A NOTE ON "A k-SAMPLE MODEL IN ORDER STATISTICS" BY W. J. CONOVER

By H. A. DAVID

University of North Carolina at Chapel Hill

In the paper cited above Conover [1] considers the ordering of k mutually independent random samples of size n, each drawn from a parent distribution with absolutely continuous cdf F(x), on the basis of the largest member in each sample. He defines Y_{ij} ($i = 1, 2, \dots, n; j = 1, 2, \dots, k$) to be the *i*th variate in order of magnitude in the sample whose largest member Y_{1j} has rank j among the k maxima Y_{11} , Y_{12} , \dots , Y_{1k} .

For the distribution of Y_{ij} Conover obtains the result

$$F_{ij}(x) = \Pr(Y_{ij} < x) = \sum_{\alpha=0}^{j-1} {k \choose \alpha} [1 - F^n(x)]^{\alpha} [F^n(x)]^{k-\alpha}$$

$$+ \sum_{\alpha=0}^{j-1} \sum_{m=1}^{i-1} \sum_{\beta=0}^{m-1} j {k \choose \beta} m {n \choose m} {j-1 \choose \alpha} {m-1 \choose \beta} (-1)^{j+m-\beta-\alpha}$$

$$\cdot ([F(x)]^{n-1-\beta} - [F(x)]^{n-1-\alpha}) / (nk - n\alpha + 1 - n + \beta)$$

where the triple summation in (1) is zero for i = 1.

It is the purpose of this note to provide a greatly shortened proof of (1). To this end observe that

(2)
$$\Pr(Y_{ij} < x \mid Y_{1j} = y) = 1,$$
 $x \ge y,$

$$= \sum_{m=0}^{i-2} {n-1 \choose m} [F(x)/F(y)]^{n-1-m} \cdot [1 - F(x)/F(y)]^m, \quad x < y,$$

the last line following from the well-known fact (e.g. Rényi [2]) that conditionally on $Y_{1j} = y$, the variate Y_{ij} is distributed as an order statistic of rank i-1 in a sample of n-1 drawn from the truncated distribution with cdf F(x)/F(y) ($-\infty < x < y$). This line may also be written as

$$\sum_{m=1}^{i-1} \binom{n-1}{m-1} [F(x)]^{n-m} [F(y) - F(x)]^{m-1} / [F(y)]^{n-1}.$$

Since the probability element of Y_{1j} is given by

$$dF_{1j}(y) = j\binom{k}{j} [1 - F^{n}(y)]^{j-1} [F^{n}(y)]^{k-j} n [F(y)]^{n-1} dF(y),$$

we have on unconditionalizing (2)

$$\Pr(Y_{ij} < x) = \int_{-\infty}^{x} dF_{1j}(y) + \int_{x}^{\infty} \sum_{m=1}^{i-1} {n-1 \choose m-1} [F(x)]^{n-m} [F(y) - F(x)]^{m-1}$$

$$\cdot j\binom{k}{j} [1 - F^{n}(y)]^{j-1} [F(y)]^{n(k-j)} n \, dF(y)$$

$$= \Pr(Y_{1j} < x) + \int_{x}^{\infty} \sum_{m=1}^{i-1} n\binom{n-1}{m-1} [F(x)]^{n-m}$$

Received 23 August 1965.

$$\begin{split} & \cdot \sum_{\beta=0}^{m-1} \; (-1)^{m-1-\beta} \binom{m-1}{\beta} [F(x)]^{m-1-\beta} [F(y)]^{\beta} \\ & \cdot j \binom{k}{j} \; \sum_{\alpha=0}^{j-1} \; (-1)^{j-1-\alpha} \binom{j-1}{\alpha} [F(y)]^{n(j-1-\alpha)} [F(y)]^{n(k-j)} \; dF(y) \end{split}$$

which immediately reduces to (1).

REFERENCES

- CONOVER, W. J. (1965). A k-sample model in order statistics. Ann. Math. Statist. 36 1223-1235.
- [2] RÉNYI, ALFRÉD (1953). On the theory of order statistics. Acta Math. Acad. Sci. Hung. 4 191-231.