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1. Introduction. In constructing admissible two sample rank order tests one
needs information on the ordering of probabilities of rank orders. Specifically,
if, under some restriction of the class of alternatives, the rejection region of a
test contains the rank order z then it should contain all rank orders more proba-
ble than z. '

This paper contains several theorems on such orderings under various alter-
natives, especially the location parameter case for symmetric distributions.

2. Notation and assumptions. X = (X;, ---, X,) and ¥ = (Y1, -+, ¥3)
are samples drawn from absolutely continuous populations with densities f(-)
and g¢(-), respectively. F(-) and G(-) denote the corresponding distributions.
W = (Wi, -+, Wmnn) denotes the order statistics of the combined sample,
(X,Y)= (X1, , Xn,Y1,-+,Y,),and Z = (Z1, +++ , Zmtn) is a random
vector of zeros and ones whose 7th component, Z; , is 0 if W, comes from f(-) and
1 if W; comes from g(-).

Let z = (21, +++, 2msn) be a fixed vector of zeros and ones; we define the
complement of 2,2° = (21, -+ , 254n) and the transpose of 2, 2" = (21, -+ , 2htn),
to be the vectors whose 7th components are 1 — 2; and 2,4n41-: , respectively.
P(z) = Pr {Z = z} denotes the probability of the rank order z.

Since the following restrictions of f and ¢ are assumed in several results below,
we list them now along with a shorthand notation.

RestrIcTIONS. ST: f(x) = f(—2) and g(x) = f(x — 6), where 6 is a non-nega-
tive constant.

U:f(z) 2f@)if0<z <z’ ora’ <z =0.

MLR:g(y)/f(y) 2 g()/f(z) if z < .

N:f(-) and g(-) are normal densities with common variance 1 and means 0

and 0, respectively, where § = 0.
Note. ST stands for Symmetry and Translation and U implies that f(-) is
Unimodal. It is assumed, without loss of generality, that the mode of f(-) is the
origin. MLR stands for Monotone Likelihood Ratio and N stands for Normality.
Of course N is the strongest and implies the other three.

3. Theorems on the ordering of rank order probabilities. The general expres-
sion for P(z) is

(3.1) P(z) = min! [ -+ [ TT5" ke, (8) dts,
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where
he () = f(t:), 2z, =0,
=g(), =2=1,
and the region of integration is — < #t; £ +++ = tuyn < . In particular,
under ST
(3.2) hai(8:) = f(ts — 62:).

TueorewM 1. If ST holds, then for all 0
(i) P(z]6) = P(z'| — 0) and

(ii) P(z]|6) = P(z°| — 9).

Proor. Recall the definition of 2* and 2° and note that f(z) = f(—=z). In the
1ntegral (3.1) (usmg (3.2)) make the transformation

i) t; = —L,,,+,,+1_ (z = , m + n) or

(11)tz—0+t (1—12 m—l—n)
and (i) or (ii) follows at once.

TurorEM 2. (Savage (1957) p. 975.) If ST holds, then for all o,
P(z|0) = P(z‘c | 6).

Proor. Note that 2 = (2°)°. Thus, by Theorem 1, P(z°|0) = P(2'| —0) =
P(z|9).

THEOREM 3. (Savage (1956) p. 594.) If MLR holds and z and 2" differ only in
thesr ith and ¢ + 1st components with (2; , zir1) = (0, 1) while (2, 2i41) = (1, 0),
then P(z) > P(2').

The following discussion and Corollary will give a method for moving from
the partial ordering induced by Theorem 3 for sample sizes m and n to the cor-
responding partial ordering with sample sizes m — 1 and n or m and n — 1. Re-
peated use of the Corollary would allow one to work from any combination of
sample sizes down to all smaller combinations of sample sizes. If z is a rank order
with m 0’s and n 1’s, let 20(k) be formed by deleting the kth 0 in z where
1 £ k £ m. As an example consider z = (010011) then 2zo(2) = 2(3) = (01011).
One defines z;(k) in an analogous manner.

CoroLLARY 1. Under the conditions of Theorem 3, one obtains: P(zi(k)) >
P(2)'(k)) provided z(k) 5 2o’ (k) and P(z.(k)) > P(z'(k)) provided z (k)
21 (k). The partial orderings of the zo(k) and z,(k) are implied by Theorem 3.

ProoF. z and 2’ are of the form: z = (2'012°), 2 = (2'102°). Clearly z(k)
and 2’o(k) are of one of the following forms: zo(k) = (20'(k)012%), 2’ (k) =
(20°(k)102°) or z(k) = (2'12°), 2 (k) = (2'12%) or zo(k) = (2'01z°(k™)),
20 (k) = (2'1025°(k™)), where k* = k — 1 — % of 0’s in 2'. In any case the
conclusion holds.

Remark. If 2z and 2" have a common number of zeros and ones and are such

that Y iy (2f —2;) = 0,fori =1, ---,m + n, then there exist 2!, 2°, - - - , 2%,
where 2* = (21", 2", - -+ , &) fork =1, .-+ ,pand 2’ = 2/, 2° = 2, such that for
k=2, . --,p, 2" and 2" differ in exactly two adjacent components, 4 and 4 + 1

k—1 _k—1

with (z”:k ) z,;ld-l) = (07 1) and (zilc ’ Zik+l) = (17 0)
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For example: z = 2* = (0010101), 2° = (0010110), z* = (0011010), 2’ = 2' =
(0101010). Therefore we have the following result:

COROLLARY 2. If MLR holds and z and 2’ have the same number of zeros and ones
and are such that Y iy (27 — 2;) = 0,fori =1, --- ,m 4+ n, then P(z) = P(2').

The properties of the orderings implied by Theorem 3 are discussed in detail in
Savage (1964).

In succeeding pages we employ the notation (z, w), where w = (w1, +++ , Wptq)
and z = (21, **, 2min), to denote the combined vector (21, -+, Zmin,
Wy, - 7wp+q)-

TueOREM 4. If ST and U hold, 8 > 0, and z contains the same number, r, of zeros
and ones, then
(i) P(001,2") > P(z, 001) and
(ii) P(100, z*) > P(z, 100).
Proor. (i) By Theorem 1, a necessary and sufficient condition for the con-
clusion is that P(z, 011) > P(z,001), which, by (3.1) and (3.2) is equivalent to
the inequality

(33) I = [ZoH(z)F(6 — 2)[f(x — 6) — f(x)]dz > 0, forall 6 > 0,

where
H(z) = (r + 2)1(r + 1! [ oo Jop I (6 — 28) dtdf (ben) dtara ,
where Ropp1 = {t;: — 0 <= -+ £ boppn S 2.

We note here for future use that

H'(z) = (d/dx)H(x)

(3.4) =f@)(r+ D10 +2)[ - [r, TS f(t — 62:) dt:
= f(z)G(z), say,
where Ry, = {t;:— 0 < £ -+« £ to £ 2}

Let ¢(z) denote the integrand in (3.3) and let
I = [5i(x) de, I = [°% i(z) de.

In I, make the change of variable =  — z’. This yields, after replacing z’ by
z in the transformed I, and adding I, and I,

I = [o2[H(z)/F(z) — H(6 — z)/F(6 — )]
‘F(2)F(0 — 2)[f(z — 8) — f(z)] da.
It is easily seen that STU implies [f(x — ) — f(z)] = 0 forz = 6/2. Therefore,
a sufficient condition for I to be non-negative is that
H(z)/F(x) =2 H(6 — z)/F(80 — x) for z = 6/2.

Since z = 6/2 implies x = 0 — z it suffices to show that H(z)/F(z) is non-
decreasing for all x. And for this to be true it is sufficient that H(z)/F(z) has
a non-negative derivative, i.e., that H'(z)F(z) — H(z)f(z) = 0 or, by (3.4)
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that G(z)F(z) — H(z) Z 0.Since G(z)F(z) — H(z) = 0atz = — o« it suffices
to show that G(x)F(x) — H(x) is non-decreasmg for all z, or that G'(z)F ()
+ f(z)G(z) — H'(z) = Oor, by (3.4), that @' (z) = 0, Whmh is clearly so.

(ii) The proof is analogous to that of (i).

The proofs of the next three theorems have several features in common which
we note here. They all state that if N holds then P(z) > P(z'). Equivalent
conclusions are P(2*°) > P(2’) and P(z) > P(z'*); one or the other is noted in
each theorem and is in fact what is proved.

The first step is to replace each P( - ) with its equivalent under (3.1) and (3.2)
and to change the order of integration so that a particular pair of variables is
integrated last. For the convenience of the reader this pair of variables will be
indicated by adding primes () to the corresponding entries in the z-vectors the
first time they appear.

At this point we have an inequality of the form f°° f S(z, y) dy dz > 0 as
a necessary and sufficient condltlon for the inequality P(z) = P(z’). By making
the transformation y — 2’ = w, z = &' we obtain the equivalent inequality
(omitting primes) [5 [Z S(z, z + w) dz dw > 0.

A sufficient condition for this inequality is that the inner integral is non-
negative for w = 0, i.e., that

I(w) = [Z,8(z, 2 + w)dz =0, for w=0.

Let Iy(w) = [Y” S(x z + w) dz and Iy(w) = I(w) — Ii(w). In I,(w)
make the transformation z’ = § — z — w; this makes the ranges of integration
of I;(w) and I(w) coincide.

By adding I:(w) and I»(w), we obtain I(w) = [G_uye T(x, w) dzx, where
T(z,w) = [S(z,z+w) + S0 — 2z — w,0 — z)].

In each case we show that T'(z,w) = Oforz = (8 — w)/2and w = 0, which, of
course, implies I(w) = 0 forw = 0.

In the proof of Theorem 5 we shall repeat in detail the argument just outlined.
By Theorem 1 (i) it is necessary to consider only § > 0 in proving Theorems 5
and 6.

TaEOREM 5. If Nholds and 8 7 0, then P(100°01) > P(010"10) or, equivalently,
P(10'0°0'1) > P(10°170'1). (2" denotes a vector of r 2’s.)

Proor. By (3.1) and (3.2), the inequality P(100'01) — P(101'01) > 0 is
equivalent to the inequality

J oo S £t — O ()f (traa)f (b — OIS 5(20)
— T ft: — 01 dty - - - dtrya > 0,
where Ry = {t;: —o < t; £ -+ = f44 < }. Integration of the above with

respect to all the variables but ¢, and ¢,.5 (call them z and y, respectively), yields
the equivalent inequality

[2 [2 F(z — 0)F(6 — y){[F(y) — F(2)I'
— [F(y — 0) — F(x — 0)I'}f(x)f(y) dy dz > 0.
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If we transform the integral by letting z = 2’ and y = z’ 4+ w we get the in-
equality

(85) [o [ZuF(z — 0)F(6 — z — w){[F(z + w) — F(z)]
—[Flx+w—0) — F(z — 0)]'}f(z + w)f(z) de dw > 0.

Let I (w) denote the inner integral. If I(w) = Oforall w = 0, then it is clearly
so that f?f I(w) dw > 0, therefore a sufficient condition for (3.5) (hence for the
conclusion of the theorem) is that I(w) = 0forw = 0.

Let S(w, z) be the integrand in (3.5). Then

I(w) = [GwyeS(w, 2) dz + [4"” S(w, z) da.

In the second integral let ' = 6 — z — w; the result, after combining the two
integrals, is

I(w) = [G-wp F(@)F(6 — 2 — w)f(z + w)f(z — 0)
AF@@+w—0)—F(x—0)] — [F(z+ w) — F(x)['}
JF(—z — w)f(x +w — 0)/f(x + w)F(§ — 2 — w)
— F(z — 0)f(z)/f(z — 6)F(x)] dz.

Clearly, a sufficient condition for I(w) to be non-negative for w = 0 is that
the integrand above, callit 7'(z,w), is non-negative forw = Oandz = (6 — w)/2.

The expression in braces in T(z, w) is non-negative if and only if
[Flx +w —8) — F(x — 0)] — [F(z + w) — F(z)] = 0, for w = 0 and
z = (0 — w)/2. This is clearly so since the left member of the inequality is the
difference of the probability contents of two intervals one of which is more central
than the other.

By the Corollary to Lemma 1 of Appendix I, the term in square brackets in
T(z, w) is non-negative forz = (6 — w)/2 and w = 0. Therefore T'(x, w) = 0.

TaEOREM 6. If N holds and 5 0, then P(0'01100") > P(0710010") or, equiva-
lently, P(1'1'001'1") > P(071'001°0").

Proor. Proceeding as was outlined above, one obtains, as a sufficient con-
dition for the inequality P(171'001'1") > P(071'001'0"), the inequality

T(z,w) = [(2r + 2)1/2(rD]f(z — 8)f(z + w — O)f@)f(x + w) [(*(z, w)
— Gz — 6, w)){[F(x — 0)F(6 — z — w)] — [F(@)F(—z — w)['} 2 0,

for6 = 0, w = 0,and z = (6 — w)/2, where

(36) Gz, w) = @) F(z + w) — F@)l/fl(x + w)/2')f(z/2").

By the Corollary to Lemma 2 of Appendix I, withr = w/2,y = z — r, the term
in square brackets (in the expression for T(z, w)) is non-negative for 6 = 0,
w=0,andz = (6 — w)/2.

Therefore T'(x, w) is non-negative provided the term in braces is non-negative.
This term is non-negative if and only if
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TABLE 1
P(2) for selected values of 6 under condition N when m = 4 and n = 2 [from Klotz, (1962)]
/]
2
25 .50 10 1.5 20 3.0 4.0 5.0 6.0

000011 | .10454 | .15548 | .29662 | .47430 | .65377 | .90079 | .98380 | .99847 | .999914
000101 | .09313 | .12192 | .17290 | .19240 | .17020 | .07084 | .01398 | .00145 | .0.85
001001 | .08400 | .09871 | .11104 | .09580 | .06412 | .01411 | .00132 | .0,57 | .05121
000110 | .07955 | .08871 | .09032 | .07094 | .04340 | .00804 | .00064 | .0,24 0646
010001 | .07521 | .07903 | .07080 | .04837 | .02547 | .00341 | .00019 | .0s47
001010 | .07170 | .07158 | .05712 | .03397 | .01510 | .00127 | .0,35F | .0632%
100001 | .06450 | .05843 | .03941 |-.02055 | .00835 | .00068 | .0,231 | .0637F
001100 | .06433 | .05781 | .03771 | .01853 | .00688 | .00041 | .058 .0:6
010010 | .06415 | .05717 | .03607 | .01674 | .00572 | .00027 | .0s4 .01
010100 | .05753 | .04606 | .02357 | .00892 | .00250 | .0479* | .0¢75 0
100010 | .05500 | .04219 | .01992 | .00698 | .00181 | .0,48 .0438 0
011000 | .05317 | .03810 | .01647 | .00537 | .00131 | .0433 .0626 0
100100 | .04929 | .03392 | .01291 | .00366 | .00077 | .0413 .0,7 0
101000 | .04467 | .02798 | .00893 | .00215 | .00039 | .0s53 | .0;1 0
110000 | .04022 | .02290 | .00620 | .00130 | .00021 | .0523 | .0:1 0

[=N—NNeNoNeNeNeNe N Na

* Subscripts on the first zero after the decimal indicate the number of zeros to be en-
tered; for example, .0,85 stands for .000085.
t This appears to be a crossover but it is not clear that the eighth decimal is correct in

this calculation.

[Flx—0)F(0—2z —w) — F(z)F(—x — w)] =20, for z= (60— w)/2.

This inequality is proved in the Corollary to Lemma 3 of Section 5.

Tueorem 7. If N holds and 6 = 0, then P(0110, 2) > P(1001, 2) for any z or,
equivalently, P(z,1'001") > P(z,0'110").

Proor. Proceeding as was outlined above, one obtains as a sufficient condition
for the inequality P(z, 0110) < P(z, 1001), the inequality

T(x,w) = [H(z) — HO — w — 2){C°(z, w) — G*(z — 6, w)}
f@)f(z + w)f(z — 0)f(z +w — 0) 20,
forw =2 0andz = (0§ — w)/2, where G(z, w) is defined by (3.6) and
H(z) = [(m 4+ 2)! (n + 2)1/21 [ -+ [, 5" f(t: — 62:) dus,

where Ryin = {t;: — 0 <t £ -+ = twin < )}, m and n being the number of
zeros and ones in z.

It is shown by the Corollary to Lemma 2 of Appendix I that the term in braces
in T(x, w) is non-negative forw = 0and z = (0 — w)/2.

Clearly, H(x) is everywhere non-decreasing. Since z = (6 — w)/2 implies
20— w—z,wehave H(z) =2 H(§ —w —z),forw =0,z = (§ — w)/2. Thus,
the term in square brackets is non-negative, and, therefore, so is 7'(z, w).
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m=mn =2 m=3,n=2

0011 00011
lMLR MLR
0101 0(; r01
lMLR J MLR
ST 01001
0110 | 1001
MLR ] N
A4
1010 00110
MLR ST and U
v
1100 10001
N
v
01010
MLR
A 4
01100
N

11000

4. Examples and conjectures. Theorems 2 through 7 are “independent,” i.e.,
each of the theorems implies results not obtainable from any of the other
theorems. The point is illustrated by the following list: Theorem 2 implies
P(1001) = P(0110), Theorem 3 implies P(01010) > P(01100), Theorem 4 (i)
implies P(00110) > P(10001), Theorem 4 (ii) implies P(10001) > P(01100),
Theorem 5 implies P(10001) > P(01010), Theorem 6 implies P(001100) >
P(010010), Theorem 7 implies P(011000) > P(100100).

The following obvious conjecture is not true: If N and P(z) > P(2") then
P(22”) > P(2'2"). As a counter example consider: z = 01001, z° = 00110, and
2" = 0, then P(2) > P(2') and P(z2") < P(2'2").

The following diagrams illustrate the theorems of Section 3. The symbol
2 —ae 2 means P(z) > P(2') for & > 0 (under ST, STU, or N) under conditions
abc. C stands for Conjecture. The numerical results accompanying some of the
diagrams are extracted from tables of probabilities of rank orders under N com-
puted by Jerome Klotz (1962), (1964) and Roy C. Milton (1965).
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m=4n =2
000011
MLR
A
000101
MLR
v
001001

N

v
000110

001010 010001
. — - -
MLR — MLR
— C
001100~ 100001
N
N
010010
v MLR
010100 100010
MLR e
e
011000
N
Y
100100
MLR
b 4
101000
MLR
v
110000

Ordering from Klotz (1962)
and Milton (1965)

000011
000101
001001
000110
010001
. {001010
100001
001100
010010
010100
100010
011000
100100
101000
110000

* Crossover.

Note. MLR implies a simple ordering of the P(z) for n = 1. Hence the first
interesting case ism = n = 2. All diagrams derived are distributive lattices [see
Savage, 1964]. The conjectured diagram for m =4 and n = 2 is not distributive;
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Ordering from Klotz (1964)

m=n=3 and Milton (1965)
000111 000111
001011

MLR 001101 = 010011
N2 010101

001011 100011 = 001110}*

011001

MLR 100101 = 010110

J 101001 = 011010
010011 ST 001101 100110

110001 = 011100
LR MLE 101010

o . 110010 = 101100
001110 \iOOOII 010101 110100

~._C 111000
~
Sy m
001

011 * Crossover.
N
A 4
100101 ST 010110
MLR

Y

101001 sT 011010

C
MLR ~
~>
101010 011100 ST 110001

MLR
110010 3T 101100

MLR

MLR

v
111000

in particular it does not satisfy the Jordan-Dedekind chain condition, i.e., not all
chains from an arbitrary fixed z to (say) the least probable rank order are of the
same length.

The notation, crossover {Z, , denotes the existence of two values of 6,6, > 6: > 0,

such that P(z | 6,) > P(2' | 6:) but P(z | ) < P(Z | 6,).



m=4,n=3

0000111

l MLR
0001011
MLR
0001101 MLR 0010011
MLR MLR
MLR 0010101 MLR
MLR
MLR
0001110 0011001 0100011
MLR MLR
MLR N 0100101
MLR MLR
0010110 1000011 0101001
MLR
MLR VLR
< N |jMmLr
S
0011010 1000101 M1 R 0100110 0110001
STU MLR
STU
ML MIR \ MLR|N
U MLR N
0011100 STU 0101010 v 1001001
] , STU N
STU MLR
0101100 1010001 0110010 1000110
NS MLR
MLR S N MLR
MLR
\ MLR
0110100 1100001 1001010
MLR
N MLR
MLR 1010010
MLR MLR
0111000 1001100 1100010
MLR
MLR
MLR 1010100 MLR
MLR MLR
1011000 MLR 1100100

1101000
MLR

1110000
107

- w0



108 I. R. SAVAGE, MILTON SOBEL AND GEORGE WOODWORTH

Ordering from Klotz (1962) and Milton (1965)

m=4,n=3
0000111 0101010
0001011 1000110,
0010011 1010001
0001101 0110010
0100011 0101100
0010101}* 1001010,
0001110 *4{1100001
0011001 0110100
*{0100101 }* 1010010}*
1000011 1001100
0010110 01110005 *
0101001 1100010
0011010 1010100
1000101 1011000
0100110} 1100100
0110001 1101000
0011100 . 1110000
1001001

* Crossover.

The ordering from the numerical tables cannot be considered definitive since
less than 10 values of 8 have been used in the preparation of these tables. The
diagram lines marked C, correspond to the conjecture that a rank order with a
larger value of the Wilcoxon statistic is more probable than one with a smaller
value. In tables prepared by Milton (1965), there are many cases for larger
sample sizes where this conjecture is shown to be false. In fact if the indicated
crossover in this situation is verified, the conjecture would already be false for
m = 4andn = 2.

For fixed m and n we define N (z) and N’(z) to be the number of rank orders
less probable and more probable than z, respectively. The ideal situation for con-
structing tests of hypothesisis to have N(z) + N'(z) = (™t") — 1, i.e., the rank
orders form a chain. The Table 2 gives N (z), N'(2) and N (z) + N'(z) form = 4,
n = 3 for the ordering implied by Theorem 3 alone and for the ordering implied
by Theorems 1 through 7. Note that the second ordering is an improvement over
the first in the sense that N(z) 4+ N’(z) for the second ordering is not smaller
than that for the first. In particular there is considerable improvement in
z = (1000011), (0010110), (0110001) and (0011100).

APPENDIX I

Properties of some functions related to the normal density function. In the follow-
ing f(-) and F(-) denote the standard normal density and distribution functions,

respectively.
Lemma 1. If 6 is a positive constant, then G(z) = F(x — 0)f(x)/F (x)f(x — 0) s

non-increasing for all x.
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TABLE 2*

MLR MLR or STU or N
N(z) N’} N()+N'(z) N() N’(z) N(2) + N'(2)

0000111 34 0 34 34 0 34
0001011 33 1 34 33 1 34
0010011 30 2 32 30 2 32
0001101 29 2 31 29 2 31
0100011 24 3 27 25 3 28
0010101 27 4 31 28 4 32
0001110 19 3 22 22 3 25
0011001 21 5 26 24 5 29
0100101 22 6 28 22 6 28
1000011 14 4 18 19 5 24
0010110 18 6 24 21 7 28
0101001 20 8 28 20 8 28
0011010 15 8 23 17 8 25
1000101 13 8 21 16 8 24
0100110 15 9 24 15 11 26
0110001 12 9 21 16 9 25
0011100 9 9 18 11 11 22
1001001 11 11 22 12 12 24
0101010 13 13 26 13 13 26

* To complete the table note that N (2t) = N'(z).

Proor. A sufficient condition for the monotonicity of G(x) is that its derivative
is non-positive for all z, or, equivalently, that

fl@ —0)/F(z — 0) — f(z)/F(z) =6

for all . It follows from (3) of Sampford (1953) that the derivative of f(z)/F(x)
isin (—1, 0); hence the result follows from the mean value theorem.

CoROLLARY. If w and 6 are non-negative constants, then G(8 — z — w) = G(x)
forx = (6 — w)/2.

Proor. The conclusion follows at once from the fact that — x — w < z when-
everz = (8 — w)/2.

LemMma 2. If r is a positive constant, then H(y,r) = [F(y + r) — F(y — r)l/
fl(y + ) /2 f[(y — 7)/2"] is non-decreasing for y = 0.

Proor. A sufficient condition for H (y, r) to be non-decreasing for y = 0is that
its first derivative is non-negative, or, equivalently, that

Hiyy,r) =fly+r)—fly—r) +ylFly+r)—Fly—r)] 20

Since H;(y, 0) = 0 it is sufficient to show that Hi(y, r) is increasing in r for
r = 0 and fixed y = 0, or that

(d/dr)Hy(y, r) = rlf(y —r) — fly + )] 2 0,

for y = 0 and r = 0, which is clearly so.
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COROLLARY. Let 6 be a positive constant, then [H (y,r) — H*(y — 6, 7)] = 0 for
ally =z 6/2andr = 0.

Proor. The result follows easily from Lemma 2 and the fact that H(y, r) is
symmetric about y = 0 (for fixed »r = 0) and is non-negative.

LemMA 3. Let r be a positive constant, then F(y — r)F(—y — r) is a non-increas-
ing in y fory = 0.

Proor. It is enough to show that the first derivative is non-positive, or equiva-
lently, that f(y + r)/F(y +r) < f(r — y)/F(r — y),forr <0,y = 0.

Since equality holds for y = 0 it is enough to use that f(¢)/F () is non-increas-
ing for all ¢ [Sampford (1953)].

COROLLARY. If 6 and w are non-negative constants, then F(x — 0)F (6 — x — w)
— F(x)F(—x — w) 2 0forxz = (6 — w)/2.

Proor. Let J(y,r) = —F(y — r)F(—y — r). Using this notation we are to
show that

J(?/) 7‘) ’—J(y - 0) T) = 0

fory = 6/2 and r = 0 where J(y, r) is non-decreasing for y = 0 and symmetric
about y = 0. This is proved as in the corollary to Lemma 2.

APPENDIX II

Some nonlinear relationships between rank order probabilities. In Savage (1960),
p- 520, linear relationships like the following have been presented :

P(011) = [P(0110) + P(0101) + 2P(0011)]/2.

A pair of non-linear relationships is obtained below. Note that no restriction is
made of the densities f(-) and g(-).
THEOREM 8.

A: P(0110) = 2P(011) — 2P*(01),
B: P(0101) = 2P*(01) — 2P(0011),
Proor. We note first that
P*(01) = [[Z F(z)g(z) da’
= JZa [Za F(z)g(2)F (y)g(y) dz dy
=2 2. [T F(2)F (y)g(2)g(y) dy dz.
Then to prove A, one has
P(0110) = 4 [Z, [T F(z)[1 — F(y))g(2)g(y) dy dz
4 [2, 7 F(z)g(x)g(y) dy dz — 2P*(01)
2P(011) — 2P*(01).

Il

Il
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And to prove B, one has
P(0101) = 4 [, [ F(2)[F(y) — F(2)lg(x)g(y) dy do
= 2P*(01) — 4 [*., [7 F*(2)g(x)g(y) dy dz = 2P*(01) — 2P(0011).
COROLLARY 1.
A’ P(1001) = 2P(100) — 2P*(10),
B’: P(1010) = 2P*(10) — 2P(1100).

Proor. Interchange F and G (f and g) in the proofs of A and B.

CoROLLARY 2. P(0011) + P(1100) = 2[P(011) 4 P(100)] — 1.

ProoF. The set of all possible rank orders for m = n = 2 is an exhaustive
set of mutually exclusive events. Therefore

P(0011) + P(1100) + P(0101) + P(1010) + P(1001) + P(0110) = 1.

Substituting the right members of A, B, A’ and B’ for P(0110), P(0101),
P(1001) and P(1010), we obtain

P(0011) + P(1100) = 2(P(011) + P(100)] — 1.

Probabilities for all of the rank orders with m = n = 2 can be evaluated in
terms of the probabilities for smaller sample sizes and P(0011) or P(1100).
More generally, for n = 2 and arbitrary fixed m = M let

z = (07 "'70’ 1,07 "';0,1)0)""0)’

where there are 71, 7, and 73 0’s respectively in the above sequence of 0’s and
where r; 4 ro + 73 = M. Then

P(z) = M2Vl + ¢ [—ocegyco P (@)F(y) — F@)*1 — F(y)]*
g(x)g(y) dz dy
= [M12!/r1lraVrs!] D 1<y <rp1zipsr () () (= 1)t
e facaguc FT (@) TR (y)g(2)g (y) da dy.
For a + b < M, the integral
o [eacomyce F(@)F*(9)g(2)g(y) dz dy

can be expressed as a linear combination of probabilities of rank orders for
m < M and n = 1 or 2. Therefore if all rank order probabilities for m < M and
n = 1 and 2 have been computed, the only new integrals required are of the
form

Ai = f e f—w<¢§v<°° F'(x)FM_'(y)g(x)g(?/) dx dy) i= 0) ) M.
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Since

Ai4 Ay = [ - [cocozice [FH(@)F" 7 (y) + F* ' (2)F'(y)]g(2)g (v) dz dy
= [0 [Zo Fi(@)F" " (y)g(2)g(y) da dy

[[2= F'(2)g(2) dallfZa F* " (y)g(y) dy],

one needs to compute only one of the pair (4;, Ax_s).
For n > 2 we must consider n-fold integrals of ‘the form

A, -+ 0) = [ o0 [ocay g smaco L =1 F(25)g () daj

as above only those integrals for which D, ¢; = M need be evaluated. Then if
any of the ¢; = 0 the dimensionality of the integral is easily decreased. Generally,

D A(, vy 1) = [P, ---,0,1)

where P(0, ---,0, 1) contains 7; 0’s,j = 1, - - - , n, and where the summation
is over all permutations of (1,2, ---, n).
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