ON THE PROBLEM OF TESTING LOCATION IN MULTIVARIATE
POPULATIONS FOR RESTRICTED ALTERNATIVES!

By Perer E. NiEsce’

Unaversity of California, Berkeley

0. Introduction. In a comprehensive paper Bartholomew [2] treats the problem
of testing equality of means in normal populations versus ordered and partially
ordered alternatives. The application of the likelihood ratio (LR) principle to
derive the test statistic leads to minimize a convex quadratic form subject to
linear constraints. The author uses a theorem by van Eeden [7] to solve this
problem but remarks that this could also be done by means of quadratic pro-
gramming methods. This remark is the starting point to our investigation.

It is easy to see that the setup of Bartholomew is a special case of the following
problem: Let X be a p-dimensional random vector, multivariate normally dis-
tributed with mean vector u and covariance matrix X. The null hypothesis H,
that the center of the distribution lies at a point 0, is to be tested versus the
alternative K that it lies in the union of some regions R, , where each R; is the
intersection of p halfspaces through 0. (Without loss of generality we choose 0 as
the origin of the coordinate system.) We may restrict ourselves to the alternative
that u lies in the positive orthant K, : w = 0 with at least one strict inequality
(u > 0 denotes that all components of the vector are positive) since the methods
developed extend immediately if the orthant is replaced by the union of arbi-
trarily many R; . The extension has been carried out in more details in Niiesch
[5].

Bartholomew’s results follow from ours by specializing to particular covariance
matrices. (e.g. the covariance matrix corresponding to completely ordered param-
eters is a so-called type 2 matrix with entries p;; = 0 for |[¢ — j| > 2.)

In Section 1 quadratic programming methods are used to minimize a general
convex quadratic form f(y) subject to the constraints y = 0. In Sections 2 and 3
the test statistics and their distributions are derived for the cases of known and
unknown covariance matrix, respectively.’

1. Solutions of the reduced quadratic programming problem. Let C be a posi-
tive definite p X p matrix (C > 0),qa 1 X p matrix of constants. The function

(1.1) f(y) = 2qy + y'Cy
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is a convex quadratic form in y. The problem is to minimize f(y) subject toy = 0.
(In this reduced quadratic programming problem the additional condition
Ay = b is missing. The absence of this latter constraint makes it possible to
arrive at the solution without the usual stepwise procedure for solving quadratic
programming problems.) We call a vector y minimizing (1.1) optimal.

Eisenberg [3] proved that a necessary and sufficient condition for § to be
optimal is

(1.2) (a+39C)y = (¢ +§C)y

whenevery = 0. Inequality (1.2) enables us to prove the following
LemMma 1.1. § <s optimal if and only if

(1.3) g +3§¢C 20
and
(1.4) ¢+ 9C'> 0 implies 9; =0 forall j,

where g; denotes the jth component of q, C’ the jth column of C.
Using identification (2.5), Lemma 1.1 becomes Theorem 2.1 of Kudé [4].
Proor. Suppose that for some j (g; + $'C’) < 0. Let y; = a, y; = 0 for s = j.
Then

(1.5) (g +§C)y = (¢ + §'C)a.

Let a tend to + «. The right side of (1.5) tends to — » and the inequality (1.2)
becomes impossible. (1.3) is proved. Suppose now (g; + §'C’) > 0. We want
to show §; = 0. Assume this is not the case,i.e., §; > 0. Let y; = 0 for 7 # jand
y; = 9§;/2. This gives

(@ +39C) 2 (¢ +9'CH9 > (¢ + 9'Chys = (a4 + 50y,
which contradicts (1.2). (1.4) is proved.
To prove the converse, note that (1.3) and (1.4) imply
(1.6) (@+§C)y =0,

since (q + §'C)§ = D21 (¢; + §'C)9; and for each j either one of the two
factors is zero. (1.3) implies 0 < (q + $'C)y for ally = 0. Using (1.6) we get
(q + §'C)§ = (q + $'C)y which is exactly inequality (1.2). Hence § satisfying
(1.3) and (1.4) is optimal.

Using (1.6) we get the minimal value of f as

(1.7) f($) = 2(q + §'C)5 — §'Cy = —§Cy.

2. The test in the case of known covariance matrix. Let x;, .-+ , Xy be a
sample of size N from X, where N > p to avoid degeneracies. The likelihood func-
tion is

(21) L=[en)" 2" exp[-} 2 (xa — )T (% — )],
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where summation, unless otherwise specified, runs from 1 to N. Denote the
maximum of L over » and @ by L(#) and L({), respectively. (», @ are the parts
of the parameter space specified by the hypothesis and the alternative, respec-
tively.) Since w consists of the single point {u = 0}, the maximum likelihood esti-
mate @, is equal to 0, and since X is known, we have

(2.2) L(w) = L(6) = k- exp[— 2D %/ 27 xa].

Maximizing

(2.3) L(Q) = k-exp[—3 2 (X — #)'E7(%a — w)]

over £ means finding that 4 = 0 which minimizes the exponent or equivalently
(24) flw) = =287y + =7y

over Q. Denote it by &i. (We omit the subscript €, since in the following we are
exclusively concerned with fie .) By setting

(2.5) ='=¢, —x37'=q

(2.4) becomes (1.1). Since T and thus £ is assumed to be positive definite, the
results of Section 1 are applicable. From (1.7) we obtain the minimal value of
f(u) asf(#) = —#'="frand L(Q) is therefore maximized by

(2.6) L(Q) = k- exp [—3(2 %,/ =%, — N&'=79)].

The LR criterion rejects for A = L(&)/L(Q) £ \o . This proves

THEOREM 2.1. The LR test for testing H versus K, rejects when
(2.7) Na'z'a =
where & minimizes (2.4) subject to the constraint w = 0.

For the actual computation of the maximum likelihood estimate when X is
given the reader is referred to Kudé ([4], Section 2) or Niiesch ([5], Section 3).
Geometrically speaking the maximum likelihood estimate is the projection of the
vector % along regression planes onto the positive orthant of the sample space.
(If one uses a linear transformation of X to an uncorrelated Y, which exists for a
full rank covariance matrix, the projection is orthogonal onto a polyhedral half
cone, the affine image of the positive orthant.) The first author also gives an
example of the computation at the end of Section 2.

1 is a vector whose components are either positive or zero. This leads to a
partition of the sample space into 2” disjoint regions. Denote by %; any of the (£)
regions of the sample space with exactly k of the &,’s positive. Since through re-
labeling of the variables one always can obtain that the k positive §i,’s are the last
k, we assume that

(2.8) X = {%; {#w = 0} and {@e > 0}},
where #' = (#i(y#i ). Let C be partitioned accordingly :

_(Cu Cup
¢-= (cm Cz)
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(1.3), (1.4) and the identification (2.5) enable us to define &, in terms of %, and
X@ . 8w = 0and @i > 0imply

(2.9) —CuXq) + Cu(d#e — X») > 0,

(2.10) —CuZa) + Ca( — X») = 0.

Solving (2.10) we get

(2.11) fo = X + CxCuXa = X@ — ZuZukq -
Using (2.11), (2.9) then reads

(2.12) —(Cu — CuCnCan)xqy = —E1i&ay > 0

and the definition (2.8) becomes

(2.13) X = {%; {Znky < 0} n {Xo) — EuEnEy > 0}).

We now derive the distribution of the test (2.7).

THEOREM 2.2. The test statistic N¢'S ' = ¢ is under H distributed as
S Paw(p, k)P(x = ) where the weights w(p, k) are the probability content of
the union of all Xi’s for a fixed k.

Proor. Denote the rejection region by S°.

P(8°) = 28 2a P(S° 0 %) = DB Dl P(X6)P(S° | %)}
The summation starts at 1 since S°n %, = &.
(2.14) P8 |x) = PIINE78 2 (g = 0} n { > 0}].

Since N¥fi ) is, under H, normally distributed with expectation 0 and covariance
matrix X1 = Zyg — 2212-1_11212 y it follows that @22)22_21-1@(2) is x;cz-distributed.
In addition {@e > 0} and {§im e = ¢’} are independent. Therefore (2.14)
becomes

P(8°| %) = PINg»ZEmide = ] = P(x’ = ¢*),
which does not depend upon the particular %, . We then have
P(S8) = 2B {2 P(X0)}P(S° | &) = ZEaw(p, kb)P(xi® 2 )
which proves the theorem.

3. The case of unknown covariance matrix. In the likelihood function given
by (2.1) = is now to be considered as variable. As before, let C = £, From (2.2)
we get

log L(w) = —ipN log (2r) + iNlog|C| — % D x.Cx,
—3pN log (2r) + 3N log [C| — § tr (CDy),

where D; = 2 XX, is positive definite. Anderson ([1], Lemma 3.2.2) gives the
maximum immediately as

(3.1) log L(&) = —3pN log (27) 4+ iNplog N — iN log |D4| — 3Np.
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Now we want to maximize log L(Q) over the set of all positive definite C, {C > 0},
and {y = 0}. From (2.3) we have
log L(Q) = —3pN log (2r) + 3N log [C| — } 2° (X« — 8)'C(Xa — ).
Let
f(4,€) = 3N log[C| — 3 2 (%« — ¥)'C(xa — w),

but
maxyzo),ic>0 f(8, C) = max(cse {maxiyzo f(u, C)}.

Now
£(C) = maxyz0 f(4, C) = $N log [C| — } miniy o) [ (X« — ) C(xa — w)].

This is the same problem that was solved in Section 2. We get therefore from
(2.6)
f(€) = 3N log [C] — {2 x.'Cx. — N§'C]

= 3N log [C| — 3 tr (CDy),

where
(3.2) D: = > x.x. — Na@'.

Note that D, is also positive definite.
We may rewrite D, as

D=2 (% — #)(Xa — #) = 22 (X — X)(Xa — 8)’
(3.3) +NE—8)E—-§)
A+NE-#E-9),
where A is the sample covariance matrix. Using again Anderson ([1], Lemma
3.2.2) we get

(3.4) log L(Q) = maxcsq f(C) = 3pN log N — 1N log |D;| — 3pN.
From (3.1), (3.2) and (3.4) we obtain
N = {L(&)/L(Q)}m’ = |Dy|/|Ds| = [1 + N@'Dg_lﬁ]_l.

This proves
TaEOREM 3.1. The LR test for testing H versus K, in the case of unknown covari-

ance matriz T rejects if
(3.5) Na'D, 4

where D, 1s given by (3.3).
We now derive the distribution of the statistic Ng'D; '§.
Nz — @) is normally distributed with expectation zero and covariance

matrix
(211 212l >
Ty /)

2
c

v
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The random variable A is Wishart distributed with parameters p, £, N — 1 and
is independent of N*(Z — @). So D, is the sum of two independent Wishart
matrices with different parameters, which is not a Wishart matrix, and the dis-
tribution of the test statistic is not of known form. However, in Theorem 3.2 we
give an upper‘and lower stochastic bound with familiar distributions.

THEOREM 3.2. Over % the statistic N§'Dy ' is stochastically larger than a
X'/ Xx—ps1-variable and stochastically smaller than a X'/ Xx—p-variable.

Proor. For a positive definite matrix G and a matrix F of rank 1 (F = zy’) the
following expansion holds:

(G+F)7'=G6" - (1+y6z) (G 'z)(y¢™)

(see, e.g., Roy-Sarhan [6]). If G and F are symmetric (F = yy’) the matrix is
positive definite and the inequality

(3.6) x¥G7'x 2 x'(G + F)7'x, x#0

holds.
Applying (3.6) twice, the first time with G = A,F = N(X — @)(X — #)’, the
second time with G = D, , F = N#@' yields the stochastic ordering

(3.7) N§'A7'g = Ng'D,'a = N¢'D, s

The random variables A and D; have Wishart distributions with parameters p,
=, N — 1land p, =, N, -respectively. Conditioned on fi¢zy = 0 the distributions of
Ay 1 and Dy,,, are again Wishart distributions with parameters k, g,
N—-1—p+4 kandk, 291, N — p -+ k, respectively. The distributions of the
variables of the first and third term in (3.7) now follow from [1], Theorem 5.2.2.

In virtue of this theorem and the intractability of the exact distribution of the
test statistic, we now modify test (3.5) slightly and

)

(3.8) reject H if Ng'A'a = ¢, where A is the sample covariance matrix.

Since X and A are independent random variables i) and Ag 1 are also independent
and the distribution over % is therefore the ratio of two independent x’-variables.
THEOREM 3.3. The test statistic Ng' A~ & = ¢’ is distributed under H as

2 w(p, k)P[B(k/2, (N —p)/2) = ],

where the weights w(p, k) are the same as in Theorem 2.2, and B(v1, v2) is a beta
distributed random variable with v , v, degrees of freedom.

Proor. The modified test statistic (3.8) depends on @ in the same way as in
the case of known covariance matrix. The proof is the same as the one of Theorem
2.2 when X is replaced by A. The arguments used there carry over to this case.

4. Remarks. In [5] the weights w(p, k) are computed for dimensions p = 2, 3
and for certain correlation structures also for general p. Tables for 1;,he cut-off-
points ¢’ are given for p = 2 and the alternatives K, : 4 = 0 and Ko : g = O or
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u = 0. Furthermore a comparison between the power of the test (2.7) and the
usual x’-test for unrestricted alternatives is included.
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