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0. Summary. In this paper, upcrossings, downcrossings and tangencies to
levels and curves are discussed within a general framework. The mean number
of crossings of a level (or curve) is calculated for a wide class of processes and it
is shown that tangencies have probability zero in these cases. This extends re-
sults of Ito [1] and Ylvisaker [7] for stationary normal processes, to non stationary
and non normal cases. In particular the corresponding result given by Lead-
better and Cryer [3] for normal, non stationary processes can be slightly im-
proved to apply under minimal conditions. An application is also given for an
important non normal process.

1. Introduction. The problem of obtaining the mean number of crossings of a
level in unit time by a stationary mormal process, has received considerable
attention in the literature. The interest in this problem stems from the work of
Rice [5], and has now received a final solution by Ito [1] and Ylvisaker [7],
who have obtained Rice’s formula under minimal conditions.

For non stationary normal processes, a corresponding result has been given by
Leadbetter and Cryer [3] under sufficient conditions which are very close to
being necessary. It is however (as will be seen below) possible to improve this
result slightly, and state it under the minimal conditions corresponding to those
of [1] and [7] for the stationary case.

Non normal processes have been discussed to some extent in this context by
Ivanov [2], who gives an explicit result for the mean number of crossings of a
level in the stationary case. The conditions assumed by Ivanov require, in par-
ticular that the covariance function should possess a finite fourth derivative at,
the origin.

In seeking minimal conditions for the validity of results of this nature, it
becomes necessary to distinguish between the number of “‘genuine” crossings of
a level % in a given time, and the number of times the value u is assumed in that
interval. The difference between these two quantities is (as will be discussed in
the next section) the number of tangencies to the given level. The methods to be
used provide, initially, a formula for the mean number of crossings of a level u,
by a stochastic process in a given time. However if one can show that there is
zero probability of the process being somewhere tangential to the level u in that
time, then the formula will apply also to the mean number of times the value u
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is assumed by the process in the time interval considered. This question was
discussed completely for stationary normal processes by Ylvisaker [7] who demon-
strated the absence of tangencies under general conditions, for that case.

In Section 2 we shall give the appropriate definitions for crossings and tan-
gencies, in a general context. We shall then derive the formula for the mean
number of crossings of a level under general conditions, for a wide class of
stochastic processes.

In Section 3 upcrossings and downcrossings will be discussed, and it will be
shown that, under conditions applying to the previous calculations, tangencies
have probability zero. Hence the mean number of times a process actually
assumes a value « in a given time interval may be calculated.

Finally in Section 4 these results will be applied to normal processes, and to
the case of the envelope of a stationary normal process—an important non
normal application.

The above remarks have concerned crossings of a level. In fact the results will
apply equally well when we consider curves, instead of fixed levels. For crossings
of (or tangencies to) a curve w(t) by a process £(t) are equivalent to crossings of
(or tangencies to) the zero level by the process £(¢) — u(¢). Hence there will be
no loss of generality in restricting attention to fixed levels, and we shall usually
do so.

2. The mean number of crossings of a level by a stochastic process. For a
given “level” u, let G, denote the set of continuous functions f(1) on0 < ¢t < 1
such that f(¢) is not identically equal to  in any interval, and f(0) # u = f(1).
We shall say (as in [7]) that f() & G crosses the level u at i, if, in each neighbor-
hood of ¢ there are points ¢ and ¢, such that [f(#) — u][f(¢) — u] < 0. From the
definition of G, it is easy to see that, if f ¢ G, and if {; < t; are two points in the
unit interval such that [f(#1) — w][f(f2) — u] < 0, then f(¢) crosses the level u at
some point between ¢, and ¢, . This simple fact will be useful at various times in
the sequel.

If f(2) € G crosses the level w at ¢, , we have f(#) = u. However it is possible
for f(t) to assume the value u at some point £ without crossing the level u there.
This will be termed a tangency, even though the function may be non-differ-
entiable.

In this section we shall deal specifically with crossings of a level u by a stochastic
process. Suppose then, here and throughout, that {£(#):0 < ¢ < T} is a stochastic
process which possesses continuous sample functions with probability one. It will
further be assumed that £(¢) has an absolutely continuous distribution and, in-
deed, that this is true of the joint distribution of £(¢) and £(s) for any ¢ > s. For
convenience we take T' = 1. Then it is clear, with the above assumptions, that
£(t) € G with probability one, for any level u. Write C(u) for the number of
crossings of the level w by £( ¢) in 0 < ¢ < 1. The following lemma has been used
previously in various forms (and proved by Ylvisaker [7] in this context.)

LemmA 1. For each n, let £,(t) be the process defined to coincide with £(t) at points
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bor =1/2", 7 =10,1 .. 2" and linear between such points. Write C, for the number
of crossings of the level w by £,(1) in 0 < ¢ £ 1. Then C,, T C(u) with probability
one, as m — .

We note in passing that, since C, is clearly a random variable for each n, it
follows that the limit C'(u) is also a random variable.

Let us write now f;.(z, y) for the joint density of £(¢) and £(s) and

(2.1) 91.:(2, Y) = tfi,e(, ¢ + 1Y),

That is g is the joint probability density for #(¢) and the ratio [£(t 4 7) — &(¢)]/7.
We then have the following general result.

TurorEM 1. Let £(t) have continuous sample functions, as defined, and let the
function g be defined by (2.1). Then

(2.2) &{C(w)} = limu.w [5dtf5 [ + [& [0 n(u + 27"z, 2) dz d2
in which, (writing t, = t,,, = r/2"),
(2.3) Vo, e(2, ¥) = g1,.2-0(2, ¥)

n

forty £t <tpa,r=0,1,.--, 2"
Proor. From Lemma 1 monotone convergence at once yields

(2.4) &{C(u)} = lim,., 8{C,}.
Now
(2.5) 8{Cn) = 22 [P{E > u > b} + PlE <u < &l

in which &, is written for £(r/2"). The first term on the right of (2.5) can be
written as sz_‘gl P{ET >u> &+ z_n'ﬂr} where Nr = (Er+l - Er)/z_”° But &,
and 7, have the joint density g.,,.-=(z, y) and hence this latter expression is

2t [Lade [STTT ghy, amn(x, 2) do
= 27"y [ de [57 gy an(u + 272, 2)da
[odt [Lude [0°Wue(u + 27"z, 2) da.

This, and the corresponding result for the final term of (2.5) yield the desired
conclusion.
The theorem just proved is of a very general nuture. By making more specific
assumptions we are able to obtain the following useful result from it.
TuEOREM 2. Suppose that £(t) has continuous sample functions with probability
one and that
(i) g., -(z, 2) s continuous in (¢, x) for each z, 7,
(ii) ge.(z, 2) — pi(z, 2) as 7 — 0, uniformly in (t, x) for each z and
(iii) gu, (@, 2) < h(2) for allt, 7, z, where [Z, 2|h(z) dz < .
Then

(2.6) e{C(u)} = [odt ffw lzlpe(u, 2) dz < o.
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Proor. With the notation of (2.3),if ¢, < ¢t < try1,
[Wn,i(w + 2772, 2) — pe(u, 2)| = lge,, 0-n(u + 27", 2) — per(u + 27"z, 2)]
+ Iptr(u + 2-%’ z) - Pt(% Z)l

The first term tends to zero as n — « by uniform convergence. The second term
tends to zero since ¢, = t,,, — ¢ and the uniform limit p.(y, z) is continuous in
(t, y). Thus

Yo i(u + 27"z, 2) = pi(u,z) as n— .

But by assumption (iii), Wa,.(u + 27"z, 2) < h(z) where [, |z|h(2) dz < <.
Thus the required result follows from (2.2) by dominated convergence.

Finally we note that the mean number of crossings of the level u by £(1)
in the interval (0, T') is obtained by carrying out the ¢ integration in (2.6)
over that interval instead of the range 0 < ¢ < 1.

3. Upcrossings, tangencies and u-values. We shall say (cf. [6]) that a function
f(t) € G, has an upcrossing of the level u at ¢, if there exists e > 0 such that
f(&) £ win (to — € b)) and f(¢) = win (o, fo + ). We note that since f ¢ Gy,
there must be points in (&, — ¢, &) where f(¢) < u and points in (&, to + €)
where f(t) > u. Write Cy(u) for the number of upcrossings of the level 4 in
0 <t =< 1, by the process £(¢) defined early in the previous section.

Downcrossings of the level « are similarly defined by reversing inequalities.
Write Cp(u) for the number of downcrossings of the level u by £(¢) in0 <t < 1.

In general there can be crossings which are neither upcrossings nor down-
crossings. However, if the conditions of Theorem 2 hold, it follows from (2.6)
that C'(u) is finite, with probability one. Further, if C(u) < « it is easy to show
that all crossings are upcrossings or downcrossings, and hence C(u) = Cy(u) +
Cpo(u) with probability one. Thus Cy(u) is finite with probability one. In this
event we may obtain a formula for §{Cy(u)} along exactly the same lines as
the derivation of (2.6). In fact Lemma 1 then has an obvious modification to
deal with upcrossings and, in modifying (2 .5), we consider only the second of
the two terms on the right. This then leads to the results that Cy(u), Co(u) are
random variables with means

(3.1) 8{Cu(w)} = [idt [T 2pi(u, 2) dz,
(3.2) &{Co(w)} = Judt [2a |2lpe(u, 2) de,

formulae which are valid under the conditions of Theorem 2.
We note in passing that from (3.1) and (3.2),

8{Cu(u) — Cp(u)} = [3dt [Z0 2pi(u, 2) de.
However it may be shown that
&{Cu(u) — Co(u)} = P{E(0) < u < £(1)} — P{£E0) > u > (1)}
= P{£(0) < u} — P{£(1) < u}.
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The fact that these two expressions for §{Cy(u) — Cp(u)} are identical (under
the conditions of Theorem 2) provides quite an amusing excercise.

We turn now to the problem of showing that tangencies have probability zero.
In Section 2, a tangency to the level u by f ¢ G, was defined as any u-value of f
which is not a crossing of the level 4. Equivalently one may say that f(¢) ¢ G, has
a tangency to the level w at t if f(f,) = w and if there is a neighborhood of #, on
which f(¢) — u does not change sign. If f({) < u on this neighborhood, the
tangency will be called a tangency from below and otherwise a tangency from
above. Let T(u), T4(u), Ts(u) denote respectively the number of tangencies,
tangencies from above, and tangencies from below by our process £(¢), in 0 <
¢t = 1. Then we have the following result.

LeEMMA 2. Suppose £(t) satisfies the general conditions stated early in Section 2.
Suppose also that C(u) < o, C(u — 1/n) < o,n = 1,2, ---, with probability
one. Then, with probabiliy one,

Co(u) + Ts(u) < lim infy.w Co(u — 1/n).

Proor. By assumption £(¢) € Gu_y/n for all n and £(¢) € G, , withprobability
one. For such a sample function suppose that Cy(u) + Ts(u) = m. Then m
points ¢, - - - t, can be chosen at which £ has an upcrossing or tangency from below
of u. Surround these points by disjoint open intervals (¢; — a, t; + a). There is a
point s;in (¢; — a, ¢;) at which £(s;) < u. Choosengsuch that f(s;) < u — 1/n,,
i = 1. m.Butsince by continuity £(¢;) = u > u — 1/n, it follows that there is
a crossing of v — 1/n in each interval (s;, ¢;), when n = no . In fact there isan
upcrossing in each such interval when n = mo . For if the first of the (finite
number of) crossings in say (si, {1) is at ¢, it must, by a remark made above,
be an upcrossing or a downcrossing. It cannot be a downcrossing since this would
imply the existence of a point in (¢, t) at which £(¢) > % and hence another
crossing between ¢ and ¢, .

Thus each interval (s;, ;) contains an upcrossing of 4 — 1/n, when n = n,
and hence Cy(u — 1/n) = mfor all n = m, . Thus lim inf, ., Cy(u — 1/n) =
Cv(u) + Ts(u), whether or not the right hand side is finite, and the truth of
the lemma follows.

Suppose now that the conditions of Theorem 2 are satisfied. Then in particular,
so are the conditions of the above lemma, and thus, with probability one,

(3.3) Te(u) = lim inf, .o, Co(u — 1/n) — Cy(u).

The right hand side of (3.3) is a random variable whose expectation is, by Fatou’s
lemma, dominated by lim inf,.. &{Cyv(u — 1/n)} — &{Cy(u)}. But since
pi(u, 2) = h(z) where |z|h(2) is integrable, an easy application of dominated
convergence to (3.1) shows that §{Cy(u— 1/n)} — &{Cy(u)} as n — .
That is the expectation of the random variable on the right of (3.3) is zero,
and since this random variable is non negative, it vanishes with probability

one.
Hence T3(u) = 0 with probability one. The same is true of T 4(u) and thus
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also of T'(u). Since this is so, it follows that the number N (u) of times (%)
assumes the value 4 in 0 < ¢ < 1 is equal, with probability one, to the random
variable C'(u). These facts are summarized in the following result.

TaHEOREM 3. Under the conditions of Theorem 2, Equations (3.1) and (3.2)
give the mean number of upcrossings and downcrossings of the level u by £(t) in
0 <t = 1. Further, the probability is zero that £(t) will become tangential to the level
u!somewhere m0 =t =1and&{N(u)}, the mean number of times £(t) assumes
the value uw in 0 < t < 1 4s also given by the right hand side of (2.6).

As already noted, we can obtain corresponding results for crossings of (and
tangencies to) a curve u(¢) by the process £(t), by simply considering crossings
of (and tangencies to) the axis by £(¢) — u(t). Of course we shall require u(¢)
to be continuous in order to guarantee that £(¢) — u(t) should possess continuous
sample functions. However we do require more than continuity of u(t) for £(t) —
u(t) to satisfy all the conditions of Theorem 2. In fact £(¢) — w(¢) will satisfy
these conditions if we require that w(t) possess a continuous derivative u ' (t)
in 0 < ¢ £ 1 and if the function g, .(x, 2) is continuous in (¢, z, z) for each 7
and is such that g, .(z, 2) — p.(x, 2) as * — 0, uniformly in (¢, z, 2). In that case
the mean number of crossings of the curve u(t) by £(¢) in0 < ¢t < 1 is given by

(3.4) Jodt [Za [2lpdu(t), 2 + u'(t)] de
with corresponding modifications for upcrossings and downcrossings.

4. Applications.

(i) Normal processes. Let £(t) be a separable normal process with &{£(t)} =
m(t), Cov {£(t), £(s)} = r(t, s). Suppose that m( t) has a continuous derivative
m'(t) in 0 £ ¢t < 1 and that r(¢, s) has the mixed second partial derivative
ru(t, s), continuous in 0 < ¢, s < 1. Write ry (¢, s) for the first partial derivative
with respect to s and suppose that the ‘“‘non degeneracy’’ condition r(¢, ¢)ru(t, t)
< r1(t, t) holds for each t in 0 < ¢t < 1. It is then a straightforward exercise
to show that the conditions of Theorem 2 are valid, and to obtain the formula
given by Leadbetter and Cryer (3], viz.,

8(N(0)} = [iva'(1 — o)lo(m/a)(2(6(n) + n(28(n) — 1)} dt,
where
‘72 = T(ty t)’ 72 = Tll(t) t)y Ypo = 7'01(t, t): n= [m f— 'ypm/o]/['y(l - P2)%]y

¢ and ® being the standard normal density and distribution function respectively,
and the dependences on ¢ being suppressed. We note that this result holds
without the assumption made in [3] that £(¢) possess a continuous sample deriva-
tive. Of course £(¢) does possess a quadratic mean derivative by virtue of the
existence and continuity of (¢, u).

(ii) The envelope of a stationary normal process. We consider now an important
non normal application—that of the “‘envelope’ of a stationary normal process.
Let, then, £(¢) be a stationary normal process with mean zero, covariance func-
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tion r(7) with (for convenience) »(0) = var £(¢) = 1. Let F(\) denote the
spectrum in its real form. That is

r(r) = fff cos A dF (N).
Write, for the spectral representation of £(t),
£(t) = [3 cos M dei(N) + [§ sin M des(N),
where 21()\), z2(\) are independent processes each having independent incre-
ments and are such that §|dz;(\)[* = 8|dza(A)|* = dF(\). Define the “Hilbert
transform” £(t) of £( t) by
£(t) = [¢sin Mdzi(N) — [§ cos N des(N).
Then g{{()i(t + =)} = &{E(®)E(t + 1)} = r(r). Write also r*(r) =
e{t(t)é(t + 7)}. Then r*(r) = [5 sin v\ dF()).
The envelope R(t) of £(t) may be defined (cf. Middleton [4], Section 2.2) by
R(t) = @) + £

This definition is formally different but in fact the same as that of Rice [5].
It is motivated by the fact that it does adequately conform to the ordinary
notion of an envelope in important special cases, such as that of a modulated

sine wave.
Now the random variables £(t), £(t), £(t + 7), £(t + 7), have a joint, normal
distribution with zero means and covariance matrix (writing r = r(7), r* = r¥(z))

1 0 roor
[0 1 = 7 ]
tr —r* 1 0 J
r* r 0 1
This matrix is easily iAnverted and if we write A = 1 — r* — ** we have for the
joint density of £(¢), £(¢), £(t + 7), £(t + ),
(4r°A)Vexp {— (1/24) e + @2" + 2" +

— 2r(x1xs + T2xs) — 2r*(x1x4 - xzx3)]}-

By writing ; = R; cos 61, 2 = Rysin 6, , x3 = R; cos 0, , x4 = R, sin 6, and in-
tegrating over 6, , 6; we find for the joint density f;, s-(R1, R2) = fr(R1, Rs)
of R(t), R(¢t + 7),

f(Ri, Rs) = (RiRy/A) expl— (R + Ro®)/24]L{(R:Ro/A)(r" 4 ™)},

where I, is the Bessel function of order zero with imaginary argument. (This
formula has been given by Rice [5].) It thus follows that the joint density for
R(t),S«(r) = [R(t+ 7) — R(t)]/7is given by ¢;.(R, S) = ¢.(R, S) where

g-(R, 8) = 7[R(R + 78)/A] exp — (1/A){R* + 7RS + +°S°/2}
L[R(R + 78)(r* + r**)¥/A4],
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R20,R+ S =0(r,r* and A being functions of 7). Now if we assume that the
first two spectral moments N = [¢ NdF(\), N, = [5 \*di”()\) are finite, it
follows that r(7) has the expansion

r(r) =1 — Nr/2 + o()
and that
PP =1 — A+ o(7),
A = Ar + 0(7'2)

as 7 — 0, where A = \; — \’. Now, from the asymptotic expansion for I,(z) it
follows that

In(z) ~ €/(2n2)} as 2z — .
Using this fact it is easy to show that
g-(u + 7y, 8) — (2rA) Fexp (—8%/24)u exp (—u?/2)

as r — 0 for any fixed u, y, S. It further follows that there are positive constants
K, k such that for all R > 0, g,(u + 7y, 8) < K exp (—kS?). From these facts
it is an easy application of dominated convergence to show from (2.2) that the
mean number of crossings of the level w by R(¢) in0 < ¢ < 1is given by

g{C(u)} = (2rA) Mu exp (—u?/2) [Z. |S| exp (—8%/24) dS
= (22/7)u exp (—u%/2).

The fact that tangencies to any level by R(¢) have probability zero, and the
formulae for the mean number of upcrossings and downcrossings, follow in the
same way as for the general case. In fact we have that

8{Cu(w)} = 8{Co(w)} = 38{C(w)} = (a/2m) u exp(—u’/2).
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