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1. Introduction and summary. The object of this paper is the development of
a theory of optimal one-sample goodness-of-fit tests and of optimal two-sample
randomized distribution-free (DF) statistics analogous to the well-known results
of Hoeffding (1951), Terry (1952), Lehmann (1953), (1959), Chernoff and
Savage (1958), Capon (1961) and others for two-sample nonrandomized rank
statistics. For Y, , --- , Y, a random sample from a population with continuous
distribution function @, one tests in the one-sample case Hy, : G = F vs.
H, : G # F, where F is some known continuous distribution function. From the
Neyman-Pearson lemma, distribution-free tests that are most powerful (MP) for
any H vs. K satisfying KH™ = GF ', are obtained. From these MP distribution-
free tests, one can on paralleling the derivations ([14], [25], [17], [18], [7]) for
locally MP tests in the two-sample case obtain locally MP tests in the one-sample
case. Further, it is found that the class of alternatives, for which a critical region
of the form [ J[F(y:)] > c] is locally MP, is the class of @s that consists of
“‘contaminated’’ Koopman-Pitman distributions as given in Section 5.

Randomized versions of the two-sample MP and locally MP rank statistics
are considered and shown to be asymptotically equivalent to the locally MP rank
statistics.

2. Preliminaries. To insure the existence of the appropriate derivatives and
inverses it is necessary to restrict attention to distribution functions from the
Scheffé (1943) class ;™ of strictly increasing absolutely continuous distributions
on R; and to its symmetrically complete sublcasses [24], [1].

In view of the structure and characterization results of Birnbaum and Rubin
(1954) and Bell (1964a), it will be feasible to consider in the one-sample case
only statistics of the form ¢[F(Y3), --- , F(Y,)], i.e. statistics of structure (d);
and in the two-sample case only rank statistics; i.e. statistics depending only on
the ranks R(Xy), -+, R(Xn); R(Y1), -+, R(Y,) in the combined sample
X1,y Xm; Y1, -, Yu.One should note that this class of rank statistics
does not include the usual Pitman (1939) conditional statistics; and that the
characterization of the strongly distribution-free statistics as rank statistics re-
quires a null boundary condition of Scheffé (1943).

Note that the difference between the one and two-sample problem is that in
the one-sample case F is known whereas in the two-sample case F is unknown
while a random sample X, , - - - , X,, from F is given. See Moses (1964).
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It is known [6], [2], [3] that the structure (d) and rank statistics are strongly dis-
tribution-free in the sense that if 8(F, G) denotes the probability that a test of
H, vs. H, based on one of these statistics rejects H, , then 8(F, G) is a function
of (F, @) only through GF* = (FG')™'; and, hence, structure (d) and rank
statistics are distribution-free. From the strongly distribution-free property, it
follows that if GF ' = KJ ', then 8(F, @) = 8(J,K) = (U, H), where U is the
standard uniform distribution on the unit interval I and H = GF ', which is also
a distribution function on I.

In some special cases, the derived statistics will be monotone and it will be
feasible to make use of the results of Chapman (1958), Lehmann (1959), and
Bell-Moser-Thompson (1965). In order to do this one needs the following defi-
nitions and notation:

(1) G(-;d) is that cpf on I such that G(u;d) = 0for0 <u <d;=u—d
ford Su<1,=1lforu = 1;where0 <d < 1.

(2) G(-;uo,d) is that cpf on I such that G(u;ue,d) = ufor0 < u < uoand
wt+d=<u=gl, =uforuy Su<uo+d;where0 S u<u+d=1.

(3) A monotone statistic is such that

(i) in the one-sample case T'(y1, -+, ¥n) = Ty, -+, ¥a") when-
ever y; < ;" for all ¢; and ‘

(ii) in the two-sample case S(x1, **, Tm; Y1, ", Yu) =
S(z*, -+, T n*, -+, Ya') whenever z; < z;* and y; = y,* for all
7 and j.

(4) G(F, d) = {G; G is a continuous distribution on R,, G < F, and
sup, [F(z) — G(2)] = d}.

Interms of these concepts, it is known ([8], [18], p. 187, [5]) that if T is an
arbitrary monotone structure (d) statistic or monotone rank statistic, then the
critical region [T > c] is unbiased for one-sided alternatives G < F, and the
maximum and minimum power for alternatives H in the class G(F, d) are given
by

(i) sup B(F, H) = B(U, G(-;d)); and

(ii) inf Bo(F,H) = inf (U, G(-;u0, d) ), where the latter infimum is over the

set 0 S u =1—d.

3. MP one-sample goodness-of-fit tests. Let H = GF7', then H is the dis-
tribution of F(Y,) (¢ = 1, ---, mn), thus the Neyman-Pearson lemma implies
that if H has a density h, then the MP critical regions for Ho: G = F vs.
H, : G 5 F is of the form { [ 2[F(y:)] > c}. In view of this and the results of
Section 2, one has

TureoreM 3.1. If H is a strictly increasing continuous distribution on I with a
density by if T = Ta(F,y1, -+ ,Un) = >~ In h[F (y:)], and if one considers critical
regions {T > c}, then

(i) T has structure (d); is SDF and DF;
(ii) B+(F, @) = B+(K,J) whenever QF™ = JKY;

(iii) {T > ¢} is MP for F vs. G whenever GF™' = H;

(iv) {T > c} is admissible for alternatives in Q2"
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Note that (iv) follows from (iii) and the uniqueness part of the Neyman-
Pearson lemma ([18], p. 65).

In several cases of importance 7' is found to be a monotone function of the form
a Z JIF(y:)] + b, where J is the inverse of some distribution function.

ExamprLe 3.1. —I1 = 2 ) InF(y,); I' = —2 > In[l — F(y)]; U =
n ' D F(y:);and Z = n™ >, & [F(y:)], where ® is the standard normal dis-
tribution. The J’s here are, respectively, inverses of the negative exponential
(exp (z), z < 0), exponential (1 — exp (—z), x > 0), standard uniform and
normal distributions. The alternatives against which these tests are MP are
given in Section 5.

Whenever T is a monotone one-sample statistic one can prove, using the results
at the end of Section 2,

TuroREM 3.2. If the h of Theorem 3.1 s @ monotone increasing function, then for
every F in Q3™ mazimum and minimum power are given by

(i) sup B(F, H) = (U, G(-, d));

(ii) inf Bo(F, H) = inf B(U, G(-; wy, d)); where the supremum and first
infimum are taken over the class G(F, d) of one-sided alternatives, and the latter
infimum 1s taken over the set 0 < uy < 1 — d.

Finally, from elementary considerations one gets

TueoreM 3.3. If Er|Inh[F(Y)]| and Es |Inh[F(Y)]| are finite and if
Er{ln h[F(Y)1} < Ee{ln R[(F(Y)]} atthe alternative G 5% F, then the test based on T
s consistent for the alternative G.

In several important cases the MP test statistic is unwieldy and one would wish
to look for approximations as in the following example:

ExampLE 3.2. Consider the problem of obtaining a distribution-free statistic
which is MP for F and G whenever GF ™' = FoF, ', where Fo(z) =
1/[1 4+ exp (—z)] and Fo(y) = 1/[1 + exp (—y + 8)], i.e. logistic translation
alternatives. On employing Theorem 3.1, one finds that the MP statistic is of the
form T'(n,0) = 2 In helF (y:)] = nf — 2 2 In {Fo(y:) + [1 — Fo(y:)] exp (0)}.
Since T'(n, 6) is somewhat involved, it seems worthwhile to consider its series
expansion about § = 0:

(31) T(n,0) = 2m(U — %) + 'n[n™" 2 Fo'(y:) — U] + o(6°)

where U = n™" D, Fo(y:). This expansion suggests the use of the U statistic for
values of 6 near 0 since for these 8, U is approximately equivalent to the MP
statistic T'(n, ).

More generally, the above example suggests that when there is sufficient
regularity to guarantee the necessary partial expansion, it will be possible to de-
velop derivations analogous to those for optimal two-sample statistics, e.g. Capon
(1961). This is done in the next section.

4. Almost locally MP goodness-of-fit tests. Since the development will be
parallel to that of Capon (1961), the following regularity conditions of Capon
will be required. For testing Ho : @ = F vs. Hy : G = Gy, and for Hy = GoF ",
we assume:
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The distribution Hy on the unit interval I has a derivative he ,
(4.1) which along with (8/08)hs is continuous wrt 6 in some non-de-
generate closed interval I(6,) containing 6, for almost all % in I.

There exist functions Mo(u) and M,(u) integrable over (0, 1)
(4.2) and such that for all  in (0, 1), 0 < he(u) = My(u), and
|Ho(u)| < Mi(u) for 6 in I(6,).

(4.3) Ery [(8/80) In hg(u) [omge|* < o
for 6 in some nondegenerate closed interval containing 6, .

For classes of alternatives satisfying (4.1) and (4.2) one now defines
T" = > (8/36) In helF (y:)] |o=s, , Which (from expansions of the type (3.1))
should have optimal local properties. More precisely, for a given parametric
family {Ho(F)} = {GoF ' (F)} = {Gy} with Hp,(u) = u(0 < u < 1) and MP
test statistic T7(8) = (8 — 60)™" > In ho{F (y:)} one makes the following defi-
nitions. (Note the change in notation from earlier T'.)

DErFINITION 4.1. A statistic T is almost locally MP(LMP) if and only if for
each positive e and 7, there exists a positive & satisfying Po(|T" — T'(8)| > 9) < ¢
whenever |6 — 6| < §; and '

DEriNITION 4.2. A statistic T is asymptotically efficient if and only if the Pit-
man asymptotic relative efficiency A(T’, T(6)) = 1.

Here, Pitnam asymptotic relative efficiency (ARE) is taken to be as defined
by (for instance) Hodges and Lehmann (1961 ). Chernoff and Savage (1958) and
Capon (1961) have pointed out that if S is any statistic, then 4 (S, T(0)) < 1.
Thus if 7" is asymptotically efficient, then A (S, T’) = 1 for any statistic S. In
the notation of van Eeden (1963), an asymptotically efficient statistic would be
called a “best” statistic. Note that asymptotic efficiency is a local property al-
though its designation (which is consistent with common use) does not indicate
this.

With these definitions and regularity conditions one can parallel the proofs of
Capon to prove

TaEOREM 4.1. For F vs. Gy = He(F), as well as for each J vs. Ky satisfying
K" = Hy, and families {H,} satisfying (4.1)—(4.3) above, the strongly dis-
tribution-free statistic T = Y, (8/00) In holF (y:)] |o=s, 35 (8) almost LMP and (b)
asymptotically efficient.

Proor. (a) is immediate from the series expansion of 7T'(8) [see (3.1)] and
Definition 4.1. (b) follows from the definition of Pitman efficiency [12] if one sets
0 — 6) = en* for some non-zero constant c; and notes that in this case
n [T(8) — T'] tends to zero in probability.

In the notation of Rao and Poti (1946) and Lehmann (1959), p. 342, the
statistic T” would be called LMP. It is called almost LMP here because it is in
general not MP for any parameter value no matter how close it is to 6, . [See
(8.1).] This is in contrast to the properties of discrete rank tests [e.g. Capon
(1961)].
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At this point it is clear that whenever T(0) is MP for F vs. Ho(F), T' is locally
optimal for the class (of appropriately regular alternatives) {Hy(F)}. Hence, it
is natural to ask the following questions:

(I) When are T and T’ equivalent statistics?

(II) For which classes of alternatives is 7" almost LMP?

A question similar to (II) has been considered by J. Neyman in the parametric
case. Following his notation, the classes in (II) can be called the domain of
optimality of T'.

Answers to the above questions are given in the next section.

5. Optimal classes for T(9) and 7’. With regard to question (I) of Section 4
one should consider
ExampLE 5.1. For F vs. Gy = F°, which occurs, for example, when F and Gy
are negative exponentials, one has Hy(u) = GoF “(u) = u’; (8 — 1)T(9) =
nlnd+ (6 —1) 2 InF(y;) andT" = n + D_ In F(y;).Consequently, T'(9) and
T’ are both equivalent to the statistic —II of Example 3.1.
In generalizing this result one solves the equation In ks(u) = aS(u) 4 b(6),
and obtains
TuroreM 5.1. T(0) and T’ are equivalent statistics, [in the sense that T'(8) =
a(0)T" + B(6) for nonvanishing a(8)] whenever
(1) he(u) = exp {a(0)S(u) + b(6)}; or equivalenily,
(i) Go'(z) = exp {a(8)S(F(x)) + b(8) + In F'(x)}, where a(8) and b(0)
are differentiable and a’(0) is nonvanishing;
(iii) when either (i) or (ii) holds, then T(8) and T’ are both equivalent to the
statistic Y r=1 SIF(y:)].
The class in Theorem 5.1 (ii), is of course, a Koopman-Pitman class; and such
classes play an important role in answering question (II) of Section 4.
DeFINITION 5.1. A contaminated Koopman-Pitman distribution function is a
distribution function which can be written in the form [a(6)Kq(z) 4+ R(z, 6)],
where a(8) — a(8) = 1 and R(z,0) — R(z,0,) = 0as 6 — 6o, and K 4(z) is a
Koopman-Pitman distribution.
The following result is an immediate consequence of Section 4.
TueoreM 5.2. T = Y (8/06) In h[F (y:)] ls—s, = > JIF(y:)] (with critical
region {T' > c}) is
(i) MP for the class of F and Gs which satisfy (d/ du)GoF " (u) = ho(u; F,Gy) =
exp [a(8)J (u) + b(6)] or G’ (y) = exp {a(0)J[F (y)] + b(6) + In F'(y)} for some
functions a(0) and b(8); and
(ii) almost LMP for the contaminated Koopman-Pitman class of all F and Go
that satisfy

he(us; F, Gy) = exp [a(0)J (u) + b(6) + Q(u, 0)]

or

Gy (y) = exp {a(O)J[F ()] + b(8) + In F'(y) + QIF (), oI}

where a(8), b(8) and Q(u, 0) are such that a(0) and b(6) are differentiable, d ()
s nonvanishing, and Q(u, 8) = o(0 — 6o) for all w in I.
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With reference to applications of Theorem 5.2 it is instructive to reconsider
Example 3.2 in terms of a contaminated Koopman-Pitman class.

ExampLe 5.2. For the logistic translation situation in Example 3.2,
ho(u; Fo, Gy) = exp (0)/[u + (1 — u) exp (0)Pand U = ' 2 F(y.) is almost
LMP. On the other hand, from Theorem 5.2 (i) one sees that U is MP for
he*(w) = exp [a(8)u + b(6)], and, in particular, for Zy(u) = [exp (6u) — 1]/
[exp (8) — 1]. Since this is the case, ho(u, F', Gs) should be expressible in the form
exp [a(0)u + b(8) + Q(u, 0)], where Q(u, 8) = 0(8) for all u in I. This is so for

a(8) = 2[exp (8) — 1], b(f) = —2—6 and Q(u,0)
= D> rartull — exp (—0)].

One can now proceed to consider some extensions of these results to the
two-sample case.

6. Randomized two-sample statistics. For two independent random samples
Xy, ,Xnand Yy, ---, Y, from populations with continuous distributions ¥
and @ respectively, one tests in the two-sample case Ho : F = G vs. G = Ho(F)
where H, equals the uniform distribution U, on the unit interval if and only if
6 =06. Let N = m + nand let zy; = 1 if the ¢th observation in the ordered
combined sample of X’s and Y’s is an X, zy; .= 0 otherwise. Further, it will be
necessary to consider the order statistics U(1), -+, U(N) of a Usrandom
sample Uy , - -+ , Uy which is independent of X, -+ , X ; Y1, -+, Yau.

Before constructing the proposed new statistics it is worthwhile to recall that
in view of the comments of Section 2 attention may be restricted to rank statistics
and that when H, satisfies conditions (4.1) and (4.2), then

(a) the MP rank test statistics due to Hoeffding (1951) are of the form

v(6) = EI] (rlU@)}™] = E[11 he{ UIR (:)]}]

and
(b) the generally more tractable LMP rank statistics are of the form

V' = X E{(3/36) In he[U(5)] lo—so}2ns
= X E{(9/86) In holU (R(x:))] |o=s,}-

In practice the MP test statistics are often quite cumbersome; and the
E{(3/30) In he[U(3)] |s=s,} of the LMP test statistic are quite often difficult to
compute; or are not tabulated and available to statisticians. Further, in both
cases only at most (}) significance levels are obtainable without randomization.
If one is willing to randomize to obtain exact significance levels, it seems reason-
able to consider randomization at an early stage in order to circumvent the tabu-
lation problem if possible.

The method which immediately suggests itself is that of removing the ex-
pectation signs to obtain S*(8) = II 7{UIR(X:)]} or In S*(6) =
S In ho{UIR(X:)]} and Y (8/80) In kef U[R(z:)]} [o—s, - Experience [4] with
special versions of these statistic has shown that Pitman ARE can be improved
if one includes the érder statistics U[R(Y1)], - -+ , U[R(Yn)] in the formulas for
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the statistic. Therefore, in the sequel, attention will be centered on the statistics
(A) 8(0) = m™ > h{UIR(X:)]} — n™" 2 In he{U[R(Y )]} ; and
(B) 8" = w7 ) (3/80) mh{UR(X )] sy, — n 2. (8/86) Inhy-

{UR(Y )]} o=, -
The idea of randomizing by using order statistics has also been used by Durbin

(1961).
Special versions of V(6), V', 8(6) and 8’ have been treated by several authors.

For example,
ExaMpPLE 6.1. For Hy :G = Fvs. H, :G = 1 — (1 — F)® which is the case for

exponentials F(r) = 1 — exp (—z) and G(z) = 1 — exp (—6z), one has
v(9) = 6"E(I] (1 — UR(z:)}*);
V' =m + 2 Elln {1 — UR(2:)}}];
8(8) = (06— D™ X In {1 - UlR(z:)]} —n™" X In {1 — UR(y:)]}

and

8 = (0 —1)78(6) |p—1 .

About this example one should note that V has been treated in [17]; V' in [23],
[9] and [7]; that S(8) and 8 are equivalent, and are treated in [4]. In this last
reference S is written m™" > Z[R(X,)] — n™ X Z[R(Y;)], where Z(1),-- ,
Z(N) are the order statistics of a random sample with common distribution
1 — exp (—z). The equivalence of the two expressions follows from the fact
—2[In (1 — U)] has distribution 1 — exp (—=z), whenever U has cpf U, .

As in the example above, S and 8’ can often be written as monotone functions
of the form m™ 3 H{U[R(X:)]} — n~* > H{U[R(Y.)]} where H" is the
inverse of some dlstrlbutlon H. From Lehmann (1959), p. 187, one obtains

THEOREM 6.1. If the hy of formula (A) is increasing, then the critical region
{8(6) < c} 7s unbiased for one-sided alternatives G < F. The same results hold for
(8/88) In hg |4—s, of formula (B) and the critical region {S’ < c}.

Asymptotic optimal properties of S(#) and S’ will be established in the next
section.

7. Optimal properties of the randomized two-sample statistics. Essentially,
it will be established in this section that the randomized statistics S(6) and S’ are
in some asymptotic sense as good as V(8) and V'. In order to accomplish this the
regularity conditions (4.1) and (4.2) are used as well as

(7.1) 0 < limy (m/n) = r < o;
further there exists a constant K such that
(7.2) [(8°/0u’) (w)| £ Klu(l — u)]""** for ¢=0,1,2

and some § > 0, whereJ (u) = (8/96) In he(u) |o—s, -
The following result of Hoeffding [15] is also used.
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LemMma 7.1. If f(x) 1s convex, g(x) is convex and nondecreasing (for x = A if
1) z y); and if [ dF(), [ f(z) dF(x), and [ g(f(x)) dF(z) all exist, then
lim N7 2oL glEf(Z (5, N))] = [ g(f(x)) dF (z), where Z(j, N) is the jth order
statistic of the random sample Zy , - - - , Zy with common distribution F.

In order to apply this result, the following conditions are needed for the func-
tionJ (u) = (8/99) In he(u) |o—s, -

J satisfies [3 J*(u) du < o and at least one of the following conditions:

(a) J is the inverse of a distribution function H,
(7.3) (b) J is convex and is bounded below,
(e) there exists a continuous distribution H such that J[H (z)]
is convex, bounded below, and |[ z dH(z)| < «.

In order to make S’ easily comparable with the LMP rank statistic, the LMP
rank statistics will be written in the form

W' =m™ 2 EJ{UIR(X)]) — n7' 2 EJ{UR(Y )]}
(MeN) ™ 25 {EUU D (i — M)

where \; = m/N and A, = n/N. W' is easily seen to be equivalent to V', thus w’
is a LMP rank statistic whenever V' is.

The fact that 8’ is asymptotically equivalent to a LMP rank statistic is re-
flected in the following theorem:

TueoreM 7.1. If Hy is such that W' is defined, then

(i) Eo(8') = Eo(W'). If further (7.1) and (7.3) are satisfied, then
(ii) Varg, [N*(S' — W')] > 0as N — o, and
(iii) Var, [N* (8" — W')] - 0 as N — o« whenever either
(a) Ay = o(N)asN — x or (b) Ay < 0, where

Ay = 2 i Cov (U @), JIUG) B Eo(zw: — M) (2wi — M).

Proor. Note that 8’ can be written 8" = (AAN)™ DX JIU()](2xs — M),
then (i) is immediate since U(7) and zy; are independent. Also note that

Varg [N 58" — W) = D] N™* 25, {Var (J[U(G)])}EBe(zws — M)*
+ 2\ N Ay

On applying Lemma 7.1, (iii) now follows since Es(zx: — M)? is bounded.
(ii) follows from (iii) on observing that Es(zwi — M)(2wj — M) =
—MN(N — 1) for g 5 i

The notion of asymptotic efficiency will be in the two-sample as in the one-
sample case. Let W' = (AAN)™ D0 {EWJ[U(4)])} (2x: — M) be a LMP rank
statistic for F = G vs. G = Hy(F), 6 5 6, , then

DerinITION 7.1. Let 8 = 6y be such that 6y — 6, as N — « and such that
NW’' — E(W’)] converges in law (under Pg,) to a nondegenerate random
variable, then S’ is an asymptotically LMP rank (ALMPR) statistic for F = G
vs. G = Hy(F) (8 5 6,), if and only if for e > 0, Poy(N* [ — W'| = ¢) > 0 as

N — «.
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Note that the sequences {6y} of Definition 7.1 are often of the form
{6 + ¢/N*}. They will be of this form under the conditions given in the next
result.

In order to apply the results of Hijek and LeCam [11] and Matthes and Truax
(1965) on contiguity, the following condition will be needed. U is a random
variable with distribution U, .

(7.4) limg-sy B{[(h'(U) — k4,(U))/0ks,(U)] — J(U)} =

Using theorem 7.1, one can now conclude

CoroLLARY 7.1. If the conditions (7.1), (7.3), and (7.4) hold, then for testing
F=Gvs.G=HyF),0506,,

(i) S and 8’ are ALMPR statistics. If further (4.1), (4.2) and (7.2) hold, then

(ii) S and S’ are asymptotically efficient.

Proor. For (i), note that Capon (1961) proved that W' is a LMP rank sta-
tistic. Thus Theorem 7.1 (ii) and the results of Hijek and LeCam [11] and
Matthes and Truax (1965) imply that S’ is an ALMPR statistic. (See Theorem 3
of Matthes and Truax.) Similarly, S(6) is an ALMPR statistic since S(6y) is
equlvalent to S'.

For (ii), note that Capon (1961) proved that W' is asymptotically efficient
and apply the same arguments as above.

Finally, one can establish the results analogous to those of Section 5. They are:

THEOREM 7.2. (a) S(0) and S’ are equivalent statistics whenever hy(u) =
exp {a(0)J (u) + b(8)} or Gy’ (z) = exp {a(0)J[F(z)] + b(6) + In F'(z)}; and

(b) whenever hy is of the form in () both S(0) and S’ are ALMPR statistics,
asymptotically efficient, and are both equivalent to m™ D J{UR(X:)]} —

n 2 J{UIR(Y )]}

THEOREM 7.3. Statistics of the formm™ Y, J{U[R(X )]} — n™* 2 J{UIR(Y,)]}
are ALMPR statistics and asymptotically efficient for the contaminated Koopman-
Pitman class

he(u) = exp {a(6)J(u) + b(8) + Q(u, 8)} or
Gy'(z) = exp {a(6)J[F(z)] + b(0) + In F'(z) 4+ Q(F (), 0)},
where Q(u, 0) = o(0 — 6y) for all u.

The parallelism between the various one-and two-sample statistics is further
indicated in the following section.

8. Applications. The results of the preceding sections will now be applied to
special alternatives and statistics. In both the one-sample and two-sample case
the alternatives will be denoted by Gy = Hy(F) where there exist some 6, such
that hg(u) = u for each u in [0, 1] if and only if § = 6, . Let Jo be a function on
the unit interval (possibly unrelated to k¢). Consider the one-sample statistic
T(Jo) = 2. JoF(Y;)] and the two-sample statistics

W(Jo) = m™ 22 EJ(UIR(X:)])] — n~ EVo(UR(Y )]
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and S8(Jo) = m™ D2 Jo(UR(X:)]) — n D Jo(UIR(Y:)]). T(Jo) is MP for
Fvs.Gy = Ho(F)ifJo = In hy and is almost LMP and asymptotically efficient for
F vs. Gy = ho(F) if Jo = (8/30) In hg [o—g, . Similar statements hold for W (J,)
and S(Jo) in the two-sample case.

The asymptotic relative efficiency (ARE) of W (J,) wrt Student’s two-sample
statistic ¢ has been studied by Hodges and Lehmann (1956), Chernoff and
Savage (1958) and others for special cases of Jy and various alternatives. Let ¢,
denote the one-sample Student statistic, then the result A(T(J,), &) =
A(W(Jo), t) = A(S(Jo), t;) (for alternatives Hy(F) such that these ARE’s are
computable) follows from arguments of the preceding sections.

The above notation and result will now be used in the following examples and
table; moreover ® will denote the standard normal distribution. The results in
the examples hold for a general normal distribution after obvious modifications.
Finally, let @(u, 6) be such that @(u, 8) = 0(6 — 8,) as 6 — 6 .

ExampLE 8.1. (Normal translations). For & vs. the alternatives Gy(z) =
Ho[®(z)] = ®(x — 6) one finds Ho(u) = (& (u) — 6)), In he(u) = 657 (u)
+ 46° and (8/36) In he(u) |o—o = & *(u). Thus Z;'= n '), F(Y,)] is uni-
formly MP in the one-sample case (Theorems 5.1 and 5.2) and Z, =
n' ) (UR(X)]) — m™ D), & (U[R(Y:)]) is an ALMPR statistic and is
asymptotically efficient in the two-sample case for & vs. ®(z — ) (Corollary 7.1).

Similarly, Z; is uniformly most powerful for any continuous F vs. Gy(z) =
®{®7[F(z) — a(0)]}, 6 = 8y, where a() = 0 if and only if § = 6, . Further,
Z, and Z, are asymptotically efficient for F vs. ®{®(F(z)) — a(8) +
Q(F(z), 0)}, where a’(8) 5= 0 (Theorems 5.2 and 7.3).

From the results of Chernoff and Savage (1958) and the remark preceding
this example, it follows that A(Z:, &) = A(Z;, &) = 1 for F vs. F(z — 6)
(e.g. translation) with equality if and only if F is a normal cpf.

Finally, Z; and Z, have the desirable property that their null-distributions
(F = @) arenormal with means zero and variancesn ™ and n™" + m " respectively
(see [4]).

ExampiLe 8.2. (Normal scale). ® vs. ®(2/0) = Hy[®(z)] yields Hy(u) =
(&7 (w)/0), In ho(u) = 3@ (W)’ (1 — 67%) — In 6, (3/36) In he(u) |omy =
@' (w)]’ — 1. Hence Z;" = . {&'[F(Y,)]}%is uniformly MP in the one-sample
case (Theorems 5.1 and 5.2) and

Z; = w7 2 (T (UR(X)DY — o7 XA (UIR(Y)]))

is an ALMPR statistic and is asymptotically efficient in the two-sample case
(Corollary 7.1).

Moreover, Z;” is uniformly MP for F vs. Go(z) = ®{&'[F(z)]/b(6)}, 6 5 6, ,
where b(8) = 1if and only if 6 = 6, ; and Z,” and Z,* are asymptotically efficient
for F vs. ®[®'[F(x)]/b(8) + Q(F(x), 6)) (Theorems 5.2 and 7.3).

The null-distribution of Z* is x,.’; if m = n, then nZ,’ is distributed as the
difference of twoindependent chi-square variates,each with n degrees of freedom.
This latter distribution is discussed in [4], Table 5.1.
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ExampLE 8.3. (Normal translation and scale). As pointed out by Kendall
and Stuart (1961) and others, it is desirable to have statistics powerful for
alternatives that are a combination of location and scale. Consider therefore the
following:

Let a(8) be such that a(8) = 1if and only if = 0 and such that a’(8) = 0.
For testing ® vs. Go(z) = ®(a(f)[z — 6]), 6 = 0, one obtains In he(u) =
In a(8) + 3{[1 — d*(0)){® "(u)}® + 260a°(0)® ' (u) — 6°a’(8)} and

(8/00) In ho(u) Jomo = ® " (u) — a’(0){® " (u)}™.

Thus the MP statistic depends on 8 while the asymptotically efficient statistics
are Z, = Z, — n a’(0)Z and Z, = Z, — a'(0)Z,’ where Z,, Z,, Z,* and Z,*
are as in Examples 8.1 and 8.2. Z; and Z, are also asymptotically efficient for any
continuous F vs. Gy(z) = ®(a(0)[® (F(z)) — 6] + Q(F(x),0)).

The null-distributions of Z; and Z, are asymptotically normal. Their means are
—a/(0)n — 1 and 0 and the variances are 2n'{a’(0)}*and 2(n~" + m™ {a'(0)}%,
respectively. Note that when a(8) = 1/(6 4+ 1), then a'(0) = —1, thus Z; =
71+ n'Z and Z, = Z, + Zy' for this case.

ExampLE 8.4. (Normal contamination). Let 0 < a(6) = 1 be a differentiable
function possible constant and such that 0 < a(1) = ¢ £ 1, then for the con-
tamination alternatives ® vs. Go(z) = a(0)®(x) + (1 — a(0))®(z/0) =
Hy(®(z)) one has that the MP statistic depends on 6 while (8/86) In he(u) |o—1 =
(¢c — 1) + (1 — ¢){® *(u)}*. Thus the asymptotically efficient statistics are
Z.% and Z,’ of Example 8 .2.

The derivations in the above examples can also be carried out for cpf’s other
than ®. Let F be a continuous cpf, then the following table gives in the first
column hypothesis, in the second column alternatives; from the third column
can be obtained the MP one-sample statistic 7'(Jo), and from the fourth column
can be read the asymptotically efficient statistics T'(J;) and S(J1). a and b
are convenient constants that may differ from column to column and from row
to row.

TABLE 8.1

Hyp Alternatives Jo(w) = aln ho(u) + b J1(u) = a(8/80) In ho(u) lo=00 + b
F = K| exp (z0) In u Inu
F=C|Clzx—06 In [C(C~(w) — 6)/C"(C~(w)]| C~(w)/(1 + [C~Hw)]?)
F=C| Cx/o) In [C’(671C~1())/C"(C* ()] | [CT*(w)*/ (1 4 [CT () ?)
F Fe Inu In u
F 1 — oF + ¢F2 In 1 — 6 + 20u) U
F 1 — 6)F + oF* In 1 — 6 + kgutD) u®=1
F (efF — 1)(ef — 1)1 | u U
F F(z —6) In [F'(FYu) — 0)/F'(F*(w)] | F"(F7(w))/F'(F~*(u))
F F(z/8) In [F/(7'F 1 (u))/F’'(F1(w))] | F"(F~-(w)F~(w)/F'(F~(w))
F FIF + e'(l — F)I"* | In [u + e/(1 — w)] U
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It is not known whether S(J;) is asymptotically efficient in rows 2 and 3.
Rows 8 and 9 only apply when F satisfies appropriate regularity conditions. C
denotes the standard Cauchy distribution and K the exponential distribution
defined by K(z) = exp (z)ifz < 0and K(z) = 1ifz > 0.
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