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A NOTE ON THE MAXIMUM SAMPLE EXCURSIONS OF
STOCHASTIC APPROXIMATION PROCESSES!

By Harowp J. KUusENER

Broun Universily

1. Introduction and summary. In this note we give a result on the maximum
sample excursions of Kiefer-Wolfowitz stochastic approximation processes. The
method is applicable to other stochastic approximation procedures, and under
other conditions than those assumed here. ‘

Let y(z) be a scalar valued random variable with distribution function H(y | z),
where z is a scalar valued parameter. Define M (z) = f yH(dy | z). Let M(x)
be continuous and have a unique local maximum at z = 6 and let a,, ¢, be
sequences of positive real numbers satisfying

(1) DXt = ®, Datea? < o, D Gus < ©, o — 0.

The sequence of random variables z, defined by

(2) Totr = Tn + G[y(Tn + &) — y(za — a)l/ca, T given,
is known as a Kiefer-Wolfowitz process and, under mild conditions on M (x)
and H(y|z), 2. is known to converge to 6 w.p.1. (See, e.g., Schmetterer [6]
for a review of such results.)

A result of this note is an estimate of the following form, for any m < o
and even integer 7,

(3) PlmaXnsnon |2 — 0] > € < [E(zy — 60)" + onl/€

where 6x, depends on the sequences a, and ¢, and can be made arbstrarily small
for each fixed N and r, while z, — 6 w.p.1. is still insured.

As a special case of (3), let |tx — 6| be unknown but assumed nonrandom.
Lete =8+ (1 + a)|zy — 6], 8 > 0and & > 0. Then

(4) Pmaxmsnzw |72 — 6 > (1 + @)|zy — 6] + 6]
< [(zw — 6) + x]/I8 + (1 + a)|zy — O]

which can be made arbitrarily small by fixing r sufficiently large, and then
arranging a, and c, so that 8y, is sufficiently small.
Aside from the intrinsic interest of (3) and (4), these results seem to have some
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practical usefulness in assisting in the choice of the a, and ¢, when there is more
than one local maximum of M (z), or if the process (2) is used to optimize the
parameters of a physical system whose performance (M(x)) should not be
reduced below some minimum level—the value of = corresponding to this level
may not be known. In both of these cases we may wish to limit the excursions
to some given multiple or function of |zo — |, with a high probability, while still
being certain that z, — 6 w.p.1.

2. A lemma. We require the following

LemmMA. Let w;, j = 1, be a sequence of non-negative random variables with
Ew; < «, and let B, be the minimum o-field over which w, , - - - , w, are measurable.
Let R, be a sequence of non-negative random variables, measureable over B, , such

that, w.p.1.,

(5) E"Wpi1 — wa £ Ra,

where E°" is the expectation conditioned upon B, . Let

(6) 2T ER, < .

Define |

@) Vo= 1w, + E™X 7 R;.

Then {(Vn, Bn}, n = 1} is a non-negative super-martingale and, for any m < «,
(8) Pmaxmzasn Va > € < EVy/e.

REMARK. (3)isobtained from the lemma by letting, for r even, (z, — 6)" = w, ,
and, under the conditions below, exhibiting a sequence R, which satisfies (5)
and (6). Also 8y, = E Y v R, will have the property below (3).

ProoF. B,y1 D B, . Since V, = 0and R, = 0 and EV,, £ EV, < « for
m >mn = 1, and
EB" n4+l T Vn

= E®Wpp1 — wp + EE* 'Y wiR; — B> wR; < R. -~ R. <0

with probability one, we have that {(V,, B,), n = 1} is a non-negative super-
martingale. (8) is the non-negative super-martingale version of Theorem VII 3.2

of Doob [3]. Q.E.D.

3. Assumptions and terminology. Write 8 = 0 for simplicity. Redefine B, to
be the minimum o-field with respect to which z,, - - - , z, are measurable. Write

(2) as
Tarr = Tn + @Me,(Tn) + Gubn/Cn
M (z) = [M(z +¢) — M(z — ¢)]/c
bn = [y(@n t+ ) — M(@n + )] — [y(@n — ) — M(20 — ca)].
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Subsequent assumptions are part of those used by Derman [2], some of whose re-
sults we will use. Let Ko, K, C be positive real numbers. Assume

(9) EP%, =0, E%'<2’< »

with probability one. For 0 < ¢ < Cy < =, let

(10) —cKe' £ Mz +¢) — Mz — ¢)lx £ —cKe®

(11) an = A/n'", ta=C/m""<Co; n>e>0,9+e< i
For each integer r > 0, there is a positive real number M, < « such that
(12) E®y(2a) — M(2a)[" £ M,/2.

(13) . KA £ 1, 4 > 0.

4. Main result.
TuEOREM. Let 6 = 0. Assume (9)—(13). Then, for all integral m, N such that
o >m = N = 1, and even integer r,

(14) P[maxmgngzv Ixnl > 6] < (Eer + 6Nr)/€r,
where Oy, 18 finite and tends to zero as A — 0. Also, x, — 0 with probability one.

Proor. By (10), M. (2,) = —K.z., where 0 < Ko £ K, £ K < «. Thus

Tatr = (1 — 0uKa)Zn + @nkn/Cn .
Bz — 2 = [(1 — a.K,)" — 1]z
(15) + 220 () (an/en) (1~ anKa)™ "z E™8'
< 35 (D (an/ea) Mz .

The last inequality follows from the use of (9) (to set E°"¢, = 0), and successive
majorizations using (13) (yielding 0 < a,K, < 1), and (12) (yielding E®*(¢,°)
= M.,).

Define R, as the (non-negative) majorant (the last line of (15)). Define

D., = E® Y % R;. Suppose that ED;, < «. Then, by the lemma, {(zx,” +
D.., B,), n = 1} is a non-negative super-martingale and, since D,. = 0,

P[maxmg,.gy |:1:,.| > é] = P[maxmgngN xnr > E"]
é P[maxm_z_ngzv (xnr + Dnr) % Er].

The super-martingale inequality (8) now yields (14), where éyr = EDy,.
Under the supposition, it is clear that é,, — 0, as A — 0.

Define b,"” = E|x,|". Under (9) to (13), Derman ([2], Lemma 1) has proved
that, for r even (Actually Derman [2] used A = C = 1, and the factor (4/C*)""*
does not appear in [2]. (16) follows immediately by noting that, with arbitrary
positive real A and C, A%*/C* must replace ¢° and AK, must replace K, in [2].)

(16) lim supn W5, < (r — 1)(r — 3) --- 3-1-(6%/Ko)"(4/CY)™
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Since b, < [B.%"]}, for each integer r > 0, there is a positive real number
Q. < o such that

(17) lim sup, 2" "6, < Q.(44°/C°Ko)™".

By (17), (15) and (11), we have EDy, < . Also, both EXy" and &y, tend to
zero, as N — . Thus, the right side of (14) tends to zero with N and, hence,
z, — 0 w.p.l. QE.D.

5. Remarks. Relations such as (8) and (4) are derivable for other stochastic
approximation procedures, and for the Kiefer-Wolfowitz procedure under other
conditions. The technique is the same: for an even r, compute E*"2}1 — z," = R, .
If > % E|R; < o, the pair {x,” + E® Y_n |R,|, Ba} is a non-negative super-
martingale. If Y » E|R;] — 0 as A, or some other parameter, goes to zero,
analogs of (3) and (4) are available.

If z is a vector, then we look for super-martingales of the form

Vo = M'(z,) + E® 2 0 |EPM (z11) — M'(2;)].

If z, is a continuous parameter stochastic approximation, which is also a
Markov process, then similar relations are possible, provided that an infinitesimal
operator of the z; process can be suitably defined. With the use of Dynkin’s
formula (Dynkin [4], Theorem 2) an appropriate super-martingale may be de-
fined. (See Kushner [5] for a closely related continuous parameter problem and

method).
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