LINEAR COMBINATIONS OF NON-CENTRAL
CHI-SQUARE VARIATES'
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1. Introduction. Let x,, s denote a non-central chi-square variate with m de-
grees of freedom and non-centrality parameter d, whose probability density
function is given by

p(z) = ""/2"(x) e ML (= )T + $)/E)ITG + (m/2))],

for z > 0, and zero otherwise. Define

(1.1) T = U - V7
(1.2) U = alXmedo + 251 0iXmia)s
(1.3) V= ﬁ[Xf;o,ﬂo + Z;-ﬂ biXZj,ﬂj])

wherea > 0,8> 0,a; = 1,b; = 1,d: =2 0,dy = 0,9; = 0, go = 0, for all 7 and
7, and all chi-square variates are independent. The problem considered in this
paper is the determination of the distribution of T for fixed known values of the
parameters. Clearly if > ¢ \aw,’ is an arbitrary quadratic form in the w/s in
which the constants \; are real numbers, and the w.’s are independent random
variables each of which has a normal distribution with non-zero mean and unit
variance, by a minor bookkeeping change in notation, the form can be given
the representation of (1.1)—(1.3). Hence, we are equivalently concerned with
indefinite’ quadratic forms in non-central normal variates. Note that U and V
are each expressible as some positive definite quadratic form.

Development of the distribution for an indefinite quadratic form in non-central
normal variates was motivated by a classification problem. Consider the problem
of classifying an unknown vector observation into one of two multivariate normal
populations which have unequal means and covariance matrices. It may be shown
(see [5]) that likelihood ratio procedures for this problem lead to consideration
of the distribution developed in this paper.

Section 2 will be devoted to the distribution of positive definite quadratic
forms in non-central normal variates.

In Section 3, the probability density function of 7 is found in terms of the
results developed in Section 2.

Received 26 October 1964.

1 The main results were obtained while the author was at Stanford University and they
were reformulated at The RAND Corporation. The research was sponsored in part by Na-
tional Science Foundation Grant GP-214.

2 Any views expressed in this paper are those of the author. They should not be inter-
preted as reflecting the views of The RAND Corporation or the official opinion or policy
of any of its governmental or private research sponsors. Papers are reproduced by The
RAND Corporation as a courtesy to members of its staff.

480

[ ,Q
) Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to | 2

o

The Annals of Mathematical Statistics. MINGIS ®

www.jstor.org



LINEAR COMBINATIONS OF NON-CENTRAL CHI-SQUARE VARIATES 481

Finally, in Section 4 the cdf of T is developed for purposes of percentage point
computations.

2. Positive definite forms. Let Fo(z), Fi(x), --- be any sequence of distribu-
tion functions. Let ¢, ¢;, - -+ be any sequence of non-negative constants such
that Y ;¢; = 1, where unless stated otherwise, it will be understood that all
summations are to be taken from zero to infinity. Then, F(z) = . ¢;F;(x)
is called a mixture of distribution functions (see [6]).

Consider the positive definite quadratic form, U, given in (1.2). It was shown
in [6] that when all the non-centrality parameters, d;, vanish, the cdf of U is
expressible as a mixture of cdf’s of central chi-squared variates. They also
found a related result for the ratio of such forms. In this section, both of those
results are extended to the non-central case.

Shah and Khatri [10] have considered the non-central case and have developed
a series expansion for the cdf of U in powers of z.

Imhof [3] has inverted the characteristic function of U and evaluated it
numerically using the trapezoidal and Simpson rules.

Ruben [7], [8] has also developed a mixture representation for the cdf although
the weighting coefficients have quite a different form than those which will be
given here, and the corresponding proofs are quite different.

TaEOREM 2.1A. Let U be defined as in (1.2). Then if F(x) s the cdf of U,
and F,(x) denotes the cdf of a central chi-square variate with v degrees of freedom,
one possible® representation is given by

(2.1) F(z) = Do gF urai (z/a),

where M = D i_omi, q: > 0, Z:-Lo g: = 1, and the g: are constants depending on
the (m:, d; , as).

TrEOREM 2.1B. The weighting constants, q:, of Theorem 2.1A are given ex-
plicitly by

(2.2) g = (IT5=1a™") exp (—3275=0d,"),
and for all v # 0, by

(23) @y = L= [(de"/2)/ (v — @) IKa(7).
The Ku(r) satisfy Ko(r) < 1, and

(2.4) Ko(1) = b,  Ka(2) = D8 0h2:hP,

K.(3) = Zc,—o Do oh QA R, ete
The h'? are defined by
(2.5) Rt = Yo S8 [ 2 (d2/2)P /(B — k) el e P,
where the c'”, and the gs*™* are defined by

8 See Ruben [7] for other representations.
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(2.6) e’ = a7 (1 — a7 T(mi/2 + @)/T(a + 1)I'(mi/2),
@7) g™ = a1~ TN, Bz 10" =1

Proor. Let ¢r(t), ¥,(t) denote the characteristic functions of a variable Y,
and a x5 o variate, respectively; i.e. ¥,(¢) = (1 — 2:t) ", By independence in
(1.2),

(2.8) busa(t) = Dxguao (1) IIi= Painh;a,(1)-

Let p;(do) denote the Poisson coefficient (5!)™"(do’/2)? exp (—do’/2). Then if
fi(z) denotes the density of a central chi-square variate with j degrees of free-
dom, it is well known that ¢,z ,(t) = D, p;(d)¥mss;(¢). Thus,

(2.9) baxtna(t) = 225 Pi()Wmini(at) = 205 Di(d)baxhy0;0(?)-

The characteristic function of a constant times a central chi-square variate
can be expressed (see [6], Equation (16)) as

(2.10) bajnh;0(t) = Um(at) = (1 — 2ia;t) ™"
= 2 P m(t),
where the ¢;'” are defined by
(2.11) 2ok = a1l — (1 — a7, o] <1,
and are given explicitly by
o = a7 (=1DM1 = a7 ()
= a; ""(1 — ;)T (k + m;/2) /T (k + 1)T(m;/2).

From (2.8) it is clear that ¢y/.(¢) depends on the product of functions, each
of which has the form (2.9). In turn, the function in (2.9) is expressible in
terms of functions each of which has the form (2.10). These results are now
combined. Note that since ¥,(t) = ¥,"*(t),

baxta(t) = 25 pi(d) 2op &P, (g

where the & denotes the values of ¢, for m; = m + 2j, and a; = a. Using
(2.11) gives

(2.12) ounl(t) = Zjpj(do)\I,2(m0+2j)/2(t)H:=l
.{Zk pi(ds) a"'—(mi+2k)/2‘1,2(mi+2k)/2(t)[1 — (- ai—l)\pz(t)]—(m,'+2k)/2}.

Now using (2.7), and M = ) ¢ m., it is clear that we can obtain the compact
form

(2.13) bura(t) = 25 pi(d) LY 22 (1) [Tics Qu(t),

where

Qi(t) = 2oa 2k Dop CaVpi(di) s u (L)
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Note from (2.7) that go*® = 1, g5"” = 0 for 8 = 1. Equation (2.13) is sim-
plified by first reducing Q:(t) to a single series, and finally combining the two
remaining series into one by repeated use of Cauchy products.

It is straightforward to verify that all the series in question converge absolutely
so that terms can always be rearranged. Define v4? = Z;‘::o po—i(d) g P,
Then it is found that Q.(t) reduces to

Q:i(t) = [2a e B (DI 26 v W ()],

By letting ho'® = D gov5Pci2s, the product can be collapsed into a single
series as Q:(t) = D ha'"¥%(t). Using the definition of K,(r) given in (2.4) it
is easy to show that

dusa(t) = V() 205 D20a pi(do) Ka(r) T2 (2).

Finally, define g = 2 b0 Ka(7)pi—a(ds). Then ¢u/a(t) = D i qi¥uiei(t). In-
verting termwise yields the desired result. []

A possible probabilistic interpretation of the coefficients ¢: is given in [5].

The next theorem yields an expression for the distribution of the ratio of a
positive definite quadratic form in non-central variates to an independent one in
central variates.

TueoreEM 2.2. Let U be defined as in (1.2) and let V™ be the value of V (defined
in (1.3)) when 8 = 1l,and g; = 0,7 = 0, 1, -+, s. Let F,, n(x) denote the cdf
of the ratio of two independent central chi-square variates xm.o/Xno - If X = U/V¥,
then

(2.14) P X =z} = Zi Zk QiOuF wtoi, wo(2/ ),

where M = D iomi, N = 2 _i—on: ; the constants g: are defined by P{U < z}=
> i qi Fussi(z/a), in Theorem 2.1, and the constants 0, are defined by

(2.15) Dbz = [Lim 0™ — (1 — b7 )2l ™, 2] < 1.

Proor. It is shown in Theorem 1 of [6] that P{V* < 2} = D i 6uFyya(),
where 6, is defined by (2.15). Thus, U and V* are both mixtures. Since U/ v*
is a simple Borel function, its edf can be found just as the cdf of a single non-
central F-variate is found. Hence

P{X 2z} = ffu/v' <z d( Zi QiF uy0i(u/a) ) d( Zk okFN+2k(v*) )s
or P{X < z} = D D1 qfP{U:/V:* < 2z}, where the (U;, V*) are random

variables having distribution functions Fae:(z/a), Fyi2(z), respectively. But
U./V:* is just the ratio of two independent chi-square variates. Hence, the
desired result follows. []

Note that F,.(z) is related to the cdf of a central F-variate. However, in
computational work F,.(z) is often more convenient since Fn.(z) =
Ljaty(m/2, n/2), where I,(m, n) is the incomplete beta function, which is well

tabulated.
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3. Probability density for indefinite forms. In this section we derive the
probability density function for T = U — V. Gurland [2] in considering the
problem for central variates found an infinite series expansion in terms of Laguerre
polynomials for the case in which the number of positive (or negative). coefficients
is even. Shah [9] then extended his work to the non-central case.

First consider the weighted difference of two independent, central chi-square
variates. Define Z = aX; — X, where £(X1) = xho, £(X2) = x2.0, X1 and
X, are independent, & > 0, 8 > 0, and £ denotes “law.”” Pachares [4] considered
this problem for m = n, o = B, and found the distribution of Z expressible in
terms of modified Bessel functions of the second kind. It will be seen that the
form of the solution developed here will be more suited to percentage point
calculations.

To simplify the development below we introduce the function

3.1 ¥(a, b;z) = (T(a))™ [T (1 + )" dt,

for @ > 0, z > 0. This function satisfies the confluent hypergeometric differential
equation of Kummer: z d’y/dz’ + (b — z) dy/dx — ay = 0 (see Erdélyi [1])
and is identical with the function U(e, b; z) discussed by Slater [11]. It is ex-
pressible in terms of the more common 1F; hypergeometric function as

¥(a, b;z) = [F(1 — b)/T(1 + a — b)]1Fi(a, b; x)
+ [I'(d — 1)/T(a)lz" " F1(1 + a — b, 2 — b; z).
However, the reason for using the ¢ function instead of the F; function is the
fact that ¢ is finite for all x.
TrHEOREM 3.1. If Z = aX; — BX:, & > 0, 8 > 0, where L(X1) = xao,
L(X3) = xh., and X1 and X, are independent, the probability density function of
Z s given by

Pma(t) = le(m, n)/T(m/2)" "2 % (n/2, (m 4 n)/2;

(3:2) [(e + 8)/2a6]t), tz 0,
= le(m, n)/T(n/2))(—= )"y (m/2, (m + n)/2;
[~ (a + 8)/20]t), .=,

where ¢ *(m, n) = 27282 and ¥ is defined in (3.1).
Proor. Define R = Z/a, v = B/a. Let po(t) denote the density of R, and let
81(t), s2(t) denote the densities of X; , X, , respectively. Then,

po(t) = [Zu st + v2)s(z) da.
If ¢ = 0, po reduces to
po(t) = [5 & A+ o)™ /2 D (m/2)T (n/2)]67 T d
Introduction of y by v = ¢ty and straightforward algebra yields
po(t) = 0P 2D (m/2) W (n/2, (m 4 m) /25 [(v + 1) /2910).
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If ¢ = 0, the predicted result can be found by letting ¢ = —#6, 8 > 0 and using
a symmetrical argument.

By simple scaling, we obtain Equation (3.2).

TreorEM 3.2. If U is a linear combination of non-central chi-square variates as
i (1.2), and if f(x) denotes the probability density function of U, then, by using
the constants ¢; > 0, Do q; = 1 defined in Theorem 2.1B, f(x) may be represented
as

(3.3) f(z) = Z-‘ (gs/ @) fay2i(z/ ),

where M = D_5m:, and fi(z) denotes the density of a central chi-square variate
with k degrees of freedom.

Proor. It is clear that all the F’s defined in Theorem 2.1B are differentiable.
Let fi(-) = F/(-). Since the series Y, gifus2:() certainly converges uniformly
on every finite interval of z, it must converge to the required function, f(x). [

TraroreM 3.3. If T', U, V are quadratic forms in non-central variates, as defined
in (1.1)—(1.3), and if h(t) denotes the probability density function of T,

(34) h(t) = Z:';O E;';o qui*PM+2s,N+2i(t):

where the g , q;* are the constants defined in Theorem 2.1B corresponding to U, V,
respectively, pm.n(t) 18 the “difference of two chi-squares” function defined in (3.2),
and M = E:=om.‘ N N = Z‘}=on,- .

Proor. Let f(¢), g(t) denote the densities of U, V, respectively. By definition,

(3.5) h(t) = [Zof(t + 2)g(x) da.

From Theorem 3.2, there are constants ¢; , ¢;* for which

(3.6) 1(&) = 2 (@s/e)fusns(t/e), tz0
(3.7) g(t) = 22 (45"/B)fws2i(t/B), tz 0.

Define 1:;(¢) = [ fus2:i((t + %)/@)fr42i(x/B) dz. Then, by substituting (3.6),
(3.7) into (3.5) and noting that both series converge uniformly (permitting inter-
change of integration and summation), we obtain

h(t) = 22 205 [quqs™/eBlLi(t).

Change variables and identify (m, n) = (M + 2/, N 4+ 2j), where (m, n) are
defined in Theorem 3.1. Then by Theorem 3.1, I;;(t) = aBfpm.n.(t). If these
operations are carried out separately for ¢ = 0, and ¢ < 0, (3.4) is readily ob-
tained. []

4. Percentage points for indefinite forms. The expression for the density of an
indefinite quadratic form in non-central normal variates given in (3.4) is exact,
and useful in many theoretical problems. However, its indefinite integral is too
complicated for numerical computations of the percentage points of the dis-
tribution. Fortunately, by using the asymptotic properties of the finite version
of the hypergeometric function, ¥, defined above, the integration can be carried
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out for the tail probabilities of the distribution, which are all that are usually
required.

Let H(t) denote the cdf of T, defined in (1.1). We then obtain

TreoreM 4.1. If T, ¢: , ¢;*, &, B, M, N are defined as in Theorems 2.1B and 3.3,
and (1.1)—(1.3), then for large values of t,

(4.1) H(t) = Dm0 25=0 :q; 18/ (e + B)I¥ 1 — Fypai(—1t/8)],
t=<0,

(42) 1 — H(t) = 22%0 2050 05" le/ (& + B)] VP [L — Faras(t/a)],
t20,

where F;(t) s the cdf of x50 .

Proor. Define, for ¢ > 0,J;(t) = [Lo, (—z) ™" 22 Py (m/2, (m + n)/2;
—l(e + B)/208lx) dx, and for t < 0, J5H(t) = [T a2y (n/2,
(m + n)/2; [(a + B)/20B]z) dx, where (m,n) = (M + 2¢, N 4 2j). Since the
series in (3.4) converge uniformly, substitution into the defining integral of H (t)
gives

H(t) = Y0 2ilgqie(M + 26, N + 2§)/T((N + 25)/2)1:4(8), t <0,
=1— ¥ 2 lgq (M + 26, N + 2)/T((M + 2§)/2)J75(¢), t= 0.

. From the fact that for large y, ¥(a, b; y) =< y* (see Slater [11]), it is not hard to
find that for 8 > 0,

Jij(_a) — [2(m+n)/2am/26(m+n)/2l-‘(n/2)/(a + 6)m/2][1 _ F,.(a/ﬂ)]

It may also be seen that J3(t; o, B, m, n) = Ji;(—t; B, @, m, m). The above
theorem is now immediate. []

Various techniques have been developed for approximating and simplifying
the formulas given in (4.1), (4.2). This subject, along with some applications, is
planned for a later paper.
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