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0. Summary. In this paper we consider the number N of upcrossings of a lev«]
u by a stationary normal process £(¢) in 0 < ¢ < T. A formula is obtained for
the factorial moment M = §N(N — 1) -+ (N — k + 1)} of any desired order
k. The main condition assumed in the derivation is that £(¢) have, with proba-
bility one, a continuous sample derivative £ (¢) in the interval [0, T]. This con-
dition involves hardly any restriction since an example shows that even a slight
relaxation of it causes all moments of order greater than one to become infinite.
The moments of the number of downcrossings or total number of crossings can
be obtained analogously.

1. Introduction. The problem of obtaining the mean number of ecrossings, (or
equivalently upcrossings) of a given level, by a stationary normal process in a
given time, has received a good deal of attention in the literature. In fact, a
complete solution to this problem has now been given by Ylvisaker [8]. However,
moments of order greater than one of the number of crossings of a level have
received less attention. The variance was obtained by Steinberg et al. [6], using
somewhat heuristic arguments. Rozanov and Volkonski [7] point out in a foot-
note that the formula given in [6] for the variance is valid under certain precise
conditions, of which the main one is that the covariance function of the process
have a finite sixth derivative at the origin. Finally in this connection, the vari-
ance has been obtained by Leadbetter and Cryer [4] under conditions which as-
sume just a little more than the existence of a second derivative of the covariance
function.

There is virtually no literature available in connection with moments of the
number of crossings of a level, of higher order than the second. (A partial result
is indicated by Ivanov at the end of his paper [3].) It will be our purpose here
to obtain explicit expressions for such moments. From conversations with Dr.
Yu. K. Belayev, weknow that hehas investigated certain problems related to the
asymptotic behaviour of the moments of the number of crossings. The explicit
expression for these moments which we prove seems, however, to be new.

Our treatment in the sequel will be in terms of upcrossings and we shall ob-
tain explicit expressions for factorial moments of arbitrary orders, under con-
ditions which are very close to the necessary ones. Corresponding formulae for
moments of all orders for the downcrossings, or total number of crossings, follow
similarly.

2. Moments of the number of upcrossings. We shall, throughout, consider a
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real valued stationary normal process {£(¢): 0 < ¢ < T} having (for convenience)
zero mean, spectrum F(\) possessing a continuous component, and covariance
function 7(r) = [Zwe™ dF(A). We shall further assume that £(f) has, with
probability one, a continuous sample derivative £ (¢) on the interval [0, T].
Sufficient conditions for this latter property in terms of the behaviour of the co-
variance function are given, for example, in [1]. Write N for the number of up-
crossings of the level u by £(¢) in 0 < ¢t < T'; that is N is the number of points
¢ in that interval for which £(¢) = w, £ (¢) > 0. Then the following result holds.

TuroreM. If {£(t): 0 < ¢t < T} is a normal stationary process, as described,
possessing, with probability one, a continuous sample derivative, and k is any positive

integer, then
(1) My=¢§NN—-1)---(N—k+ 1)}
= fg ---fgdtl dtkfff "'f:yl”'ykpt(u,y)dyl o dy
n whwhpt(u) Y) = Pt(u, iy Uy Y1y oo )yk)) pt(xly Sty Ty Yry t ;yk) de-
noting the joint density for the random variables £(t) - - - (&), El) - £ ).

We note here that it follows from the appendix that, when all ¢; are different,
pe is the density corresponding to a non singular joint distribution since F(\) is
assumed to have a continuous component.

Before proceeding to the proof we note that the theorem can easily be modified
to refer to “downcrossings” or the total number of crossings of the level u in
time 7. The discussion will be given here in terms of upcrossings, however.

The following proof is divided into two parts A and B. In Part A it is shown
that M, does not exceed the expression on the right hand side of (1), whereas
in Part B the reverse inequality is proved. The techniques are straightforward
but quite different in each part. It is a perhaps somewhat surprising feature,
however, that in both parts use can be made of Fatou’s lemma to give the essen-
tial inversions of limiting operations with integrations, in order that inequalities
in the desired (opposite) directions may be obtained.

Proor oF THE THEOREM.

Part A. Write £(¢) = £(¢, w) to exhibit explicit dependence on the ‘“sample
point” w e Q. Let S denote the set of all w such that £(¢) is continuous in the
interval I = [0, T], while the equation £(¢) = u has at most a finite number of
roots ¢ in I, and while further £(0) = u # £¢(T) and £(t) # 0 whenever £(¢) = .
According to Bulinskaya [2], Theorem 1, we then have

(2) P(S) = 1.
Write now (N); = N(N —1) --- (N =k + 1) fork = 1,2, --- and define
the functions 6,(z), o(z) by
da(z) =n, |a| =1/(2n)

0, otherwise

and
o(z) = z, z >0,

0, otherwise.
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Let D(e) denote the domain in the k-dimensional space R* with coordinates
1 -+ - & defined by the inequalities

O0<t:<T fore =1---k,
[t — 85| > € for ¢ 5 j.
Define also the random variable J,(n, ¢, ») by the relation
(8) Juln, ¢ @) = [ -+ [ [Lict{8al6(t:) — ulolt' (¢t} dty - - - dty .
We shall now proceed to prove that
(4) E{(N)i} < limeo limg,e 8{Ji(n, € w)}.

In order to prove the validity of (4) we define a subset S(k) of S consisting
of all w & S for which the following two conditions are satisfied:

(a) the distance between any two upcrossings in I by £(¢) of the level u is
greater than 24,

(b) for any zero t = t, of the derivative £ () in I, we have |£(t) — u| > h.

According to the definition of S every w &S must also belong to S(k) for
some k > 0 so that

(5) Sh) T8 as h | 0.

Take now any fixed w ¢ S(h), and let ¢ =7y, - -+, ry be all the upcrossings ot
the corresponding £(t) = £(f, ) in I. Consider the k-dimensional interval I* in
the space R*, and let A, ... ; denote the point in I* with coordinates #; = rj,,
<+« , by = rj , where each j; may assume the values 1, 2, - -+, N. Clearly there
are N* different points 4, and among these there are exactly (N ); points A’ such
that no two of the j; are equal. Since w £ S(k), these points A" will all be situated
in the domain D(2h), while the remaining N* — (N ), points 4 will fall outside
D(2h), and even outside D(e), for any ¢ > 0.

Considering, still the same fixed w e S(h) we now take n and e such that
0 < n' < e < h and consider the integral Jx(n, ¢, ») defined by (3). The con-
tribution to Jx(n, €, w) arising from small disjoint k& dimensional blocks about
each point A’ is easily seen to be just (N); for all sufficiently large n (i.e. a unit
contribution from each such block). The contribution from the remaining region
is zero for all sufficiently large n. (This can be seen clearly from a picture by
taking k = 2 and writing down the integrals involved.) Hence for any fixed
e < h, we can always find ny so large that, for all n > no we have

Jk(”» €, w) = (N)k:
and hence also
(N)i = limyoe Je(n, € o).

Since this holds for any e¢ < h, while the first member is independent of e, it
follows that

(6) (N)i = lime,o limgae Ji(n, € w)
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for any fixed w £ S(h). But & can be chosen arbitrarily small and since S(k) T S
as h | 0 it follows that (6) holds for any w ¢ S, i.e. with probability one. Finally
an application of Fatou’s lemma to the e and n-limits yields the result (4). Thus
from (4) we obtain

8{(N)i} = liMewo iMpowe [ -+ foo dty -+ dti
(7) [nkf:fgz;:: e fziﬁil,'%:i day - daefo o [oyn o
D@y - Ty Y1 Ye) Ayr - - dya].

The entire expression in square brackets on the right hand side of (7) clearly
converges to [ - [0 41 -+ yx Pe(u, ¥) dys - - - dyi . Further, it can be readily
shown that this expression is bounded for all ¢ - - - & in the region D(e) (using
the fact that the determinant of the covariance matrix of £(#) - - £(&),
£(t) -+ £ (t) is bounded away from zero). Hence by dominated convergence

(8) &{(N)d
Slimeso [ -+ [o dt - dtefs -+ [5yn - yepe(u, y) dys - - dys .
Finally by monotone convergence it follows that

9) (N = [0 -+ [odt---dtfs - [Cy- yepu,y) dyn - dys.

Part B. In order to prove the reverse inequality to (9) we adopt a different
procedure (due to Ylvisaker [8]) for counting the number of upcrossings by £(#)
in0 = ¢t £ T. First, however, we note that if x;, ¢ = 1, 2, - - - are each either
zero or one, and M = > Xi, then, for any integer & < m,

(10) M)y =MM —1) -+ (M —k+1) = 2 x, - xe0

where D" denotes summation over all possible ordered sets of distinct integers
% -+ 4 . For M is just the number of non zero x;, and the right hand side of
(10) therefore represents the number of ordered sets of distinct integers 4; - - - 4
such that each corresponding x: is non zero, taken out of a total of M possible
integers ¢ for which x; # 0. But this number is simply M(M — 1) ---.
(M — k + 1) as required.

Write now & = §(T¢/2"),¢=0,1,---,2" " n =1,2 ... Letx; = 1 if
£ < u < £, and x; = O otherwise. Then if N, = 2 *=1x: we have N, TN
a.8. (A detailed proof of this latter statement is given by Ylvisaker [8].) Hence
by monotone convergence,

(11) 8{(Na)i} = &{(N)} as n— .
Now from (10) we have with m = 27,
(12) 8{ (Nn)k} = ;1...,‘,‘ P{Xh = Xip = 000 = Xix =1}

We note that no terms for which |, — ¢,| = 1 for any r, s appear since we cannot
have Xi, = Xi,+1 = 1. Write N = 2n(£;+1 - E,)/T Then
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P{Xil = X, = v = Xi = ]_} = P{u— 2_nT77i,- < Eir <u’/r =1 ...k}
= f°o°---ﬁdyl---dykfz_z—nr,,,
Jicamnryy Duiy (@1 Ty Y1 ) don -+ - day

where p,,i; is the joint density for the distribution of &, --- &, #: -« 4 .
(That this distribution is non singular follows from the Appendix.) By a change
of the z-variables in this expression we thus obtain from (12)

(13) 8{(Na)f = 27" T2 [0 - [5 dyn - dyef2y, -+
S i A 27T, e, u A+ 2 TEe, g, e, ys) don o d
Let A, be the subset of I* for which no two of (4 --- t) are contained in
the same or adjacent intervals of the form (+T/2" (r + 1)T/2"). Write
Woe(@1 - Toy Y1 Yb) = Doty (T1 v+ Ty Y1 oo Yi)

for all (¢ --- &) in A, such that ¢ lies in the interval (¢,T/2", (2. + 1)T/2")
for each r, and W,(x1 -+ - T, 1 -+ Yx) = O for t 2 A, . Then (using the remark
following Equation (12)), (13) may be rewritten as

(14) [&---[Tdty---dufo - [T dyr - dyf, -
.fo—yk‘l’nt(u + 2—"Tx1,..-, u + 2_"Txk, ylyk)dxldxk

Let now (4 - - - &) be a fixed point in A, . Then ¥, is a 2k-dimensional normal
density function. Suppose that ¢.7/2" < ¢ < (4, + 1)T/2", r =1, ---, k.
Then corresponding to the point ¢, we have the random variables £(z,T/2"),
7(2,T/2"), yielding the following typical members of the covariance matrix
for ¥, for example:

var (&,) = r(0), writing &, for £(<T/2"),
cov (i, £i,) = Tp, writing r; for r(<T/2"), p = @ — 12,
cov (&, m,) = 2"(r — )/ T,
cov (&, mi,) = 2"(rpn — 1)/ T,
var g, = 22" (e — 1)/ T,
cov (M, , My) = —2"lrp — 21y ‘+ rpal/ T

For the fixed t,, t considered %, %, p depend on n. It is an easy exercise to
show that if + = & — & the above elements converge (in the order given), as
n — o, to r(0), r(7), 7(0), ' (7), —r"(0), —" (1), respectively. Similar con-
clusions hold for the elements corresponding to any pair ¢;, ¢; . Further, the set
A, converges to almost the whole space I * But this means that the integrand in
(14) must converge a.e. to p:(u, y) as n — « and hence, by Fatou’s lemma,

(15) &{(N)g} = [§---[odtn---dtfs - [Ty yapi(u, ¥) dyr - dye.
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Combining (9) and (15) we obtain the desired equality and hence the truth of
the theorem follows.

3. A case when M, = + «. Formula (1) was obtained under the condition
that £(¢) have a continuous sample derivative, with probability one. However,
this assumption was used in Part A of the proof, but not at all in Part B. Hence
if the right hand side of (1) is infinite, the equation is true with both sides in-
finite. We now give an example of a case where the integral on the right of (1)
is infinite, and hence the corresponding moment is infinite.

For this example we take a covariance function of the form

(16) r(r) = 1 — N7/2 — 12/10g |7| + 0(1‘2/10g |7]).

That this can be done follows from Theorem 5 of Pitman [5]. In fact we can
choose F(\) so that 1 — F(A) = 1/(2\ log®\) for all sufficiently large X, to
give the desired form (16). :

Consider now the case k = 2, and 4 = 0. Then one can show by some calcula-
tion that

15 15 yaape(0, y)dys dys ~ K|A]/ (1 — 1*(7))

where K denotes some constant and A is the covariance matrix for £(4), £(%),
£ (t), £ (t:), 7 = t, — t . But straightforward calculation shows that

|A| ~ No7*/log’ 7| as 7 —0,
and hence
2 12 yyape(0, y)dyr dys ~ K/(|7| log |7]) as 7 —0.

It follows from this that the right hand side of (1) is infinite, in this case.
Finally we note a sufficient condition for £(¢) to possess a continuous sample
derivative, with probability one, is that

r(r) = 1 — /2 + O{7*/|log |7] |}

for some a > 1. This follows from the work of Belayev [1]. In our case r(7)
given by (16) just fails to satisfy this requirement. Hence it appears that the
requirements that # have a continuous derivative and that the right hand side
of (1) be finite, which are sufficient for M, to be finite and given by (1), are also
very close to being necessary for this to be the case.

APPENDIX

It was stated, in writing down certain density functions that if ¢ - - - # are
distinct time points, then
(i) the joint distribution of £(¢;) - - - (%), £(t) -+ £ (&) is non singular, and
(ii) the joint distribution of £(¢;) - - - £(%) is non singular.
We shall now prove (i), and hence (ii) will also follow.
Let (as assumed throughout) F(M\) have a continuous component and write
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A = [Ai] for the covariance matrix of £(t) --- £(t), £ (t) --- £ (&). Let
A = [A;;] denote the covariance matrix of £(¢;) --- £&(&), B = [B;;] that for
£(t) -+ £(&), and C the matrix of “cross” covariances, Ci; = cov (£(t),

£(t;)). Then
[ 9]

Let 6 denote the column vector with elements {6 - - - 6:, ¢1 - - - ¢}, where 6, ¢:
are complex numbers which are not all zero. Then we have

Ay = [ exp [i(t; — ;)N dF(N),
Cii = —[inexp [i(t; — )N AF (M),
B = [N exp [i(t; — t;)N dF()).

From this we see that
0¥ A0 = [[| 225 0,6 + N| 22505 — A2 0,67 2 e ™
+ ;0% ™ 3 9™ dF (M),

in which a * denotes the complex conjugate of a scalar, and the conjugate trans-
pose of a vector. Thus

0% A0 = [|D %10, + D imide™ P dF(N).

Now since the ¢; are distinct and 6; , ¢; not all zero it follows that Dk (0,6 +
Y je"‘f)‘) is a non constant regular function of A, viewed as a complex variable,
and hence cannot vanish for more than a finite number of values of A in any
bounded region. Hence we must have 6*A8 > 0 since F()) is not purely discrete.
Thus A is a strictly positive definite matrix and the distribution thus defined is
non singular.

The condition that F(\) have a continuous component is a  convenient one.
However it is (as pointed out by the referee) worth noting that the above proof
does apply to spectra which are purely discrete, provided that the set of jumps
has at least one finite limiting point.

Finally we note here that the above argument can be easily generalized to
include an arbitrary number of derivatives. That is if F(A) has a continuous
component and is such that £(¢) has n sample derivatives HOHORERIO)
then for any distinct &, &, - -+, &, the joint distribution of £(¢) --- £(&) - - -
£ (4) -+ £ (t) is non singular.
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