" (y, 8) R le(a)/28(a)]ist

where

(7.29) a = y/s.

The corresponding value of 6 is given by

(7.30) 0*(4, 5) ~ lo(a)/28(a) 57,

and the associated risk by

(7.31) oy, ) X —¥ ()8’ + $He(a)®' ()]s

To establish these approximations rigorously, we review the expansions from
Equation (7.20) on. Taking a = y/s = —w bounded, these expansions apply

for large p uniformly in s and w (with w bounded and s large in which case
0 ~ (p/s)?). Thus it suffices to show that (i) p(8/v)*I; = o(s™?) for ps* bounded
away from 0 and o, (ii) when ps* = o(1), replacing (7.13) by the larger
quantity v — v’ gives —p a smaller value than —1g , and (iii) when pst — oo,
replacing (7.13) which is equal tov — o' — (v — ") (6/v)/((v — V') + (6/%))
by the larger quantity » —»" — 3 min(v — o', /) gives — @ a smaller value than
— g+ . These details are tedious and will be omitted.
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In terms of the (z, t) variables of (7.3) and (7.5), (7.30) and (7.31) become
(7.32) 6" ~ {ole/(¢(1 — )220/ ((1 — )11/ (1 — 0)F
and
(7.33) Bo(z, t) & —[(1 — 0)/0¥" (/(1 — )1

+ $le(a/lt(1 — (/L — OPPL/ (1 — O

where ¢ (a) = o(a) — o[l — &(a)]. It should be noted that the main term of
the risk function (7.26) does not depend on p but does depend on « as does the
approximation to p*. Comparing (7.33) with the risk for the optimal procedure
given by (6.14) we note that the main terms (risk when the statistician is told
the value of i) coincide.‘The next term for the linear boundary is of the order
t* which compares with ¢ (—log t) for the optimal nonlinear boundary.

Translating in terms of the sampling inspection problem for ay + b, small
compared to M we have the linear boundary
(7.34) a* ~ mpo — 60*(1 — m/M)[Mps(1 — po)7T,
where 6* ~ M™% is obtained from (7.32) by substituting

& = [(a + bo)po — aol/[Mpo(1 — po)I*
and
t = (ao + bo)/M

The cut-off point my™ corresponding to the best line is given by
(7.35) m" = O"(M(1 — po)/pl'/(1 + 6"((L — po)/Mpl') ~ M.
which compares with my ~ log M for the optimal Bayes procedure.

8. Computational results. An ALGOL program is available for computing the
exact boundary and the exact risk function for the sampling inspection problem.
This program has been used with a Burroughs B5000 to obtain the exact

boundary points {(m, ), 1 £ m < M} and the exact risk {p(a, d), a < a* — 1,
b = b for the following values of M and py :

M = 100, 200, 500;
po= 01, 02, 0.5

It

We recall that
(8.1) dm =~ mpy — E()[Mpo(1 — po)]}

where Z(t) is the optimal boundary for the associated Wiener process problem.
It is possible to derive inner and outer bounds for #(¢). It is also possible to
calculate arbitrarily good approximations to Z(¢) by a backward induction
technique. Such computations have not yet been carried out. Taking these we
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present Figure 5 which illustrates the two approximations of #(¢) developed in
Sections 4 and 6. The dotted curve shows the large ¢ (i.e., ¢ close to one) approxi-

mation given by (4.20), i.e.,

(8.2) #(t) ~ [t(1 — t)]'[0.63886 + 0.23625(1 — )/t — 0.089257((1 — t)/t)’]
for ¢t near 1. The small ¢ approximation given by the dashed curve, is based on
the first three terms of the asymptotic expansion given in (6.14). One reason
for curtailing the above expansion is that the curtailed expansion appears to give
a better fit to the optimal boundary when ¢ is not very small. A point worth

mentioning is that the incorporation of more terms. of an asymptotic expansion
does not necessarily lead to a better fit everywhere. Specifically, the small ¢

approximation is given by

(8.3a) () = a(t)e

where a(t) is related to ¢ by

(8.3b) t = (1/2a)0(a) = (1/2&)exp(—a*/2)/(2x)%

It may be noticed that the two curves intersect each other at about ¢ = 0.3.
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This is a critical value of ¢ below which the small ¢ approximation given by
(8.3) seems to be better and above which the large ¢ approximation given by
(8.2) is apparently better. Finally, the straight line in the figure gives the best
linear boundary

(8.4) £5@) =601 —1t), O0<t=1,

for a prior probability corresponding to the starting point x = 0, ¢ = 0.1. From
(7.32), 6* for this starting point is 0.502. The influence of the magnitude of ¢
on the slope is rather small. For example, reducing ¢ from .1 to .01 reduces 6*
from .502 to .342.

The approximations (8.2) and (8.3) are now applied in (8.1) in their re-
spective ranges of ¢ to obtain the approximate boundaries of the sampling in-
spection problem in the (m, a)-plane. The exact boundary when plotted is
almost linear except for a slight curvature upwards near ¢t = 1 and a slight

TABLE 1

Ezact and approzimate optimal boundaries for the sequential sampling inspection problem
M =100, po=.5 2,.1

d = exact optimal boundary
@ = approximation for t = m/M near 1
G = approximation for ¢ = m/M near O
é* = best straight line boundary corresponding to (x = 0,¢ = .1)
po=.5 Po =2 po=.1
m
a a as a* a & as a* a a @ a*
1 0 — 0.0 0.0 0 — | 0.0 0.0 0| — 0.0 | 0.0
5 1 — 0.8 0.1 0 — | 0.0 0.0 0: — 0.0 | 0.0
10 3 — 3.0 2.3 0 — 0.7 0.2 0| — 0.0 | 0.0
15 5 — 5.5 5.4 1 — 1.5 1.3 0, — 0.5 | 0.2
20 8 9.7 8.5 8.0 2 3.8 | 2.5 2.4 0| 1.8 [ 0.9 0.8
25 |10 |11.3 | 10.8 | 10.6 3 4.1 | 3.6 3.5 1) 1.8 | 1.4 1.4
30 |13 | 13.4 |13.5 |13.3 4 4.7 | 4.6 4.6 1] 20 19| 2.0
35 |15 |15.5 |16.0 | 15.9 5 5.4 — 5.7 2! 2.4 — 2.5
40 |18 | 18.1 — | 18.5 6 6.5 — 6.8 2| 2.8 — 3.1
45 |20 | 20.4 — 211 7 7.3 — 7.9 3 3.4 — 3.7
5 |23 |23.0 — |23.8 8 8.4 — 9.0 3! 3.8 — 4.3
55 |25 | 25.4 — 126.4 9 9.6 — | 10.1 41 4.4 — 4.8
60 | 28 | 28.2 — 129.0 |10 |10.5 — | 11.2 51 4.9 — 5.4
65 |30 | 30.6 — | 31.6 |11 |11.6 — | 12.3 51 5.5 — 6.0
70 | 33 | 33.3 — | 34.3 |12 |12.7 — | 13.4 6; 6.0 — 6.6
75 |36 | 36.0 — [36.9 |13 |13.8 — | 14.5 6| 6.6 — 7.1
80 | 38 | 38.6 — 139.5 |15 | 14.9 — | 15.6 71 7.2 — 7.7
85 | 41 | 41.2 — | 42.1 116 | 15.9 — | 16.7 7076 | — 8.3
90 | 44 | 44.0 — | 44.8 |17 | 17.2 — | 17.8 8| 8.4 — 8.8
95 | 47 | 47.0 — | 474 |18 | 18.6 — | 18.9 9| 9.2 — 9.4
100 | 49 | 50.0 — | 50.0 |20 |20.0 — 120.0 9| 10.0 — | 10.0
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curvature towards the horizontal near the cut-off point, i.e., the point where the
boundary hits the m-axis. These features are retained by the two approximations
that follow the exact boundary closely in their respective ranges of validity.
In fact, the exact boundary, its approximations and the best linear boundary

a*(m) = mpy — £*(t)[Mpo(1 — po)]*

are so close to each other, even for M = 100, that it has been decided to present
Table 1 in place of the corresponding graphs.
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