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(Abstracts of papers presented at the Central Regional meeting, Lafayette, Indiana, March
23-25, 1966. Additional abstracts appeared in the February issue.)

3. A two-sample estimate of the largest mean. KHURSHEED ALAM, Indiana
University.

A two-sample procedure is considered for estimating the largest mean of K = 2 normal
populations with a common unknown variance. If the total sample size is fixed equal to =,
say, we take m observations from each of the K populations in the first experiment and the
remaining n — mK observations in the second experiment from the population correspond-
ing to the largest sample mean observed in the first experiment. The sample mean of this
population is the estimate of the largest mean. The problem is to determine a proper choice
of the value of m representing the distribution of the total sample size between the two ex-
periments. With squared error divided by the common variance as the loss function
a minimax value of m is given by U, = .645 and U; = .68, approximately where Ux =
m/(n — mK + m), the suffix of U representing the number of populations considered. Ad-
missibility of the above estimate and the sampling rule is also discussed.

4. On the large sample properties of a generalized Wilcoxon-Mann-Whitney
statistic (preliminary report). A. P. Basu, University of Minnesota.

Let there be two samples X1, -+ , Xmand Y1, Yz, -+, Y, (N = m + n) from two
populations with continuous cdf’s F (z) and G (y). Let the first 7 ordered observations (out
of the N combined observations) contain m; z’s and n; y¥’s (m; + n; = ¢) where m; and n;
are random numbers. Then to test the Hy: F = G against the alternative that they are
different, Sobel [Technical Report No. 69, University of Minnesota, (1965)] has proposed
the statistic V™" = > .%_; (nm; — mn;) based on the first r ordered observations only. In
this paper the large sample properties of V7*" have been studied. The statistic is shown to
be asymptotically normally distributed in the null and the non-null case, and is consistent.
An expression for its efficacy is derived. Finally the test is compared with other tests pro-
posed for life testing. K sample extensions of the problem are also considered.

5. Distribution-free independence tests. C. B. BeLL and K. A. Doksum,
Université de Paris. (By title)

Let @ be the direct product with itself of the power group of the group of 1-1 strictly
increasing continuous transformations of R; onto Ry ; S, the direct product with itself of
the permutation group of n elements; and (z1, %), -+, (Z», Ya) be written
2= (T1, ** y%n Y1, ,Yn). The (n!)2images S(z) for a.e. z in R, constitute the z-orbit;
and v is a B-Pitman function if it assumes (n!)? distinct values on a.e. orbit. T'(v(z)) =
> e{v(z) — v(y(2))}, for summation over 8, is a B-Pitman spatistic; and a statistic V is
DF (SDF) if its distribution is invariant over H, (over the G-equivalence classes of Ho U Hi).
(A) () Each DF statistic has a discrete distribution with its probabilities multiples of
(n!)-2. (ii) There exists a DF statistic with any preassigned discrete distribution whose
probabilities are multiples of (n!)~2. (iii) V is DF (SDF) iff V is equivalent to a function of
some B-Pitman statistic (non-sequential rank statistic). (B) For a “mildly regular’’ para-
metric alternative family h (8, z) (i) the MP-DF statistic is given by Lehmann-Stein (1949),
(ii) the locally MP-DF statistic is a B-Pitman statistic with » = (37/86")k | (6 = 0) where
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r is the smallest integer for which v is not invariant wrt S. (iii) for nonparametric Bhuchong-
kul (1963) alternatives, the normal scores test asymptotically maximizes minimum power.

6. Imbedded Markov chains in queueing systems M/G/1 and GI/M /1 with
limited waiting room (preliminary report). U. N. BuaT, Michigan State
University.

Let Q. be the number of customers in the queueing system M/G/1 (Poisson arrivals,
arbitrary service times and single server) with a limited waiting room capacity c, soon after
the nth departure; {@.} is a Markov chain satisfying the recurrence relation Q. =
min {¢, max (X, Qn-1+ X.—1)}, where X, is the number of arrivals during the nth service
time. The basic process of this chain is¢ + S,— nfor whichweget F{?’= Pr {i + 8, — r <
cUSr<n)i+8a—n=j} =k ;= 2al(c+1—75)(n—m)k§" ™o 1y ki1,
(0=<1,j<c),where 8, = D X;and Pr {S» = j} = k§”). By combinational arguments the
generating function %:;(z) of the transition probability °P{? = Pr{Q. = j, @ <
c(l =r<n)|Q =1} 1] =c canbederived as “pi;(2) = fi;j(2) + fu(2)f1;(2) — fo;(2)]-
[1 + foo(2) — Fio(2)]™, where fi;(z) is the probability generating function of F{?’. The
general transition probabilities of Q. follow from the fact that the state of overflow of the
waiting room is a recurrent event. A similar study of the queueing system GI/M /1 (arbi-
trary inter-arrival times, exponential service times and single server) depends on the basic

process ¢ + n — S, .

7. Some convergence theorems for linear combinations of independent random
variables. Y. S. CHOw, Purdue University.

Let an, an: be real numbers and z, be independent random variables such that
E exp [txa] < exp [?]for —» <t < w,n=1,2, --- . TaEOREM 1. If D>_2_; a2, = o(log™'n)
and Th= Z,‘:‘;_l Gnms , then T, — 0 a.e. THEOREM 2. If D 2 1 a.? logl""sn < o for some
8> 0andf(t) = Z;‘f_lanx,. cos nt, then there exists another stochastic process g(t) such that
J(@) = g(t) a.e. for each t and g(¢) is a.e. sample continuous. THEOREM 3. Let
bn = Gn — Gner = 0 forn 2 2,01 = a1 > 0, an — o and b = O(an/log log a,). Then
37 bm¥m/an — 0 a.e. COROLLARY. Let y. be independent, By, = 0 and Ey.? = 1.
If X8 1 akn=1, then nt D21 Gumyn — 0 a.e. Theorem 1 extends a result of Hill, Pacific J.
Math. 1 (1951). Theorems 2 and 3 are generalizations of results due to Salem and Zygmund,
Acta Math. 91 (1954). The corollary was conjectured by Leon Gleser.

8. Non-parametric empirical Bayes procedures for selecting the best of k
populations. Joun J. DEELEY, Sandia Corporation.

Let w1, w2, - -+ , mx be k populations and corresponding to each population let X; be an
observable random variable with density f(z | w;) which is either continuous or discrete;
w; being a parameter belonging to some set of real numbers Q. We define the best population
to be that population whose corresponding parameter is largest. We assume the existence
of an unknown G; , a distributionon @ (z = 1,2, .- | k); and the availability of prior ob-
servations (zu , wi), (Tos , w2i), +*+ , (Tni, wni) o0 X; , not w; , for each ¢ = 1,2, --- , k.
If (i) BlX:|w] = [xaf(x|w)ds = ws,and (i) [x2%(x|w)de < Ci+ Cows for some
integer r = 2, then procedures, ¢, (based upon the n prior observations), are derived for
selecting the best population. ¢, is called empirical Bayes because its risk approaches that
of the Bayes procedure;i.e. (iii) lim.» B (t» , @) = R(te , G) where tqis the Bayes procedure
with respect to G (t¢ is unknown since @ is unknown) under the linear loss function; and
G is a member of the family ¢ = {J]%_; G: : G; a distribution on @ with [g «" dG:i(w) < «}.
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In this paper it is shown that the condition (iii) holds for the derived procedures for G ¢
C by using a theorem of Robbins (Ann. Math. Statist. 836 (1964) 1-20) and conditions (i),
(ii). The results are termed non-parametric in the sense that only assumptions about the
mean of the random variable and about the relationship of the 2nd moment of f to the
rth moment of G were made.

9. Estimation of the number of trials in the binomial case when several ob-
servations are available (preliminary report). Dorian FELDMAN and
MarTiN Fox, Michigan State University.

Let X1, --- , X» be independent binomial random variables with known probabilities
of success for each sequence of trials. Assume each sequence of trials is of the same but
unknown length r. Est;mates of r and their asymptotic properties are discussed. Motivated
by the above for large r,let X1, -+, X. be independent N (u, u) random variables. It is
shown that the minimum variance unbiased estimate of uis (Z/n)ne(nZ)} /I (na2yr2 (nZ)}
where Z = D>_T X:? and I, is the modified Bessel function of first kind of order ». The vari-
ance of this estimate is the Cramér-Rao lower bound, 2u?/ (4nu + 3n).

10. Maximum-likelihood estimation, from singly censored samples, of the
location parameter of an extreme-value distribution with known scale
parameter. H. LEoN HARTER and ALBERT H. MOORE, Aerospace Labora-
tories, Wright-Patterson AFB and Air Force Institute of Technology,
Wright-Patterson AFB.

If the random variable T has the two-parameter Weibull distribution with cumulative
distribution function F (¢; 9, K) = 1 — exp [(—t/6)*], where 0 is the scale parameter and K is
the shape parameter, then the random variable X = In T has the (first) extreme-value
distribution of smallest values with cumulative distribution function F(z; u, b) = 1 —
exp {—exp [(x — u)/b]}, where v = In 6 is the location parameter (mode) and b = 1/K is
the scale parameter. This well-known fact makes it possible to obtain the maximum-likeli-
hood estimator @ma | b of u, based on the first m order statistics of a sample of size n, when
b is known, by a simple transformation of the correspondmg estimator of # when K is known
Useis made of the fact that @ms | b = In 8, | K, where 2m (bmn | K)X/6% has the chi-square
distribution with 2m degrees of freedom, to set confidence bounds on u. The probability
density function of dmm | b, whic}x for given m is the same for any n = m, is obtained by a
simple transformation of that of 6, | K. Integration yields expressions, involving digamma
and trigamma functions, for the expected value E = E(@mn | b — u) and the variance
V (@mn | b). Values of E/b(6DP) and of V/b2(6DP) are tabulated for m = 1(1)100. By sub-
tracting the bias E(@mn | b — u) from @m» | b, one obtains an unbiased estimator %ms | b
which has the same variance as the maximum-likelihood estimator.

11. Fiducial theory and invariant prediction. R. B. Hora and R. J. BUEHLER,
Purdue University and University of Minnesota. (Invited)

The prediction of future observations z given past observations y is considered where
the joint distribution of (y, z) depends on an unknown parameter w, and the spaces { (¥, z)}
and {«} are simultaneously transformed by a group G = {g} essentially as in Fraser’s fiducial
theory. A function y (2) is called ““invariantly predictable” if ¢ (2:1) = ¥ (22) implies ¢ (gz1) =
¥(gz:). For such functions, prediction limits based on the marginal fiducial distribution
of ¥ are shown to possess a frequency interpretation. Best predictors of ¢ from an invariant
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decision-theoretic viewpoint are related to fiducial theory by means of the expectation
identity described in an earlier abstract (Ann. Math. Statist. 35 (1964) 455).

12. Bayes risk of asymptotically Bayes sequential tests. GARY LorpEN, North-
western University.

Schwarz (Ann. Math. Statist. 33 222-236) considered the following procedure for se-
quential testing in a Bayesian setting: stop when the a posteriors risk is less than ¢, the cost
per observation (and choose a decision with minimum a postertor: risk). Kiefer and Sacks
(Ann. Math. Statist. 34 705-750) proved under mild assumptions that the integrated risk of
this procedure is asymptotically the same as the Bayes risk, as ¢ approaches zero. The main
result, under a slight modification of the assumptions of Kiefer and Sacks, is that this
integrated risk exceeds the Bayes risk, which is O (c|log c|), by less than M¢c. Computation of
a sufficient M is possible in many common problems and is studied in detail for the general
problem with finite parameter space. Moreover, the Schwarz procedure (which has smaller
integrated risk of error than a Bayes procedure) has integrated ASN at most M larger than
that of a Bayes procedure, for all c. M = 11 suffices in the problem of three normal means
discussed on pages 710-713 of the paper by Kiever and Sacks. The key lemma states that
Bayes procedures continue sampling whenever the a posterior: risk exceeds Mec.

13. Estimation of the population median. D. M. MaramunuLo and R. H.
RopiNE, State University of New York at Buffalo.

In this note we discuss the properties of the sample median as an estimator of the popu-
lation median. We define the sample median, as usual, by: ¥ = Y or ¥ = 2-1(Yn + V1)
according as the sample size nis odd (n = 2m — 1) oreven (n = 2m),m = 1,2, --- . It is
shown that ¥ is a median unbiased estimator of the population median for odd sample
sizes, and for even sample sizes ¥ is median unbiased for symmetric populations, but it is
not so in general. A class of pdf’s for which the sample median is median unbiased and un-
biased is given, and it is shown that for symmetric pdf’s, ¥ is not a minimum variance
linear unbiased estimator of the population median. For symmetric populations, a class
of unbiased and median unbiased estimators for the population median is given.

14. Pointand interval _es'timation, from one order statistic, of the location pa-
rameter of an extreme-value distribution with known scale parameter.
ArBErT H. MoorE and H. Leon HARTER, Air Force Institute of Tech-
nology, Wright-Patterson AFB and Aerospace Research Laboratories,
Wright-Patterson AFB.

This paper derives a one-order statistic estimator @m» | b, for the location parameter of
the (first) extreme-value distribution of smallest values with cumulative distribution
function F(z; u, b) = 1 — exp {—exp [(x — u)/b]} using the minimum-variance unbiased
one-order statistic estimator for the scale parameter of an exponential distribution. It is
shown that exact confidence bounds, based on one-order statistic, can be derived for the
location parameter of the extreme-value distribution, using exact confidence bounds for
the scale parameter of an exponential distribution. The estimator for w is shown to be
bln Crmn + Tmn where Zm, is the mth order statistic from an ordered sample of size n from
the extreme value distribution with scale parameter & and Cn. is the coefficient for a one-
order statistic estimator of the scale parameter of an exponential distribution. Values of the
factor Cn , which has previously been tabulated for n = 1(1)20, are given for n = 21(1)40.
The ratio of mean square error of this one-order statistic estimator, @m. | b, to that of the
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maximum-likelihood m-order statistic estimator, #.. | b, is investigated by Monte Carlo
methods. A section on the use of the table to estimate the location parameter of an extreme-
value distribution with known scale parameter and a numerical example are included.

15. On selecting a subset containing the best of several discrete populations.
K. NaGgL, Purdue University. (Introduced by S. Gupta.)

From & populations a random variable z; , ¢ = 1, --- , k, is observed, which can attain
the integer values 0, - -+ , n: P(z; = j) = a;(t;) when the distributions are assumed to be
TP, with respect to #; . The objective is to select a subset which contains the populations
with the biggest parameter value ¢; by the procedure R: Select II; if z; = max; z; — d,d = 0.
A selection that contains the maximal II; is called a correct selection. For applications it is
important to know the minimum of the probability of correct selection. Because of the
TP,-property the minimum is obtained for & = & = --- = t; = ¢. In this case the prob-
ability of correct selection is of the form P(CS | R) = .7 a: ()[4 a;(t)]*. In this
paper the minimum of this expression is evaluated for arbitrary distributions, which gives
an estimation for the minimum of any special discrete distribution, e.g. the binomial or
power series distribution. It should be pointed out that the infimum of the probability of a
correct selection for the case a;(t) = ()& (1 — t)»* was evaluated in a paper by Gupta and
Sobel (1960) [Contributions to Probability and Statistics, Chapter 20]. .

16. On certain structural properties of the logarithmic series distribution and
the first type Stirling distribution. G. P. PaTiL and J. K. Wani, Penn-
sylvania State University and McGill University.

The logarithmic series distribution and its n-fold convolution which we call the first type
Stirling distribution have found applications in a variety of diverse fields. In this paper, we
study properties of their probability and distribution functions, moments, cumulants and
their inter-relations. We provide explicit and operational recurrence relations for moments
and cumulants. Lastly, we obtain a few characterizations of these two distributions.

17. Compound distributions of infinitely divisible distributions with exponential
family and with exponential type family. S. A. PaTiL, Colorado State
University.

The moment generating function of the compound distribution of infinitely divisible dis-
tribution with exponential family and the first moment of the distribution is obtained. The
moment generating function of the exponential type family is expressed in terms of the mean
function of the distribution. This is used to determine the compound distribution. It is
shown that if an analytic infinitely divisible distribution belongs to a distribution of ex-
ponential type family then dO.(w) = A(u)e*du(u), where log M(¢) = thi(r) +
fi"w etv — 1 — tu) dO, (u)/u?. Here, M (t) is the moment generating function of the infinitely
divisible distribution and the above equation is its Kolmogorov representation. Further
the mean function of the distribution %, (r) can be expressed as the Laplace transform of
A () /u. This determines the moment generating function of the exponential type family,
and from this moment generating function of the compound distribution can be determined.
Some illustrative examples are discussed.

18. Estimation of the location of the cusp of a continuous density (preliminary
report). B. L. S. Prakasa Rao, Michigan State University.

Under the usual regularity conditions on the density, it is well known that the maximum
likelihood estimator is consistent, asymptotically normal and asymptotically efficient.
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Unfortunately, these conditions are not satisfied for distributions like double-exponential
with location parameter §. Daniels, in his paper in the Fourth Berkeley Symposium, has
shown that there exist modified maximum likelihood estimators which are asymptotically
efficient for the family of densities f(z, 8) = Const. {—|z — 6|*}, where z and 6 range over
(—w, »)and § < k < 1. We show in this paper that hyper-efficient estimators exist for
0 when 0 < & < % and 6 is restricted to a finite interval for a wider class of densities. We
relate its asymptotic distribution to the distribution of the position of the maximum for a
non-stationary Gaussian process. The estimation problem is reduced to that of a stochastic
process and using theorems on convergence of distributions of stochastic processes in C [0, 1],
the asymptotic distribution is obtained. In fact, it can be shown that Bayes estimators for
6, for smooth prior densities, are also hyper-efficient and asymtotically the Bayes estima-
tion of @ is equivalent to the estimation of the location parameter for a non-stationary
Gaussian process.

19. The “secretary” problem. HErMAN RuBIiN, Michigan State University.

Leta;, %7 = 1, --+ , be a non-decreasing non-constant sequence of real numbers. Let
individuals be selected at random from a set of n, with the agreement that, while any two
can be compared, there is no other way of assessing the rank of an individual. Individuals
are observed sequentially, and may be either accepted or rejected. When an individual is
selected, the loss is a; if the individual is 4th in rank of the entire n. By looking at the ran-
domization instead as the selection of the arrangement of the individuals, the position of
the first, second, etc. being randomly selected in turn, the problem extends to n = . We
show (1) that the optimal procedure for n gives, for each m < n, a procedure whose risk
is no greater; (2) the risk for n = o« is the limit of the risks for finite n; and (3) that the
optimal procedure for n = « can be obtained by solving the differential equation arising
a8 the limit of the difference equations for the optimal solution for finite 7.

20. Some inequalities among binomial and Poisson probabilities. S. M. Sam-
vELs and T. W. ANpERsoN, Purdue University and Columbia University.

The binomial cumulative distribution function B(k; n, A\/n) = I;-:o Gy /n)i-
(1 — A/n)*i, which is well known to converge to the Poisson cumulative distribution funec-
tion P(k; \) = I]Lo e—\i/j!, is shown to be decreasing in n for k = A and increasing inn
for ¥k < X — A/ (n + 1). This, and other similar results, shows that using the Poisson as an
approximation to the binomial in certain statistical problems is conservative.

21. Monotonicity of rank order likelihood ratios. K. M. LAL SAXENA, University
of Nebraska.

Suppose that X1, -+, Xm ; Y1, .-+, Y, are mutually independent random variables.
The X,;’s and the Y.’s have the continuous distribution functions F(z, 6) and F(z, ) re-
spectively. Define the vector z = (21, --- , zx) as follows: z; = O(1) if the ¢th smallest in
the combined sample is an X (¥) and N = m + n. Denote by Py, ,(z) the probability of the
rank order z. Define zRz’ as follows: z; = 2z;’ forall ¢ = 1, ---, N except jand k (j < k),

z; = 2z’ = 0, zx = z;"= 1. If the interchanged components of z are at an end, then write
zR*z'. Whenever zRz’, the monotonicity of the rank order likelihood ratio Py,,(2) /P, (2"),
is exhibited in 6 and 4 for (a) a Lehmann family, (b) a uniform family and (c¢) one observa-
tion from a population having monotone likelihood ratio any number of observations from
another population. Whenever zR*z’, the monotonicity of the rank order likelihood ratio, is
obtained for families satisfying a condition possessed by a normal and a logistic family.
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With m = n = 2, the monotonicity of the rank order likelihood ratio is exhibited for a nor-
mal, a logistic and a double exponentla.l family. Monotonicity of the rank order likelihood
ratio is obtained in a neighborhood of § = 5 when the populations sampled have monotone
likelihood ratio. It is conjectured that the rank order likelihood ratio is monotone in both
the arguments when the sampled populations have monotone likelihood ratio.

22. Some nonparametric Bayesian decision problems. K. M. LAL SAXENA,
University of Nebraska. (By title)

Two sample nonparametric decision problems for single parameter families of distribu-
tions are considered, from the Bayesian viewpoint, when only the relative magnitudes of
the observations are known, for the paired comparison data, the rank order data and the
signed rank order data. The decision procedures are called nonparametric since they depend
on nonparametric statistics. The likelihood functions for the three kinds of data are as-
sumed to depend on the parameters of the sampled populations through H. A prior distribu-
tion is considered for the random variable H. The loss function for the Bayes estimation of
H is the squared error. Some analytic properties of the posterior distribution of H and the
orderings of the values of the Bayes estimate are obtained. Sufficient conditions are given
for the risk of the Bayes estimate to go to zero as the sample sizes go to infinity. The Bayes
two decision problem, the two decisions being H > hand H < k, with the (0, 1) loss function,
is considered for the paired comparison and the rank order data. Monotonic properties of
the Bayes decision procedures are obtained. Sufficient conditions are given for the risk of
the Bayes decision procedures to go to zero as the sample sizes go to infinity.

23. On the asymptotic theory of permutation tests. PRaNAB KumaR SEN, Uni-
versity of North Carolina, Chapel Hill. (Invited)

The object of the present expository paper is to present a systematic account of the
various aspects of the asymptotic theory of permutation tests. This includes a review of the
existing permutational central limit theorems by Wald-Wolfowitz-Noether-Hoeffding-
Dwass-Motoo and Hajek, together with some recent developments on this line by the pres-
ent author. The study of the asymptotic power properties of the permutation tests is also
made, and some further generalizations of the results of Hoeffding and Chernoff and Savage
are also considered here.

24. On the theory of rank-order tests and estimates for location in the multi-
variate one sample problem. PranaB Kumar SEN and MapaN L. Puri,
Unjversity of North Carolina, Chapel Hill and Courant Institute of
Mathematical Sciences, New York University.

In the multivariate one-sample location problem, the theory of permutation distribution
under sign-invariant transformations is extended to a class of rank-order statistics, and is
utilized in the formulation of a genuinely distribution free class of rank-order tests for
location. Asymptotic properties of these permutation rank-order tests are studied and
certain stochastic equivalence relations with a similar class of multivariate extensions
of one-sample Chernoff-Savage-Hajek type tests are derived. The power properties of these
tests are studied. Finally, Hodges-Lehmann technique (Ann. Math. Statist. 84 598-611)
of estimating shift parameters through rank-order tests is extended to the multivariate
case which includes among other results, the results obtained by Bickel (4nn. Math. Statist.
85 1079-1090 and Ann. Math. Statist. 36 160-173) as special cases.
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26. Use of truncated estimator of variance ratio in recovery of inter-block
information. K. R. SHAH, Michigan State University and Cornell Uni-
versity.

A preliminary step in the recovery of inter-block information is to estimate the ratio
of inter- to intra-block variances. Since the true value of this ratio exceeds unity, it is
usually recommended that its estimate should be truncated from below at unity. However,
some authors have used untruncated estimators of this ratio. In this paper it is shown that
for a class of estimators of the variance ratio, truncation leads to smaller variance for the
combined estimators of treatment differences. A table presented here serves to demon-
strate that much of the gain due to recovery of inter-block information could be lost by
using an untruncated estimator of variance ratio.

26. Computing the value of a stochastic sequence (preliminary report). DAvID
O. SieemunDp, Purdue University.

Let (zn, Fn)i<n be a stochastic sequence such that Elz,| <« and let v» =
ess:ec, sup E (x: | F.), where C., is the class of all stopping rules ¢ such that P(t = n) = 1
and Ez, exists. It is of considerable interest in the theory of optimal stopping rules to have
a constructive method for computing the sequence v» , 1 =< n. Previous investigations have
largely been directed at finding conditions under which considering the sequence
(Zn , Fn)i<n=<w, applying backwards induction, and then letting N — « yield the desired
result [e.g., Chow, Y. 8. and Robbins, H. E., Zeit. Wahrscheinlichkeitstheorie 2 (1963)].
This paper presents completely general methods for computing the sequence v»., 1 = n.
The crucial point of the argument is proper application of a martingale convergence theorem
much in the fashion of Snell [Trans. Amer. Math. Soc. (1952)]. Applications of the abeve
results to the theory of optimal stopping rules are mentioned.

27. Selecting the ¢ populations with the largest «-percentiles. MiLTON SOBEL,
University of Minnesota.

Given k populations, a nonparametric solution to this problem is developed by finding
the required number of k-tuples (one component from each population) in order to have the
probability of a correct selection P{CS} at least P* when the ‘“‘distance’’ between any cdf
F5_i41; with the sth largest a-percentile (z < ¢) and any cdf with the jth largest (5 > ¢)
is at least d*. The distance between F;; and F(;; is the Min [F(j (x) — Fj(z)]for o £ z =
x; , where Fi_t11) (#1) = @ — € < a + € = Fp_ia) (). Here €%, d*, P* are all preas-
signed and the c¢df’s are all assumed to be continuous. The same P*-condition on the P{CS}
is considered with a second distance measure, namely that the minimum of the @ — ¢* per-
centiles of F;; (j = k — t 4+ 1) is not less than the maximum of the a + ¢* percentiles of
Fip @ £ k — t). For éach of these two formulations, the effect of assuming that for all
z, F[j](:v) < Fu-y(x) and Fp = Flota @) @ Sk —t,j= k —t+ 1) is studied. For
each case a table of n-values is givenfork =2,t =1, = 3 and ¢* = d*. The asymptotic
(n — «) relative efficiency of these procedures for « = } is compared to other standard
procedures under different alternatives.

28. On a new property of PBIB designs useful in an application of MANOVA
in psychometrics. J. N. Srivastava and R. L. Maik, University of
Nebraska.

In a paper to be published in Psychometrika (1966), Srivastava has considered the prob-
lem of testing the hypothesis that the (p X p) population dispersion matrix (under the
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usual normal set-up) is a linear function of known matrices 2; ,7 = 0,1, --- , l. A complete
solution (based on the likelihood ratio test) given there, can be used under conditiors
slightly more general than the following: (1) There exists an orthogonal matrix P, such that
D; = P'Z,P is diagonal, for all j. (2) Zo = I, 21, --- , Z; generate a linear associative al-
gebra. (3) The matrix A(A’A)~'A’ has all elements non-negative, where the jth column of
A(p X T 1) has in order, the diagonal elements of D; . An important special case arises
when, for example, in a psychological experiment, the battery of tests has the structure of a
PB association scheme. Then the =’s are the association matrices of the scheme, and are
known to satisfy (1) and (2). In this paper, it is shown that they also satisfy (3), so that
the above likelihood ratio test can be used.

29. Bayes risk consistency of classification procedures using density estimation.
J. Van RyziN, Argonne National Laboratory.

Let X be a random variable on (X, &, u) with density f; (z) under P; K u; 7 = 0, 1. With
£ as the a priori probability that X is distributed as Pi and with unit cost of misclassifying
X, let ¢ (%) denote the risk of the Bayes procedure which classifies X = z as P, if £f1(z) >
(1 — £)fo(z) and as P, otherwise. Estimating the densities f;(z) based on random samples
Si={Xa,+ - ,Xing} from P; , 4 = 0, 1, classification procedures are given. With Rug,ny (%)
denoting the risk of such a procedure, conditions under which a(n, n1){Ruo.mi (§) —
& (&)} — 0 as both ng , ny — « are examined. Many cases are considered using the results of
Parzen [Ann. Math. Statist. 33 1065-1076], Cacoullos [Tech. Report No. 40, Dept. of Statis-
tics, Univ. of Minn.], and Cencov [Soviet Math. 8 1559-1562]. In all cases the above con-
vergence is satisfied with « (no , m) = 1 under very general conditions, while under certain
more restrictive (but still very general) conditions higher order results with a (o , 1) T o
as my , m1— « are given in all the above cases for suitable sequences {a (no , 71)}.

30. Sequential sampling for confidence. K. T. WaLLENTUS, Yale University.

A lot of size N is to be sequentially inspected for defective items. Sampling terminates
when the inspector can state, with confidence 1 — «, that the uninspected portion of the
lot contains fewer than D* defective items. (If inspection has been rectifying, the above
quality statement would pertain to the entire lot.) Consider an inspection plan charac-
terized by the stopping points (0, no), -+, (d, ng), --- , (N — D* + 1, ny_p+ 1) where
na < naq ; the rule being to continue inspection until a stopping point is reached. If Pp(d)
denotes the probability of stopping at (d, ng) when the lot initially has D defectives, then
the above requirement is equivalent to the system of inequalities E‘Lo Ppx.a(i) < o for
d=0,1,--- N — D*. Some obvious relationships and the following fundamental LEMMA.
PrG) = P;(G)R(N, ni , k; ) /h(N, ni , i; 2) where h(N, n, D; x) is a hypergeometric proba-
bility, are the tools mecessary to recursively calculate the stopping boundary. The boundary
obtained is optimal in the sense that, given ny , 1 , «+- , Nd—1 , we require nq to be the smallest
stopping number consistent with the confidence condition. Formulas for expected sample size
and operating characteristics are given and results are compared with the asymptotic solu-
tion given by Wurtele [J. Roy. Statist. Soc. Ser. B 1T (1955) 124-127].

31. The cumulants of s, 1/s, and ¢. Joun S. WHITE, General Motors Research
Laboratories.

Let 21, --- , €. be NID(0, 1). It is well known that the sample standard deviation s is
distributed as x with m = n — 1 degrees of freedom. The raw moments of s are E(s*) =
(2/m)¥2 T'(m/2 + k/2)/T (m/2). The central moments and cumulants of s and 1/s may be
computed from the raw moments in the usual way. Unfortunately, the round-off errors
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involved may be so large as to make the computed results useless. In this paper, expansions
of E(s*) are obtained from Stirling’s formula and are used to obtain expansions for the
cumulants of s, 1/s, and ¢ = nt%/s. Expansions for the mixed cumulants of 1/s and ¢ are
also given. These results may be used to obtain the cumulants of the non-central ¢, defined
as t(e, m) = (n*Z + ¢)/s. The distribution function and percentile points of the non-central
¢t may then be found by substituting these cumulants in the appropriate Edgeworth or
Cornish-Fisher series.

32. Efficiency curves for a class of layer tests of bivariate independence (pre-
liminary report). GEorGE G. WoopworTH, University of Minnesota.

Let Xy, .-+, X, X; = (X:, Y;), be a sample from a continuous bivariate population,
ordered according to the size of the X-component;i.e., X1 < X» < -+ < X, . Let I; be the
rank of Y;among Yy, --- , Y; . Let {ca(u, v)}, n = 1, be a sequence of functions on the unit
square which converge to a function ¢(u, v) in 2 + 5-mean for some & > 0. We define test
statistics of the form: 7T, = n‘*Z}Ll ¢n(i/j + 1,5/n + 1), and we consider tests of bi-
variate independence of the form: T = k= , ka being a constant. In this paper we derive
efficiency curves of the type proposed by Klotz. [Ann. Math. Statist. 38 (1964) 1099-1114].
Let {Hy ; 6 =2 0} be a family of alternative distributions, where H, has independent mar-
ginals when ¢ = 0. Using Klotz’s notation, our results in parametric form are: e.(6) =
— [ In(f exp (h-c(u, v)) du) dv + h-z, where & 'is the solution of ffc(Hg(x, Y)/Fo(z),
Fo(z)) dHo(z, y) = z = [{[c(u,v) exp (h-c(u,v)) du/[ exp (h-c(u, v)) du} dv, where F,
is the marginal of z. Curves have been computed for various choices of ¢, one of which gives
a test equivalent to Kendall’s tau, and for various families {H,}, among them the bivariate
normal.

33. A sequential estimation of the mean of a log-normal distribution, which
guarantees a prescribed closeness. SHELEMYAHU Zacks, Kansas State
University.

Let X1, X, , - -+ be a sequence of independent random variables, identically distributed
like exp {N (u,02)}, —®0 <u < ©,0 < ¢? < . The expected valueof X is¢ = exp {u + 02/2}
and its variance is 72 = £2 (e"2 —1). An estimator¢ (X1, Xz, --- ) of ¢£is said tohave a close-
ness level y and closeness rate 8 if P[l¢ (X1, X, , -+ ) — £|< 8¢] = v for all £&. The problem
is to find a sampling procedure and an estimator which will satisfy prescribed closeness
level v and closeness rate 8. If o2 is known, a fixed sample of size n = x,2[1] ¢%/log? (1 + 8),
and the estimator £(¥., o) = exp (¥ + ¢?/2}, where ¥; = log X; ( =1, --- , n) and
V.= 3%, ¥i/n, have the required property. If o2 is unknown one cannot attain the re-
quired property by a fixed sample procedure. The following sequential estimation procedure
is proposed: Given X, ---, Xz (k = 1,2, ---.) compute vz = > %4 (Vi — ¥i)?/k. Stop
after taking K observations, where K = smallest integerk = F,[1, klvz (1 + vx/2) /log? (1 + 5).
Estimate £ by the estimator £(Px , o) = exp {¥Yx + %vx}. The reason for using this pro-
cedure is that, for a given K = n, exp {¥, + }v.} is the maximum likelihood estimator of &
whose asymptotic distribution, as n — «, is N (¢, (£%2/n) (1 + 02/2)). It is proven that
this sequential procedure has the asymptotic properties: (1) lim;s_q [log? (1 + 8)K/
x?[1e?(1 + ¢%/2)] = 1 a.s., for all 0 < ¢? < «, (2) limso P[l{(Px , vx) — £ < 8] 2 4,
for all 0 < £ < « and (3) limsq [log? (1 + 8)E{K}/x:?[1le2(1 + ¢2/2)] = 1,forall0 <

g? < o,

(Abstracts of papers to be presented at the Eastern Regional meeting, Upton, Long Island, New
York, April 27-29, 1966. Additional papers will appear in the June issue.)
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1. Subminimax estimation of the mean of a normal random variable. A. J.
Baranchik, Columbia University.

For a sequence of independent normal (known variance) mean estimation problems
an easy to compute empirical Bayes sequence of estimators is obtained. The sequence is
asymptotically optimal versus normal priors, and also possesses the Bayes minimax prop-
erty, i.e. for any prior measure, the Bayes risk of any estimator in the sequence is no more
than the minimax value of the problem.

2. Estimation associated with linear discriminants. SEymoUr GEISSER, State
University of New York at Buffalo.

Suppose we have two p-variate normal populations where I is N(u, Z) and
I is N (u2 , =) and sample estimates ; of w1 , Z» of u2 based on 7, and 7, observations respec-
tively. Further we assume we have an independent estimate S of = based on » degrees of
freedom. Let the population and sample (or index) linear discriminants be U =
[z — % (u1 + )V 2" (1 — p2), V = [z — 3 (& + £2)]'S™1(& — #2), respectively, where the new
observation z has prior probability g of being from II; and ¢ from II; . For 7 = ¢:/q1,
U > log r assigns z to I , U < log r assigns z to My and V > log r assigns 2 to I, V <
log r assigns z to I, . The following problems are attacked from the Bayesian point of view:
(1) The posterior distribution of U and the estimator of U for fixed z. (2) Estimation of
a and e , the “true’” errors of misclassification, i.e., obtained from U. (3) Estimation of
g1and Bz , the “index’’ errors of misclassification, i.e., obtained from V where V is considered
to be used on all future observations z.

3. Wilcoxon’s signed rank test as a large sample competitor of Wilcoxon’s rank
sum test. MyLes HoLLANDER, The Florida State University.

Let X1, X2, -+ , Xx be iid according to F1 and Y1, Ys, -+, ¥, be iid according to F,
with Fy , F» continuous. In this equal sample size case we may randomly pair the X’s with
the Y’s and base a test of Hy : F; = F, = F (unknown) on Wilcoxon’s signed rank statistic
(W). We consider this procedure as a competitor of the more commonly used test based on
Wilcoxon’s rank sum statistic (U). Assuming0 < f F, dF; < 1, it is shown that the asymp-
totie distribution of (W, U), with each component suitably normed, is bivariate normal.
Furthermore, the null correlation ro*(F) between W, U depends on F (except for n = 1 and
n = 2), as does r*(F) = limro*(F). Specifically, ro"(F) = [n*4uF) — 6) +
n(28 — T2u(F)) + @48u(F) — 14)]/{@n + 1)n(n + 1)/2]}} and r*(F) = [24u(F) — 6]/2
where u(F) = P(X1 < X» ; X1 < X3+ X4 — X;s) when X1, X3 , X3, X4 , Xsare idd accord-
ing to F. The parameter u(F) has also appeared in a different correlation obtained by the
author (Ann. Math. Statist. (Abstract) 36 1083). For F normal, rectangular and exponential,
the values of r*(F) are, respectively, .976, .990, and .943. For the translation alterna-
tives Fi(z) = F(z — 0) we determine the Bahadur efficiency By(W, U) and find
limg, Bs(W, U) = .5. The corresponding Pitman efficiency expression is 2[ fg%/ f S?]2 where
g is the density of X; — X, when Xi , X are iid according to F. For F normal, rectangular,
and exponential, the Pitman efficiency values are, respectively, 1, .889, and .5.

4. Least squares estimation of the components of a symmetric matrix. HAROLD
J. Larson, U. S. Naval Postgraduate School, Monterey.

In the simultaneous equation model Y = XB + E, where Y is an s X ¢ matrix of observ-
able random variables, X is an s X ¢ matrix of known constants, B is a ¢ X ¢ matrix of un-
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known parameters and E is an s X ¢ matrix of unobservable random variables, s > ¢, stand-
ard statistical techniques are available for computing the least squares estimate of B. Cer-
tain physical problems require that B be symmetric, which the general solution does not
necessarily satisfy. The form of the symmetric matrix B which minimizes tr E’E is derived
and a simple numerical example is presented.

5. On a class of multivariate multisample rank-order tests. Mapan L. Purr
and PranaB K. SEN, Courant Institute of Mathematical Sciences, New
York University and University of North Carolina.

A class of rank-order tests for the multivariate several sample location and scale problems
is proposed and studied. The principle of rank-permutation tests by Chatterjee and Sen
is utilized to make these tests strictly distribution-free. The asymptotic properties of rank-
permutation tests are studied with the aid of Wald-Wolfowitz-Noether-Hajek theorems
(Hajek: Ann. Math. Statist. 32 506-523), and certain stochastic equivalence relations of
these tests with the multivariate extensions of the tests discussed by Puri (Ann. Math.
Statist. 36 102-121, and Ann. Math. Statist. 36 1084) are derived.

6. Minimax property of the maximum likelihood estimators for normal multi-
variate regression. STANLEY L. Scrove, Columbia University.

Consider estimating the regression function in the regression of Y (g X 1) on X (p X 1),
where (Y, X)’ has a multivariate normal distribution. Take as the loss the expected square
of the Euclidean distance between Y and its predicted value, in the metric of the residual
covariance matrix, when a prediction is made on the basis of » = p + 3 previous observa-
tions on (Y, X)’ and a new random observation on X. The risk of the mle is- computed.
Application of Kiefer’s general invariance theorem and the Hunt-Stein method, similar to
that made in the univariate case (¢ = 1) by Stein, proves the mle is minimax.

(Abstracts of papers not connected with any meeting of the Institute.)

1. Asymptotic theory of Bayes solutions (preliminary report). PETER BickEL
and JosEpH Yamav, University of California, Berkeley, and Tel Aviv
University.

Under suitable regularity conditions we establish asymptotic normality of Bayes esti-
mates and convergence of normalized Bayes posterior risks for convex loss functions which
need not be bounded. In particular, quadratic loss is included in our class. Under more
stringent conditions this extends work of Le Cam. Similarly, we show the nth root of the
Bayes posterior risk in testing converges under suitable conditions. The above results
generalize theorems proved and stated in Bickel and Yahav ‘“‘Asymptotically Pointwise
Optimal Sequential Decision Procedures” (to appear in Proc. Fifth Berkeley Symp. Math.
Statist. Prob.). '

2. Asymptotically optimal sequential Bayes estimates (preliminary report).
PerER BickeL and JoseEpa YaHAV, University of California, Berkeley,
and Tel Aviv University.

Let Y, be the Bayes posterior stopping risk for estimation with quadratic loss. We have
THEOREM (a). Under the regularity conditions guaranteeing that nY, —a.s.1(0) wherel (9) is
the Fisher information number, the rule t(c): Stop as soon as Y./n < c is asymptotically point-



ABSTRACTS 551

wise optimal. (See Bickel and Yahav “A.P.O. Sequential Decision Procedures’’.) THEOREM
(b). If sup. E(nY,.) < =, t(c) is asympiotically optimal in the sense that if s(c) is any other
sequence of stopping rules, lim supe.o {[E (Y ie)) + cE((c))/IE(Ysy) + cE(s(c))l} = 1.

These results have been extended to the case [(9, d) = | — d|7, r > 0. Under further
regularity conditions it may be shown that these rules are asymptotically minimax in the
sense of Wald.

3. Some optimum properties of ranking procedures. Morris EaTon, Stanford
University.

Let X = (X1, ---, X&) be a vector of real observations with density p(z, ) du(z),z =
(@1, -+ ,xx)and § = 6, , --- , 6x). For the problem of deciding, on the basis of X, which 6;
is largest, we let our action space be @ = {1, 2, --- | k} and L;(6) be the loss for taking ac-
tion ¢ when ¢ ‘is the parameter point. If Z = (Z1,---, Z;) and ¢ is a permuta-
tion of {1, 2, --- , k} define Z, by Z, = (Zs1,Zs2, -** , Zox). Assume that p(z, 9) du(zx) =
P (&s , 6,) du(x,) and L;(8) = Lo (8,) for alle, ¢ = 1, - , k. Also assume that 0 < L;(9) =
L;(0)if 6; = 6, ,1 5 j. Let ¢ be the decision function which.assigns probability 1 to action
i when X; > X for all j % 7 (assume the obvious randomization on boundary points). The
main result is the following: If p (z, 8) has property M (see the definition below) then: (i)
@ is Bayes for every prior distribution F(8) which is symmetric in its arguments, (ii) ¢o
is minimax, and (iii) ¢o is admissible. The density p (z, 6) is said to have property M if for
each,j (¢ # j), s = x;and 6; = 6, implies p (z, 0) = p(z, 6, iy) where (7, 7) is the permuta-
tion which interchanges 7 and j. For the obvious decision procedure, the above result is
extended to the following case: on the basis of X, decide on the %, largest 6; , the &, next
largest 6; , - - - , ko smallest 6; , where 1 < k; < kand >3 k; = k [see Bechhofer (Ann. Math.
Statist. 25 16-39)].

4, Characterization of distributions by the indentical distribution of linear
forms. Mogrris EaToN, Stanford University.

Let Xo, X1, -+ , X« be independent identically distributed random p-dimensional row
vectors and let B; , ¢ = 1, --- , n, be fixed p X p real symmetric non-singular matrices.
Suppose that the distribution of X, is the same as the distribution of 2 1 X:B; + b where
b is a fixed p-dimensional row vector. It is shown that if all the eigenvalues of each B; are
in the open interval (—1, 1), then the distribution of X| is infinitely divisible. If it is fur-
ther assumed that the eigenvalues of Y 7 B;? are all greater than or equal to 1, it is shown
that the distribution of X, must be multivariate normal (possibly degenerate). Laha and
Lukacs (Pacific J. Math. 16 207-214) consider the univariate version of the above problem.
In addition to the multivariate results above, some univariate results concerning symmetric
stable laws are presented. More specifically,let Yy, Y1, --+ , Y. be independent identically
distributed symmetric real valued random variables and let 2 < m < n for m and » integers.
If (log n)/log m is irrational and if the distribution of Y, is the same as the distribution of
Cp v /mieand (2.7 Yi)/nlle (0 < a < 2), then Y, has a symmetric stable distribution
of order a.

5. On tests of the equality of two covariance matrices. N. Gir1, Indian Insti-
tute of Technology, Kanpur.

Let X, Y be independently, normally distributed p-dimensional column vectors with
unknown means &, 7 and unknown covariance matrices 2; , Z, respectively. Let (S:, Sz) be
minimal sufficient for (21, Z.), and 6:, -+ , 6, be the characteristic roots of 2;2.™%. In
this paper it will be shown that for testing Ho : 6 = --+ = 6, = 1 against the alternative
Hy:0; 2 1foralliand D 6; > p, the test which rejects Hy if trS>(S: + S»)~'isless than
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some constant, depending on the size of the test; is uniformly most powerful invariant if
(8; — 1) — 0* for all ; and for the dual problem of testing H, against H, : 6; < 1 for all ¢
and Y +? 6; < p, the test which rejects Hy if trS;(S; + Sz)~! is greater than some constant,
depending on the size of the test; is uniformly most powerful invariant if (6; — 1) — 0~
for all 7.

6. A new approach to sampling from finite populations I—sufficiency and
linear estimation. V. P. GopamBE, The Johns Hopkins University.

Barnard [J. Roy. Statist. Soc. (1963)] introduced the concept of linear sufficiency, in con-
nection with Gauss-Markoff set-up of estimation. In the present article, the concept of
linear sufficiency is redefined, to suit the problem of estimation in survey-sampling where
as demonstrated by the present author [J. Roy. Statist. Soc. (1955); Inter. Statist. Inst. Rev.
1965)] the Gauss-Markoff set-up is fundamentally inadequate. According to this redefined
concept, a certain estimate is shown to be uniquely (up to a constant multiplier), linearly
sufficient for the population total, in the entire class (defined by the author [J. Roy. Statist.
Soc. (1955)]) of linear estimators. The significance of this result would be clear on the back-
ground of the author’s (1955) previous result demonstrating the non-existence of a uni-
formly least variance estimator, in the entire class of unbiased linear estimators for the
population total.

7. A new approach to sampling from finite populations II—distribution-free
sufficiency. V. P. GopamBE, The Johns Hopkins University.

The idea that in some situations the prior knowledge about the unknown parameters
could be formulated as a class of prior distributions, which could be used, not necessarily
through Bayes posteriori probability, for subsequent inference, is already present in the
author’s [J. Roy. Statist. Soc. (1955)] earlier paper. In the present paper, the concept of
distribution-free linear sufficiency or in short linear sufficiency, originally due to Barnard
[J. Roy. Statist. Soc. (1963)], but redefined by the present author (Part I), is extended by
defining distribution-free sufficiency, removing the restriction of linearity. This extension
again is based on the assumption that in some situations prior knowledge could be formu-
lated as a class of prior distributions. A certain linear estimator of the population total
which in Part I was shown to satisfy the redefined criteria of linear sufficiency uniquely in
the class of all linear estimators, is now shown to satisfy this extended criteria of distribu-
tion-free sufficiency in the entire class of estimators. Further the general relationship be-
tween the linear sufficiency of the Part I and the distribution-free sufficiency introduced
here, is investigated. Broadly the result is, if we restrict to linear estimators only, the
distribution-free sufficiency is identical with the linear sufficiency. Finally some remarks
are offered by way of comparison between the result obtained by the author [J. Roy. Statist.
Soc. (1955)] previously and the result here, about the utilization of the prior information,

8. Bayes and empirical Bayes estimation in sampling finite populations. V. P.
GopamBE, The Johns Hopkins University. \

The problem of estimation, in sampling finite population has been studied exhaustively
by Godambe (1955) and Godambe and Joshi (1965). A conclusion of great practical signifi-
cance is this: “For almost all of the commonly known sampling designs, an unbiased mini-
mum variance (UMYV) estimator for the population total does not exist.”’” In this paper after
deriving Bayes estimators, it is shown that the ratio-type estimators for the population
total which include the estimator based on sample mean, are, ‘‘empirical Bayes’’ wrt
squared error as the loss-function. A concept of ‘‘global admissibility’’ is introduced and
Bayes and empirical Bayes estimators are shown to be globally admissible.
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9. Asymptotic efficiency of the Kolmogorov-Smirnov test. JEroME KroTz,
University of Wisconsin.

Asymptotic efficiency for the two sample Kolmogorov-Smirnov test is obtained by com-
paring the exponential rate of convergence to zero of the type I error (a) while keeping
the type II error (8) fixed (0 < 8 < 1). In particular, for the one sided test with equal
samples of size n it is shown, using the closed form expression for the null distribution, that
limp.o — (1/n) logan = 1 — p) log 1 — p) + (1 + p) log (1 + p) where p = sup (F — G).
For a location parameter family of alternatives (F(z), G(x) = F (x — A)) with a symmetric
density, the expression reduces to 2F (A/2) log F(A/2) + 2F (—A/2) log F(—A/2) which
is the same expression obtained for the Mood and Brown median test. As a consequence,
the limiting efficiency relative to the Mood and Brown test is one for such alternatives. The
efficiency relative to the ¢ test for normal location alternatives gives 2/7 as A goes to zero.

10. Exact moments of order statistics from the Pareto distribution. HENRICK
JouN MALIk, Western Reserve University.

Let Xi,v < Xo.xv < -+ < Xn,~ denote a set of order statistics in a random sample of N
independent and identically distributed random variables X;, X;, --- , Xy from a dis-
tribution having a pdf va®2™"* (fora > 0, v > 0, x = a) and zero elsewhere. The charac-
teristic function of the kth order statistic is obtained and moments about the origin of the
kth order statistic are expressed in terms of gamma function. An exact expression for the
covariance of any two order statistics X; v < X; v is obtained. Various recurrence relations
between the expected values of order statistics are obtained. Using the results, the expected
values of the kth order statistic are tabulated for sample sizes up to and including 12 and
for the index parameter » = 2.5(0.5)7, and the expected values of cross-products of all pairs
of order statistics are obtained and tabulated for sample of sizes up to and including 12
and for the index parameter » = 2.5(0.5)7. The expressions for the variance and covariance
of the kth order statistic are also obtained in closed form and tabulated.

11. A probability distribution for the number of completed pregnancies. K. B.
PatuAK, Banaras Hindu University. (Introduced by S. N. Singh)

A probability distribution for the variation in number of births per couple during period
(0, T) has been obtained on the basis of certain assumptions similar to those of Singh
(J. Amer. Statist. Assoc. 58 721-27). Let X denote the number of conceptions during period
(©,T),then F(z,T) =1 — o + [a(1 — B)/(h — 1)1 4., Fn(w - LT —4d) + la(1—8)/A']

=Py (e, T — d) + oBF (3, T) where Fy (2, T) = 2 2o [("7*) + XAl (P71
pqT-* k' = h — 1, where h is the duration of rest period; k — s is the length of the gestation
period; « is the proportion of fecund couples and g is the proportion of the fecund couples
not exposed to the risk of conception in the first unit of the observational period. The
problem of finding out the consistent estimates of the parameters has been discussed.

12. A note on inflated power series distribution. K. B. PaATHAK, Banaras Hindu
University. (Introduced by S. N. Singh.)

Inflated Power Series Distribution (IPSD) is a mixture of a Simple Power Series Dis-
tribution (SPSD) and some degenerate distributions. It is especially useful where the SPSD
describes the observed data except for the cells which are inflated. The IPSD’s of different
orders have been derived. The maximum likelihood estimates of the parameters and their
variances have been obtained. The order of the IPSD is determined on the basis of the num-
ber of degenerate distributions in the mixture.
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13. On the first conceptive delay. K. B. Patuax, Banaras Hindu University.
(Introduced by S. N. Singh.)

On the basis of certain assumptions, we have formulated two probability distributions
given below to describe the first conceptive delay after the marriage: (1) Inflated Geometric
Distribution whose pdf is given by P(X = 1) =1 — a4+ ap, P(X = z) = apg*lforz > 1,
where X denotes the month in which the couple conceives. (2) Inflated Geometric Type I
Distribution whose pdf is given by P(X = 1) = 1 — a + aa/(a + b), P(X = z) =
aB(@+1,b+ x— 1)/B(a,b) for z > 1 where (1 — a) is the proportion of the couples who
conceive prior to their marriage but report the first month of the marriage for their con-
ception. The models have been applied to examples which appeared in Singh (Sankhya
Ser. B 26 95-102) and Potter and Parker (Population Studies 17 99-116).

14. Estimation for unimodal densities and for distributions with monotone
failure rate (preliminary report). B. L. S. PrakasA Rao, Michigan State
University.

Recently Marshall and Proschan (Ann. Math. Statist. 36 69-77) have derived the maxi-
mum likelihood estimates for distributions with monotone failure rate and they have shown
these estimators are consistent. We obtain the asymptotic distribution of estimators using
the results of Chernoff in his paper on the estimation of mode. The estimation problem is
reduced at first to that of a stochastic process and the asymptotic distribution is obtained by
means of theorems on convergence of distributions of stochastic processes. Similar results
are obtained for distributions with unimodal densities.

156. Some distribution free multiple decision procedures for certain problems in
analysis of variance. MApAN L. Purr and Prem S. Puri, Courant Insti-
tute of Mathematical Sciences, New York University and University of
California, Berkeley.

This paper is concerned with single-sample multiple-decision procedures based on the
ranks of the observations for selecting from ¢ continuous populations (a) the ‘‘best ¢’
populations without regard to order, (b) the “best ¢’ populations with regard to order, and
(c) a subset which contains all populations ‘‘as good or better than a standard one.’’ The
‘‘bestness’’ of a population is characterized by its location parameter. Large-sample meth-
ods are provided for computing the sample sizes necessary to guarantee a preassigned prob-
ability of a correct grouping (or ranking) under specified conditions on location parameters.
It is shown that the asymptotic efficiency of these procedures relative to the normal theory
procedures (see, for example, Bechhofer, Ann. Math. Statist. (1954) 273-289 and Gupta-
Sobel, Ann. Math. Statist. (1958) 235-244) is the same as that of the associated tests in one-
way analysis of variance model I problems. If the ratio of the sample equals this efficiency,
the two procedures being compared are shown to have the same asymptotic performance
characteristics. Finally, in the case of problem (¢) two alternative rank-score procedures
are proposed which are asymptotically equi-efficient. The results are obtained by following
the methods due to Lehmann (Math. Annalen (1963) 268-275).

16. On two methods of bias reduction in the estimation of ratios. J. N. K. Rao
and J. T. WEBSTER, Texas A&M University and Southern Methodist
University.

Suppose r denotes the customary ratio estimator of the form r = 7/z based on n observa-
tions whose bias is ecn~! 4+ O (n2) where c i8 a constant. Let the sample be divided at random
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into g groups, each of size p, where n = pg. Let r;/ denote the ratio estimator calculated
from the sample after omitting the jth group. Then the estimator rq = gr — [(g — 1) /g] Zr,-'
has a bias of order n~2 at most. J. N. K. Rao [Biometrika 52 (1965)] has shown that, if the
regression of y on z is linear and « is normally distributed, both the bias and variance of
ro to O(n~3) are decreasing functions of g so that ¢ = n would be the optimum choice. In
this paper, we show that the exact bias and variance of rq are decreasing functions of g and ro
has a smaller variance than r for ¢ > 2 when the regression of y on z is linear and z has a
T-distribution. We also derive the exact bias and variance of the modified ratio estimator
ry [Tin, J. Amer. Statist. Assoc. 60 (1965) 294-307] assuming the above model.

17. Distributions of some ‘“sequential type” statistics of Rayleigh class random
vectors. HArRoLD SackrowiTZ, Columbia University.

Let X1, ---, X, be p-dimensional vectors of Rayleigh class with mean zero and positive
definite covariance matrix M. Let Zx = gx(r1, -+ , To1)Xkpp, k=1, --- ,n — 1 where r;
is the Euclidean norm of X ; and the g; satisfy some mild regularity conditions. We are in-
terested in obtaining, when possible, the joint density function of Z;, --- , Z»_1 in closed
form. A typical result being that if the statistic 7(X1, -+- , X») = (Z1, -+ , Zn-1) is in-
variant under multiplication of the X vectors by a positive scalar, then the density can be
given in terms of the hypergeometric function. Similar results are obtained, for other cases,
in terms of Bessel functions.

18. Asymptotically optimal tests for Markov chains (preliminary report). R. C.
Srivastava, Ohio State University.

We consider tests of simple and composite hypothesis about the transition probability
matrix of certain types of Markov chains. Following Hoeffding [Ann. Math. Statist. (1965)],
we consider tests whose size an tends to zero as n tends to infinity. The main result is ‘“for
any test of size an which is sufficiently different from s likelihood ratio test, there exists a
likelihood ratio test of size less than or equal to a, which is more powerful then the given
test at most points in the set of alternatives as n tends to infinity and «. tends to zero at a
suitable rate.”” In particular we compare the chi-square test and the likelihood ratio test
for a simple hypothesis and extend our results for a composite hypothesis. Finally we com-
pare our results with those of Anderson and Goodman [Ann. Math. Statist. (1957)] who
considered the stochastic comparison of the likelihood ratio test and the chi-square test for
Markov chains.

19. On the asymptotic properties of Ruben’s estimator of the fundamental
interaction parameter in the emigration-immigration process (preliminary
report). R. C. SrivasTava, Ohio State University.

Recently Ruben (Ann. Math. Statist. 3¢ 1963) has considered the problem of estimating
the interaction parameter in the emigration-immigration process. The emigration-immigra-
tion process n(t) = (m(t), -+, nm(f)) is a vector-valued stochastic process and for any
fixed ¢, the distribution of n(t) is J[F1 e~ (3)7+®/ (n. (¢))!. Let n(z), - -+ , n(xr) be k ob-
servations on the process n(t) at times 7, -+ - , xr respectively. The estimator of the inter-
action parameter is constructed from the consecutive differences n(ir) — n((z — 1)7) and
formula for the large sample variance is given and its relative efficiency is investigated.
In this paper we prove that Ruben’s estimator is consistent and asymptotically normally
distributed and obtain an expression for its efficiency.



