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1. Introduction and summary. Let X:p X n be a matrix of random real vari-
ates such that the column vectors of X are independently and identically dis-
tributed as multivariate normals with zero mean vectors. Then a positive definite
quadratic function in normal vectors is defined as XLX' " where L is a symmetric
positive definite (p.d.) matrix with real elements. In the analysis of variance,
such functions appear. In the previous study, Khatri [14], [16], has established
the necessary and sufficient conditions for the independence and the Wishartness
of such functions. In this paper, we study the distribution of a positive definite
quadratic function and the distribution of ¥'(XLX')™'Y where ¥ :p X m is inde-
pendently distributed of X and its columns are independently and identically
distributed as multivariate normals with zero mean vectors. Moreover, we study
the distribution of the characteristic (ch.) roots of (YY')(XLX')™ and the
similar related problems. When p = 1, the distribution of a p.d. quadratic func-
tion in normal variates (central or noncentral) has been studied by a number of
people (see references).

In the study of the above and related topics in multivariate distribution theory,
we are using zonal polynomials. A. T. James [10], [11], [12], [13], and Constantine
[1], [2], have used them successfully and have given the final results in a very
compact form, using hypergeometric functions ,F,(S) in matrix arguments.
These functions are defined by

(1) PFq(al’ e ;ap;bly e ’bq;Z)
= Dimo 2o [(@n)e -+ (@p)e/ (B1)i - -+ (Ba)JIC(Z) /1]

where C.(Z) is a symmetric homogeneous polynomial of degree k in the latent
roots of Z, called zonal polynomials (for more detail study of zonal polynomials,
see the references of A. T. James and Constantine), x = (k1, -+, kp),
ki ky= - Zkp20,bs+ba+---+kpy=Fk;a, --,a,b1, -+ ,bgare
real or complex constants, none of the b; is an integer or half integer <3(m — 1)
(otherwise some of the denor\ninators in (1) will vanish),

(2) (@) = I (a — 3G — 1))x; = Tm(a, k)/Tm(a),
(Z)n=2(@4+1):-- (x+n—1),(x) =1
and
(3) Tw(a) = 7™ JFaT(a— 4G — 1))
and Tw(a, ) = 2" [ T(a + & — 3G — ).
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In (1), Z is a complex symmetric m X m matrix, and it is assumed thatp < ¢ + 1,
otherwise the series may converge for Z = 0. For p = ¢ + 1, the series converge
for |Z|| < 1, where ||Z|| denote the maximum of the absolute value of ch. roots
of Z. For p < g, the series converge for all Z. Similarly we define
(2b) LF™ (a1, a2, -, 8,301, -, by;8, R)
= Zl?;o >:x [(al)x e (ap)x/(bl)x ctt (bc)x][Cx(S)Cx(R)/Cx(Im)k!]-

The Section 2 gives some results on integration with the help of zonal poly-
nomials, the Section 3 derives the distributions based on p.d. quadratic functions,
the Section 4 gives the moments of certain statistics arising in the study of multi-
variate distributions, and the Section 5 gives the results for complex multivariate
Gaussian variates.

2. Some results on integration. We shall write X > X, for X — X, to be p.d.,
O(m) for orthogonal group of m X m orthogonal matrices and C,(X) for a zonal
polynomial of degree k. R(Z) means the real part of Z. We shall denote
T(t, —x) = ™" TR T(t — k; — 4 m + §7) and

R(t)>3(m—1) + k-

LemMA 1. Let S:m X m and T:m X m be symmetric matrices. Then

(5) Jowm C(SHTH') dH = C(S)C(T)/Ci(In).

(See A. T. James [10].)
LemmA 2. Let Z:m X m be a complex symmetric matrixz whose real part is p.d.
and let T:m X m be an arbitrary complex symmetric matriz. Then

(6)  [sso0exp (—trZ8)|S|"H™C(TS) dS = Tn(t, k)|Z]'C(TZ7")

where T (1, k) is defined in (3) and R(t) > %(m — 1). (See Constantine [1].)
LemwMma 3. If R is any p.d. m X m mairix, then
@) JSISIT I — 87 C(RS) dS = T(t, ) Tm(w)Cu(R)/T(t + u, x).

(See Constantine [1].)
LeEMMA 4. Let Z be a complex symmelric matrix such that R(Z ) > 0, and let T be
an arbitrary complex symmetric matriz. Then.

(8)  [ssoexp (—trZ8)|S|"H™IC(TS™) dS = Tu(t, —x)IZI"‘Cx(ZT),

where R(t) > 3(m — 1) + ky and Tn(t, —«) is defined by (4).
Proor. First, we shall prove the result for the special case Z = I, , them X m
identity matrix. Put

(9) f(T) = [ssoexp (—tr8)|8| ¢, (T8™) dS.
Then f(T') is clearly a symmetric function of 7' (in fact, 2 homogeneous sym-

metric polynomial). Hence, making the transformation T — H'TH and integrat-
ing H over O(m) with the help of (5), we have

(10) A(T) = [f(I)/CDICT).

(4)
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To find f(I)/C\(I), let us assume that T is diagonal. Then Constantine [1] has
showed that
CT) = de ™% - -+ 5™ + “lower terms”
and
CATS™) = dup T t4 [(S7H),F5 70541 ...

With kpyy = Oand (S7%); = (s*), u,», = 1,2, - - - , ;. Then using these results in
(10) and comparing the coefficients of &** - - - ¢,*™ from both sides, we get

(1) AI)/CAI) = s> exp (—tr8)] S| T1y |(S7"),[* 4+ ds.
Let S = VV' where V is an upper trlangular matrlx The Jacobian of the trans-

formation is 2" J 7 ¢};, and |(8™);] = I[i-1va . Then using these in (11),
we get

I)/C(I) = f feXp (— Za—l 2 i vaJ) H:—l (vn)t_kj_%(m_j)_l
(12) - T34 dvjs TTa<s does

= 7" TIRa Tt — ks — 3m + 3) = Tult, — «),

the range of integration being 0 < vss < ®, — 0 = v,(a < j) £ ». For the
general case, substitute Z*SZ* for S in f(r) Wlth the Jacobian of the transforma-

tion |Z I%("‘“’
Lemma 5. If R is any arbitrary symmetric complex m X m matriz, then
(13)  [aso [S"H™ |T + 8|7*C(RS) dS
= Tn(t, €)Twm(u, —k)Ce(R)/Tu(t + u)
and
(14)  [oo |8 [T + 8|7 C(RS™) dS
= Ln(t, —k)T(u, £)C(R) /Tt + u).
Proor. By (6), we have for any p.d. matrix Z
(15)  [ssoexp (—trZ8)|S|" o (RS)|Z|* ds = Twm(t, K)Co(RZY).
Multiplying both the sides of (15) by exp (—trZ)|Z|**™* and integrating over
Z > 0, we get
(16) [ 550 T(t 4 u)|S|H™ |1 4 S|7“C,(RS) dS
= Tu(t, k) [ 250 exp (—trZ)|Z|" ™ *C(RZ™) dZ
and now the use of (8) on the right side of (16) gives (13). If we transform S to

S in (13), then ¢ and u will be interchanged and we shall get (14).
LEemma 6. Let R be a p.d. matriz. Then fort = m/2 + ik, ,

a7 f3 |S|¢—}(m+1)lI _ S’u—}(m+l)ox(RS_1) is
= Pm(t) _K)Pm(u)CK(R)/I‘m(t + u’ _K).
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Proor. The left hand side of (17) is a symmetric function F(R) of R, so that,
as in the proof of Lemma 4,

(18) F(R) = [F(I)/C«(I)IC(R).
For obtaining F(I)/C.(I), we note that
[ s>0 exp (—trZ8)[S|" 0 (Z27'87) dS |Z|' = Twm(t, —x)Cu(I).

Multiplying the expression by |Z [« oxp (—trZ), integrating over Z > 0
and transforming (S~* 4+ I)™" to S, we get

{2187 T — S IC(STY) dSTw(t + u, —k) = Tm(u)Tm(t, —x)Ce(I)>

which gives the expression for F(I)/C«(I). The use of this result in (18) proves
(17).
LemmA 7. Let T be any arbitrary complex symmetric matriz. Then

(19) [ sv0exp (—trS)[S| ™ (£28)°C,(TS) dS
= Tw(t, ©)T(mt +j + k)C(T)/T(mt + k)
while
(20) [ s»0 exp (—trS)|S| ™ (4r8)C(TS™) dS
= Tw(t, —6)T(mt + j — k)C(T)/T(mt — k).
Proor. We shall only prove the result (19). We have by (6) for ¢ < 1,
(21) [s>oexp (—trS(1 — ¢))[S|"*™*PC(TS) dS
= (1 — ¢)™"™ T (t, x)Cu(T).

Equating the coefficient of q¢’/7! from both the sides of (21), we get (19). (20)
can be proved in the same way.

Lemma 8. Let B be symmetric matriz of order n X n and let A be a p.d. symmetric
p X p matriz withn = p. Let X:p X n be a real matriz. Then

(22) [xxs exp (tAXBX') dX = (m)"™(Tp(3n)} 7 ISP oFs™ (48, B).

Proor. Since tr(AXBX") can be written as the function of a symmetric matrix,
it is easy to see from the results of A. T. James [12], [13], and Constantine [1] that

(23) exp (trAXBX') = Fo(X'AXB).
Now let ‘
(24) N g(B) = fxx'=s oFo(X’AXB) dX.

Since g(B) is a homogeneous symmetric function in B, by making the transforma-
tion B — HBH' and integrating H over O(n) with the help of (5), we get

(25) ¢(B) = fxx'=s oFo(”)(AXX’,B) dX
= ﬂ_%zm |S|§(n—p—1){rp(%n)}—l oFo(n)(AS’ B),

using Wishart’s integral. This proves (22).
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3. Distributions related to the p.d. quadratic functions.
THEOREM 1. Let X:p X n be a real random matrixz whose density function is

(26) 2x) 7 |27 |B| ¥ exp (=2 tr='XB7'X")
where Z:p X p and B:n X n are p.d. Then the density function of S = XLX', L
being a n X n p.d. matriz, is
(27) 27"M{Ty(3n)) 7 LB 27 8P
-exp (—4g 7 tr=7'8) oF (T, 3¢'Z7S)

where q > 0and T = I, — L *B'L.
Proor. Let us use the transformation ¥ = XL!in (26). Then the density of
Yis
(2r) 7" |27 |LB| ¥ exp (=3¢ rZ7'YY’ + 3¢ tr=7'YTY)
and S = YY’. Now, the use of (22) gives (27).
TaEOREM 2. The moment generating function of S defined in Theorem 1 is

(28) Ef{exp (trZS)}
= |LBG [ [o| " iF™ (3n; T, 27") = IIi= I — 0277}

where ¢;’s are the ch. roots of T,z = I, — 2¢qZZ and E stands for expectation.

Proor. The first part follows from (27) with the help of (6). For the second
part, we can write after a transformation X — 2*X(Lg)™ in E exp (trZXLX")
as

(29) E(exp (trZS))
= (2r)7*" |LBg'[™" [rexp (3 trXTX’ — } trzXX') dX.

Since XX’ is invariant under post multiplication of X by an orthogonal matrix,
we can consider T to be a diagonal matrix with ¢;’s as diagonal elements. Let
X = (x1, +++,Xs). Then (29) can be rewritten as

Eexp (tr28) = |LBg (]2 {(20) ™" [y exp [—3x/(2 — &iI,)x,] dxj}]

and this gives the second part of (28).
TaEOREM 3. Let X:p X nand Y:p X m be independently distributed, the density
function of X be given by (26) and the density function of Y be given by

(2r) 7™ |2 exp (=3 tr27'YY).
Then, the density function of F = Y'(XLX')7'Y if m < p < n is given by
(30) Tp(3m + in){T,(3n)Tu(dp)} "™ |BLI™ |, + oF|H™H
PP B (3m + 4n; T, B*)
-1
where g > 0, B* = ((I"' +OqF ;0 )and T =1, — o(LB)™

Irm
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Proor. Since F is invariant under the transformation X — 2*X and ¥ — 2'Y,
we shall have = — I and hence the joint density function of Z = §7*Y:p X m
and § = XLX' with the help of (26) is

(31) {25, (3n) |LB[ 7o)~ ]t D
-exp (—j3tr (g~ lI + 727’ )8) oFo(”)(T, %q_IS)
Integrating S and noting

Cx(Ip "I‘ QZZ,)_.1 = Cx ((Im +3Z,Z)_1 Ig(-)-m> = CK(R*)’ (Sa'Y)’

we can write the density function of Z:p X m as
(32)- {Ty(3n)|LB|"a*™) ™
To(3m + 3n)|Ing ™ + 2’27 B (3m + in, T, B¥).

Since p m, we use the Wishart’s integral and obtain the density function of
F = Z'Z, which is given by (30).

THEOREM 4. Let X:p X nand Y:p X m be mdependently distributed, the density
Sunction of X be given by (26) and the density function of Y be given by

(2r) 7™ |2y 7" exp (— 4 12,V Y).
Then the density function of F; = X' (YY') "X whenn < p < m is given by
(33) ¢ o™ |B[? |y
L + (@B) R G (3m + 4n; 0¥, Fi(Bg + F1)™)
where @* = I, — @, @ = =iz, 7'}
and ¢ = Tp(3m + §n) {T,(3m)Ta(3p)} 7, ¢ > 0.

PROOF Since F, is invariant under X — !X and ¥ — ='Y. Then = — I,
="' — ©. Now in the joint density function of X and ¥ which is given by

(2r) Pt g | BT exp (—3 rXBTIX’ — 1 41QYY),

we transform X to Z by Z = (YY’)™*X, and then integrating with respect to Y,
we get the density function of Z as

(38) a7 (@™ |BIFT,(3m + 4n) (Tp(3m)) 7 @ + ZB7Z/[H,
We note that F; = Z'Z and if @* = I, — ¢@%, ¢ > 0, then
lo + ZB7'Z'| = |9| |BI"" |B + Z'Z¢"| |1, — Z(Bq + Z'2)7'Z'0¥|.
Now, integrating Z such that F; = Z'Z is fixed, we get the density function of
F, as
(35) e |Q|"*" lBl-—h»
Jrmzrz (|l + (BO)TZ'Z| |1, — Z(Bq + 2'2)7Z'a*|} ™ az.
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Since the integral in (35) is symmetric and homogeneous in (2*), we get after
using the method applied in the proof of Lemma 4 the density function of F; as
mentioned in (33).

We make below few remarks or notes when m = p and n = p in the two
theorems.

Nore 1. In Theorem 4, when m = p and n = p, the density function of
Fy = (YY)*XX'(YY')} is given by

(36) o |B'—h» |Ql—%'a |F2li(n—p—l)
I, + (g@)7F T B (3m + dn; T, Fa(g@ + F2) ™)

where T = I, — ¢B™, ¢ > 0,and ¢ = T,(3m + n){T,(3m)T,(3n)} .
NortE 2. In Theorem 4, when m = p and n = p, the density function of
Fy = (XX)'YY'(XX’)™? can be obtained from (36) by the relation of trans-
formation F» — F,;~ . This means that the density functions of F; and
Fy = (YYHAXXY (YY) are identical.
NoTte 3. When ¢ — « in (33) and (36), we get the density functions of F; and
F; as '

(37) clo[™ [BI™ |Fi[** ™ P (3m + 3n; —Q7", F1B™)
and
(38) ¢ [ |B|7H |Fo)" "0 (P ™ (3m + $n; —B7, Fa07Y)

where ¢ and ¢, are constants defined in (33) and (36) respectively. From the
expressions (37) and (38), we can obtain the density functions of the ch. roots
of F2 and F3;. We may also note that when B = I, in (33), we can explicitly
write down the density function of the ch. roots of F; when m = p and n < p
which will converge rapidly by choosing g, while that of F'; can be obtained from
(36) whenn = pandm = pand @ = I, , and the density function will depend
on B. Those derivable from (37) and (38) do not require such conditions.

4. Moments of certain statistics. (a) Let X:p X n be distributed as normal
whose density function is given by (26). Then, for any symmetric matrix Z, and
for £;’s being the ch. roots of LB, we have by Theorem 2,

(39) E exp (tr ZXLX') = [}~ |1, — 2622

= $in0 L (3n)C(LB)CL(Z2)2°/k! Cu(I).
Now, we note that the density function of § = X’LX given in (27) can be re-
written as
(40) 2771, (3n)} 7 (217 QI foum [SI*" ™" exp (=} tr 2 HWQH,'27!S) dH

where H' = (H,' Hy) is an n X n orthogonal matrix with H; and H; of dimension
p X nand (n — p) X n, respectively, and Q' = L!BL}. Using this in finding
E exp (tr ZS) and interchanging the integration signs, we get
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B exp (tr ZXLX') = Q" [ow [H:QH, |
@1y I, — 2322 (HQH,) ™ dH = im0 2« (3n)25 (k)7 QI
[ oy |HWQH,C{ (2}Z2h) (HQH,') ™"} dH.

Since this is homogeneous and symmetric function in =7z}, we have as is the
proof of Lemma 4,

(42) Eexp (tr ZXLX') = im0 2oe (30) 25 (k1) 7'C(Z2){Cu(I,)} Q[
J o |HWQH,'|"C(H:QH) ™ dH.

Now (42) and (39) must be identical in Z and hence comparing the coefficients of
C.(ZZ), we must have

(43) QI [ow |HQH,|™"C(H\QHY )" dH = C(Q7")Ci(I,)/Cu(I),

where H' = (H,' H,') is as defined in (40). Now with the help of (43), using the
density function of S as given in (40), we get

(44) EC(Z8) = 2(3n).C(LB)C(22)/Cu(I,).
The answer was given by Constantine [1] when LB = I,. Further, when
LB = I,, then 8 = X'LX is distributed as Wishart whose density function is
W(S; in; =). Hence using (8), we have
(45) EC(ZS™) = T,(3n, —x){Tp(3n)}27°C(227"), if n> (p—1) + k1.

(b) When the distribution of § = XLX' is given by (27), then it is easy to show
that
(46) E|S[* = P27, (3n + k) (T, (30)} 7 [LB[77 2 1Fo™ (3 + s T,15).
Now when LB = I, , we get the well-known result

E |8 = (2")T5(3n + B)IZI*/To(3n).

In (36) under the condition @ = I, or Z; = Z;, we shall choose ¢ = 1 in or-
der to obtain the jth moment of |S|/|YY’ 4+ 8| and that of |Y'Y'|/|S + YY’| are

given by
E{|SI/IS + YY'|}’To(3n)/To(3n + 4)
(47) = E{YY'|/IS + YY'|}'T,(3m)/Tp(3m + 7)
= T,(3n + m)(T,(3m + 3n + )} ™ oF1(3p, 5; 3m + 3n + j; I — BL).

When BL = I, , we get the well-known results for the moments of the likelihood
ratio statistics. Hence the distribution of |[Y'Y’|/|S + Y'Y| is obtained from that
of |8|/|8 + YY’| by interchanging n and m.

(¢) If the density function of V:p X p is given by

(48) constant |V|¥™ |1, + V[T
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then from (13), (14), (7), and (17), we have

EC(ZV)

= (t)Lp(u, —k)C(Z)/Tp(u) if uzp+k,
EC.(ZV7Y)

= (u)Lp(t, —x)Ce(Z)/To(2) if t=p+k,

(49) BC(Z(V+I,)™)

= (0)Cu(Z)/(t + u)«,
ECL(Z(V + I,)™)

= (0)C(2)/(t + ), and

EC(Z(V' + I,))
= Ty(t, —OTp(t + u)C(Z)/Tp(t + u, —)TH(8) i tZp + ki

From these, we can easily write down the moments for (tr V), (tr v,
tr (V2 4 )™ tr (V + 1)  and (tr V' + p) with some conditions.

6. Corresponding results for complex Gaussian variates.

(5.1) In this section, we shall state the above results for complex Gaussian
distributions studied by Wooding [29], Goodman [3], [4], James [13] and Khatri
[15], [17], [18]. We shall denote

Fula) = #"™ O[[EiT(@a— i+ 1), Tula,x) = "
(50) aT(a+ki—i+ 1),
Pu(a, —¢) = @™ P [[7T(a — m — k; + 4) and
[alk = Tm(a, k)/Tm(a) = JI* (@ — ¢ + 1),

The corresponding hypergeometric functions are defined as

(m) e . e . = s [a’I]K co [ap]x éx(A)Cx(B)
GU ST, ey b b 4 B) = B G

When B = I, it is denoted as ,Fg(ar, -+, ap3b1, - -+, b5 A),and C(A) is a
zonal polynomial of a Hermitian matrix 4 and is the symmetric functions of ch.

roots of A.
(5.2) We shall denote by dU the invariant measure on the unitary group U(n)
normalized to make the total measure unity.

(52) Jom C(AUBU") dU = C(A)C(B)/Ce(I4).
(63)  [amasoexp (—tr A)|A|*"C(AB) dA = T(a, ¥)Cu(B),

and
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(54)  [zasoexp (—tr A)|A|*"C(BA™) dA = Tm(a, —x)C(B).
(5.3) Let F:p X p be a Hermitian p.d. matrix, and its density function is
Tt + u){Tp()Tp(w)) 7 [FI" |1 + FI77,
Then,
EC(ZF) = [thip(u, —x)Cu(Z)/T5(u) f wzp+h,
EC(ZF) = [ulIy(t, —)Cu(Z)/T(t) if tzp+h,
(85) EC(Z(F™ + I,)™) = WC(2)/lt + ul,

ECK(Z(F + Ip)_l) = [u]xOx(Z)/[t + u]x , and
EC(ZF™ 4 Z) = Typ(t, —)Tp(t + u)Cu(Z) /{T(t + u, —)Tp(1)}
if ¢t p+ k.

(5.4) If the complex random matrix X :p X n is distributed as Gaussian whose
density function is given by
(56) " |27 | B[ exp (—tr 27 XB'X")
where = and B are Hermitian p.d., then the density function of XLX' = 8 (L
being a Hermitian p.d. matrix) is given by
(57)  (Fp(n)|LBJ” [Z|")7 |8]" " exp (—g " tr 27'8) of o™ (T, ¢'27'8)
where ¢ > 0and T = I, — gL *B™'L™*. Moreover
(58) EC(Z8) = [n)C.(LB) Cx(Z2)/C(1,).
When LB = I, then EC,(ZS™") can be written down with the help of (54).

(5.5) Let the density function of X :p X n be given by (56), the density func-
tionof Y:p X mbe 7 ™™ |Z|™ exp (—tr 27V Y’) and X and Y be independent.
Then for m < p < n, the density function of F = ¥'(XLX’)™'Y is given by
(59) Tp(m + n){Tp(n)Tm(p)}™

“|BL” |[F|"™ |Ing ™ 4 F|™" "1 (m 4 n; T, R*)

) -1
where ¢ > 0, T = I, — ¢(LB)™ and R* = ((Im -I;)qF) 0 >

(5.6) Let the density function of X:p X n be given by (56), X and Y:p X m
be independent and the density function of Y be given by
(60) 7™ |2 ™ exp (—tr 2,'YY).
Then for n < p < m, the density function of F; = X'(Y 7)™ X is given by
(61) Typ(m + n){To(m)Tu(p)} ™ [BI77 ™ |7
I + (¢B)'Fi| ™" Fo® (m + n; Q¥ Fi(Bg + F1)™)
where ¢ > 0. @* = I, — ¢@ " and @ = =iz, 7'zh

Iy
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(5.7) Let X:p X nand Y:p X m be independently distributed and their re-
spective density functions be given by (56) and (60). Then forn = p, m = p, the
density function of F; = (YY')}(XX')(YY') s given by

(62) Tp(m + n){Tp(n)Fp(m)} 7" Q™ B[ |Fy""
I, + (@) Fo| " F ™ (m + n; T, Fa(q@ + Fa)™)

where @ = 22,7 'stand T = I, — ¢(LB)™". The density functions of F, ! and
Fy = (XX')(Y?')(XX')™ are identical. Further, we can obtain the density
function of the ch. roots of F; in the form of (62) provided @ = I, or 2, = Z;
otherwise, we can obtain the density function of the ch. roots of F, in the form
obtained by taking ¢ —  in (62). Further, if § = XLX', we have

E(IYY,VIS + YY’ljf‘p(m)/f‘p(m + .7)
(63) = E(I8|/I8 + YY'|)’Ty(n)/To(n + j)
= Tp(m + n){To(m + n + 5)} " oFi(p, j;m + n + j; I, — BL).

Hence the distribution of |Y¥’|/|S + YY¥’| can be obtained from that of
I8|/IS + Y'¥’| by interchanging n and m.
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