ON ABSOLUTELY CONTINUOUS COMPONENTS AND
RENEWAL THEORY'

By CHARLES STONE
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1. Introduction. In this paper we continue the work of [6] and [7] by studying
renewal theory in the case of an absolutely continuous component.

Let u be a probability measure on the Borel subsets of the reals R, let u™
denote the n-fold convolution of u with itself and set v = D_o u‘™. We assume
throughout this paper that some u™ has a non-trivial absolutely continuous
component. If v assigns measure to bounded intervals, this is equivalent to the
assumption that » has a non-trivial absolutely continuous component. Our
main goal is to write-v = »" 4 ", where »" is absolutely continuous and its
density has the proper tail behavior for a renewal density, and »” is a finite
measure and has the same tail behavior as u.

To this end we can find an ng and probability measures ¢ and ¢’ such that u'"®
= (¢ + ¢')/2, ¢ has compact support, is absolutely continuous and has a twice
continuously differentiable density. Set »” = Do 1™, Let i denote the charac-
teristic function of p and let the characteristic functions of the other finite
measures be denoted similarly. Also set 5 = (1 — 2) " and 5" = (1 — 4"

Now 5" = 1 4 4"5"” and 4™ = (¢ + ¢')/2, from which it follows that
o= (1= 307+ ).

Thus

ot = (LA h e BT 2T

(L4 a4+ -+ 20 = 8D+ 37).

. ’ ”
Correspondingly, v = v + v, where

A=Y
I

Vo= (T 4 ™) e (200 (0727
and v’ = 3¢ *v” %", x denoting convolution. Note that v" has total measure 2n,
and essentially the same tail behavior as p(to be made more precise below),
and that »" is absolutely continuous and has a continuous density p.

Suppose that u has a finite positive first moment u; = f:cu(da'). Then p¢
has first moment nou, and the renewal theorem of Blackwell (1] asserts that if [
is a bounded interval with length 17|, then »” (I) is finite,

liMee—w v (z + I) = 0 and lim,.yn v"(z + 1) = [I|/nou .
Since ¢ has compact support and a continuous density, it follows easily that

limee_e p(z) = 0 and limz.w p(z) = Ly .
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Therefore if A is a Borel subset of [0, « ) with finite Lebesgue measure |4 |, then
limg, wv(z — A) = 0 and limg,yov(z + 4) = |A|/m.

Suppose that p doesn’t have finite non-zero mean, but that » assigns finite
measure to some interval of positive length and hence to all bounded intervals.
Then by a renewal theorem of Feller and Orey [3] for all finite intervals I,
limy)se #” (z 4+ I) = 0. It follows easily that lims . p(z) = 0. Consequently,
if A is a Borel subset of [0, « ) having finite Lebesgue measure, then

lime, wv(z — A) = 0 and limg.,ov(z + 4) = 0.

The results of the last two paragraphs were suggested in part by Theorem 3
of Breiman [2].

Throughout the remainder of the paper we assume that u has finite positive
first moment y; and finite moment of integer order m = 2. Set

r(z) = [ (y — =)u(dy), z 20,
= [%a (s — y)u(dy), z <0,
and :
s(z) = [Zr(y) dy, z20,
= f”_w r(y) dy, z <0.

Then7(z) = o(x~™ ") and s(z) = o(z™™ ) as |z| — =, [Z |2 *r(z) dz < o
and, for m = 3, [Z, |z["*s(z) dz < . In Section 2 we will prove that under
these assumptions

(1) p(z) = [r()/w’] + o(z™), T— — =,
= (1/w) + [r(z)/u’] + o(z™), r— +oo.

From (1) it follows that
p(z) = o(z™"™), z— —w,
= (/m) + o(z""™), z— +,

and

2o o™ 7p(2) dot [3 2" p(2) — 1wl de < .
Now »” has finite moment of order m, and hence

Jia 2™ v(dz) + 32" p(de) — da/m]| < .

(Them = 2 case of the last result was obtained by Smith [4] .) Let 4 be a bounded
Borel set of Lebesgue measure |4|. From (1) it follows that

v(z + A) = [r@)|A]/w’] + o(z™), T — —,
= (|[Al/m) + (r(@)|4]|/u®) + o(z™), z— +o.
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Therefore
v+ 4) = O(x_(m_l))7 T — —®,
and = (|A|/m) + o(z™ ™), T — +oo,
Jrolal" vz + A) +[5 2"z + 4) — |Al/m| do < .
Slightly weaker results hold if A4 is semi-infinite, but of finite Lebesgue measure.
According to Smith [5] (see also [6]), H(z) = »((— «, x]) is finite under our
assumptions and
lime.o [H(z) — (/1) — (ue/2u)] = 0

where u; denotes the second moment of x. From this result, together with (1), we
get that

(s(2)/m") + o(a= "), T— —w,
= (a/m) + (w/20") = (s(2)/w") + o(z™" ), 2 > + .

The bound on the error here is curiously, better than the bound o(z~"" log |z|)
obtained in a similar result in [6] under the weaker assumption that u be strongly
non-lattice.

Suppose m = 2 and, additionally, the right tail of u decreases exponentially
fast; i.e., for some r > 0, u((z, ©)) = 0(¢ ™) asx — . Then, as will be shown
in the next section, p(x) — u; ' and the right tail of »” decrease exponentially
fast. Similar results hold for the left tail.

It is curious that we can treat the two tails separately under the assump-
tion of exponentially decreasing tails, but not under the assumption of finite
moments of order m.

H(z)

2. Statement and proof of results. Those of the above results that require
further proof are summarized in the following

THEOREM. Let 1 be a probability measure on R having finite first moment u; > 0
and finite moment of integer order m = 2, and such that some u(") has a non-trivial
absolutely continuous component Set v = Do u™ and let v' and v" be the measures
defined above Thenv = v +",»" isa Jfinite measure having finite moment of order
m, and v’ is absolutely continuous and has a continuous density p(x) such that (1)
holds.

If, addztzonally, the left (or right) tail of u decreases exponentially fast, then p(x)
(or p(z) — p1") and the left (or right) tail of v" decrease exponentially fast as
z— —o (orx— +x).

Proor. We need only justify the results on p, those on »” being obvious. We
first prove (1). The probability measure x = (1/2n0)¢ * »” has finite moment of
order m and, for 0 < k& < m the kth derivative of its characteristic function ¢ is
continuous and of the form o(6%) as [§] — ». As in [6], we have an inversion
formula

p(z) = (1/2u1) + (no/27) [ RIeT'2(0)[1/1 — 4*(6)]] db
= (1/2m) + (1/2r) [2o Rle™2(0)[1/1 — £(0)]1d0 + o(z™), 2] — ;
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the second equality follows by integrating by parts m times the difference of the
two integrals after algebraically cancelling out the 1 — £(8) term in the numera-
tor and denominator of

[no — (14 4(8) + -+ + &7 (ON)I/I(1 — £(8))(1 + A(0) + -~ 4+ &™7(6))).
Since
(1/27) 20 R(e™*°2(8)/ —18) db = x((—,2)) — }

+% 4+ o(z™), T— o

I

it follows that

(1/27) [Z.e7™'%(8)(1/(1 — (0)) — 1/—imf) df
= p(z) + o(z™™), T— —x,
=p(z) —w +o(x"), T — +e.

We can write the last integral as the sum of two integrals, corresponding to the
decomposition

/(1 = 4(0))) = (1/=iwb) = (&(8) — 1 — i)/ — w0’
= (A(8) = 1 — im0)* /w6’ (1 — A(6)).
A direct computation yields that
2o € (z)dr = (£(0) — 1 — im)/—6".
It is also easily seen that
JZar(z — y)x(dy) = r(z) + o(z™™), |z = =.
Therefore
(1/27) [Za € ™R(0) [(2(6) — 1 — wi6)/ —w"0") db
= [r@)/w] + o(z™™), |z| > =.
Thus to complete the proof of (1) it suffices to show that
JZa e 2(O1(a(6) — 1 — w)’/6°(1 — i(8)))d8 = o(a™"), 2| — .

This result follows from m integrations by parts and the properties of 2 obtained
in [6].

Suppose, additionally, that the right tail of p decreases exponentially fast.
Then the right tail of x decreases exponentially fast and, for some r > 0,

(1/27) [2o R(e™'2(0)/—8) db = x((—, 7)) — }
=14 o(e™™), T — 4o,
Thus '
p(x) = (1/m) + (no/2m) [Z0 e ™2(0){[1/(1 — 4"(0)] — (1/—inoui)} df
+o0(e™), z— +o.
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As in [7], we can apply Cauchy’s theorem to get that for some r > 0
JZa e RO{[1/(1 = 57(8)] — (1/—inoub)} do
= JZe VR0 — i) {[1/(1 = £7°(6 — ir)] — [1/—nous(r + i0)]} dB
= o(e™™), z — +oo.

Thus p(z) — u " approaches zero exponentially fast as x — + . A similar
argument works for the left tail.
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