A NOTE ON MUTUAL SINGULARITY OF PRIORS1

By David A. Freedman

University of California, Berkeley

- 1. Introduction. The main result of this note is an improvement of (8.1) of [3], and is a by-product of an extensive collaboration with Dubins on that paper. I am also indebted, as usual, to David Blackwell for many helpful suggestions. Section 3, on branching processes, is almost self-contained, and may be of general interest.
- 2. Summary. Let 0 < r < 1. Let μ be a probability on S, the closed unit square, which assigns probability 1 to the vertical line with abscissa r. Let Δ be the set of distribution functions on the closed unit interval I. Endow Δ with its weak * Borel σ -field. For any closed sub-interval H of I, let $\langle H \rangle$ be the linear function which maps I onto H and sends 0 to the left endpoint of H; and H_0 (respectively, H_1) be the image of [0, r] (respectively, [r, 1]) under $\langle H \rangle$. Write B for the set of all finite sequences of 0's and 1's (including the empty sequence \varnothing). For $b \in B$ and $\epsilon = 0$ or 1, $I_{b\epsilon} = (I_b)_{\epsilon}$, where $I_{\varnothing} = I$. For $G \in \Delta$, let |G| be the unique probability on I with G(x) = |G|[0, x] for all $x \in I$. Let $Y_b : b \in B$ be independent random variables, such that (r, Y_b) has distribution μ . Let P_{μ} , a probability on Δ , be the distribution of the (random) $F \in \Delta$ satisfying: $|F|(I_{\varnothing}) = 1$ and $|F|(I_{b0}) = Y_b |F|(I_b)$ for all $b \in B$. For a more detailed description, see [2], or Sections 1 and 2 of [3].

Say $F \in \Delta$ is strictly singular with respect to $G \in \Delta$ if there is no x for which the ratio of F(x+h) - F(x) to G(x+h) - G(x) converges to a finite, positive limit as h tends to 0. The object of this note is to prove the

THEOREM. Let 0 < r < 1. Let μ and ν be distinct probabilities on S, both assigning measure 1 to the vertical line with abscissa r. Then there are weak * Borel subsets C and D of Δ , with $P_{\mu}(C) = P_{\nu}(D) = 1$, and each distribution function in C strictly singular with respect to each distribution function in D.

Let $\mu^* = \mu\{(r,0)\} + \mu\{(r,1)\}$, and $\nu^* = \nu\{(r,0)\} + \nu\{(r,1)\}$. The easy case (either $\mu^* = 1$ or $\nu^* = 1$) of the Theorem is proved in Section 5. The harder case ($\mu^* < 1$ and $\nu^* < 1$) is proved in Section 4. Section 3 contains preliminary material on branching processes, which may be of general interest.

3. Branching processes. For this section, j is a positive integer, and n is a nonnegative integer. J_n is the set of n-tuples formed with $0, \dots, j-1$; the only element of J_0 is the (empty) 0-tuple \emptyset . If $b \in J_n$, and $i=0, \dots, j-1$, then b followed by i, namely bi, is in J_{n+1} , and is a child of b. The j-tree is $J=\bigcup_{n=0}^{\infty} J_n$, and $b \in J$ is a node. Moreover, p is a real number with $0 \le p \le 1$, and (p_1, \dots, p_j) is a probability distribution on $(1, \dots, j)$, with probability

Received 6 August 1965.

¹ Prepared with the partial support of the Sloan Foundation and the National Science Foundation GP 2593.

generating function Ψ ; that is, $\Psi(x) = p_1 x + \cdots + p_j x^j$. The stochastic process $\{Z_b, L_b : b \in J\}$ is a (p, Ψ) -process over the j-tree J; that is, its joint distribution satisfies the following conditions. Z_b takes only three values: 0, 1, undefined. L_b takes only two values: live, dead. Z_b is undefined if and only if L_b is dead. If L_b is dead, so is L_b , for $i = 0, \dots, j-1$. Let N_b be the number of L_b , which are live, for $i = 0, \dots, j-1$. Then L_{\varnothing} is live, Z_{\varnothing} is 1 with probability p, 0 with probability 1-p, and N_{\varnothing} has probability generating function Ψ . Of course, Z_{\varnothing} and N_{\varnothing} need not be independent. For $m = 0, 1, \dots$, given Z_b and L_b for $b \in \mathbf{U}_{n=0}^{m-1} J_n$, and L_b for $b \in \mathbf{J}_m$: provided $c \in J_m$ and L_c is live, the pairs (Z_c, N_c) are conditionally independent, with common conditional distribution equal to the unconditional distribution of $(Z_{\varnothing}, N_{\varnothing})$. Finally, for $m = 0, 1, \dots$, given Z_b , L_b and N_b for $b \in \mathbf{U}_{n=0}^m J_n$: provided $c \in J_m$, the j-tuples $(L_{c0}, \dots, L_{c(j-1)})$ are conditionally independent; and for each $c \in J_m$, all j-tuples formed with N_c values live and $j - N_c$ values dead are conditionally equally likely for $(L_{c0}, \dots, L_{c(j-1)})$.

"L_b is live" may be abbreviated to "b is live." If $b \in J_n$ and $0 \le i \le n$, then $b(i) \in J_i$ is the first i components of b, and is an ancestor of b.

LEMMA 1. (i) $b \in J_n$ is live with probability $[j^{-1}\Psi'(1)]^n$.

(ii) Given that $b \in J_n$ is live, $b(0), \dots, b(n-1)$ are live; and $N_{b(0)}, \dots, N_{b(n-1)}$ are conditionally independent with common conditional probability generating function

$$x \to x\Psi'(x)/\Psi'(1)$$
.

PROOF. Verification is needed only for n=1. Given $N_{\emptyset}=i$, b is live with conditional probability $\binom{i-1}{i-1}/\binom{i}{i}=i/j$. Thus, b is live and $N_{\emptyset}=i$ with unconditional probability ip_i/j .

LEMMA 2. Given that $b \in J_n$ is live, and given which children of $b(0), \dots, b(n-1)$ are live: as c ranges over the live children other than b(i+1) of b(i), for $i=0,\dots,n-1$, Z_c are conditionally independent, 1 with conditional probability p,0 with conditional probability 1-p.

Proof. Clear.

If $0 < \alpha < 1$ and $0 \le \theta \le 1$, let

$$m(\theta, \alpha) = [\theta/\alpha]^{\alpha}[(1-\theta)/(1-\alpha)]^{1-\alpha}.$$

An interesting fact in Chernoff (1952) is recorded here as:

LEMMA 3. Let X_1 , X_2 , \cdots be independent random variables, each assuming the value 1 with probability θ , and 0 with probability $1 - \theta$. Let $\theta < \alpha < 1$, and let n be a positive integer. Then $X_1 + \cdots + X_n \geq n\alpha$ with probability no more than $[m(\theta, \alpha)]^n$.

If b and c in J_{n+1} are different children of the same node in J_n , they are brothers. If $0 \le \alpha, \gamma \le 1$ are real numbers, $b \in J_n$ is α -exceptional if it is live and of the live brothers c of b, a fraction at least α have $Z_c = 1$. Moreover, b is (α, γ) -exceptional if it is live and there are at least $n\gamma$ integers $i = 1, \dots, n$ for which b(i) is α -exceptional.

LEMMA 4. Let α be a real number, with $p < \alpha < 1$, and let $b \in J_n$. Given that b is live: for $i = 1, \dots, n$, the events "b(i) is α -exceptional" are conditionally independent, with common conditional probability no more than $\Psi'[m(p, \alpha)]/\Psi'(1)$.

Proof. As usual, only n=1 needs verification. By Lemma 1, given b is live, the number $N_{\varnothing}-1$ of live brothers of b has conditional probability generating function $x \to \Psi'(x)/\Psi'(1)$. By Lemmas 2 and 3, given b is live and given N_{\varnothing} , the conditional probability that b is α -exceptional is no more than $m(p,\alpha)^{N_{\varnothing}-1}$. \bullet

LEMMA 5. Let α and γ be real numbers, with $p < \alpha < 1$ and $\beta = \Psi'[m(p, \alpha)]/\Psi'(1) < \gamma < 1$. The probability that there is an (α, γ) -exceptional node in J_n is at most $[\Psi'(1)m(\beta, \gamma)]^n$.

PROOF. $m(\theta, \gamma)$ increases with θ for $\theta < \gamma$. So, using Lemmas 3 and 4, given that $b \in J_n$ is live: b is (α, γ) -exceptional with conditional probability at most $[m(\beta, \gamma)]^n$. But there are j^n nodes in J_n ; apply Lemma 1. \bullet

A path through J is a sequence b_0 , b_1 , \cdots such that $b_0 = \emptyset$, and for all n, there is an $i = 0, \dots, j-1$ with $b_{n+1} = b_n i$. The probability P on the two-point set $\{0, 1\}$ assigns mass p to 1, and P^J is the probability on the set of functions f from J to $\{0, 1\}$ for which: as b ranges over J, the functions $f \to f(b) = 0$ or 1 are independent with common distribution P.

The next Lemma, and its proof, are taken from [3], with the permission of Dubins.

LEMMA 6. If $p < \alpha < 1$ and $m(p,\alpha) < j^{-1}$, then for P^J -almost all functions f from J to $\{0,1\}$, there is an $n(f) < \infty$ such that: for each $n \ge n(f)$ and path b_0 , b_1 , \cdots through J, $f(b_0) + \cdots + f(b_{n-1}) < n\alpha$.

PROOF. Let E_n be the set of all functions g from J to $\{0, 1\}$ such that, for some path b_0 , b_1 , \cdots through J, $g(b_0) + \cdots + g(b_{n-1}) \ge n\alpha$. By Lemma 3, $P^J(E_n) \le j^{n-1}[m(p,\alpha)]^n$, which is summable in n.

4. Proof of the Theorem in case $\mu^* < 1$ and $\nu^* < 1$. It is necessary to give a more formal definition of P_{μ} ; unfortunately, this involves further notation. B is the 2-tree, V is the vertical line segment $\{(x,y)\colon x=r,\,0\leq y\leq 1\}$, and V^B is the set of functions τ from B to V. For b ε B and τ ε V^B , $\tau(b)=(\tau,\tau_2(b))$, with $0\leq \tau_2(b)\leq 1$. If μ is a probability on (the Borel subsets of) V, then μ^B is the probability on (the Borel subsets of) V_B for which: as b ranges over B, the functions $\tau\to\tau(b)$ are independent with common distribution μ . A function M will now be defined from V^B to Δ so that $P_{\mu}=\mu^BM^{-1}$. Introduce the set 2^Z of all functions from the positive integers Z to the two-point set $\{0,1\}$. For b ε B, b is the set of ξ ε 2^Z which extend b; thus $\overline{\varnothing}=2^Z$ and $\overline{00}=\{\xi\colon\xi$ ε 2^Z , $\xi(1)=\xi(2)=0\}$. For τ ε V^B , $P(\tau)$ is the probability on 2^Z for which

$$P(\tau)(\overline{b0}) = \tau_2(b)P(\tau)(\overline{b}), \quad \text{all} \quad b \in B.$$

For $\xi \varepsilon 2^{\mathbb{Z}}$, let $f(\xi) = \bigcap_{n=0}^{\infty} I_{\xi(1)...\xi(n)} \varepsilon I$. Then $M(\tau) \varepsilon \Delta$ satisfies: $|M(\tau)| = P(\tau)f^{-1}$.

The object of this section is to construct Borel subsets C^* and D^* of V^B , such that:

(1)
$$\mu^{B}(C^{*}) = \nu^{B}(D^{*}) = 1;$$

(2)
$$\sigma \varepsilon C^*$$
 and $\tau \varepsilon D^*$ implies $M(\sigma)$ is strictly singular with respect to $M(\tau)$.

If $\tau \in V^B$, then $b \in B$ is τ -live unless it has an ancestor either of the form c1 with $\tau_2(c) = 1$, or of the form c0 with $\tau_2(c) = 0$. If n is a non-negative integer, B_n is the set of n-tuples of 0's and 1's. If k is a positive integer and $b \neq c \in B_n$ have the same ancestor in B_{n-k} (that is, b(n-k) = c(n-k)), then b and c are k-cousins. If A is a Borel subset of V, n and k are positive integers, $0 \leq \alpha \leq 1$, then $b \in B_{nk}$ is τ - (A, k, α) -exceptional if it is τ -live, and of its τ -live k-cousins c, a fraction at least α have $\tau(c) \in A$. For $0 \leq \gamma \leq 1$, $(A, k, \alpha; n, \gamma)$ is the set of $\tau \in V^B$ for which: there is a τ -live $b \in B_{nk}$, with a fraction at least γ of $b(k), \dots, b(nk)$ being τ - (A, k, α) -exceptional.

Recall $\mu^* = \mu\{(r,0)\} + \mu\{(r,1)\}$. Let $f_1(x) = \mu^*x + (1-\mu^*)x^2$, $f_{n+1}(x) = f_1(f_n(x))$. From XII.5 of [4], f_n is the μ^B -probability generating function of the random variable whose value at τ is the number of τ -live $b \in B_n$.

Abbreviate

(3)
$$M = m(\mu(A), \alpha) \text{ and } \beta_k = f_k'(M)/f_k'(1).$$

The main step in proving the Theorem is establishing this inequality: if $\mu(A) < \alpha < 1$, and $\beta_k < \gamma < 1$, then

(4)
$$\mu^{B}(A, k, \alpha; n, \gamma) \leq [(2 - \mu^{*})^{k} m(\beta_{k}, \gamma)]^{n}.$$

PROOF OF (4). The inequality will be verified by applying Lemma 5 to a suitable $(\mu(A), f_k)$ -process on the 2^k -tree, as follows. In Section 3, put $j = 2^k$. Order B_{nk} and J_n lexicographically, and let 0_n be the order-preserving map of J_n onto B_{nk} . If $\tau \in V^B$, then τ^* is this function from J to $\{0, 1, \text{ undefined}\} \times \{\text{live, dead}\}$. If $b \in J_n$, the second coordinate of $\tau^*(b)$ is live or dead according as $0_n b \in B_{nk}$ is τ -live or τ -dead; the first coordinate is undefined if and only if the second is dead; if the second is live, the first is 1 or 0 according as $\tau(0_n b) \in A$ or εA . Unfortunately, the process $\{\tau \to \tau^*(b) : b \in J\}$, on the probability space (V^B, μ^B) , is not a $(\mu(A), f_k)$ -process.

Let π be a mapping of J into $(0, \dots, j-1)!$; that is, for each $b \in J$, $\pi(b)$ is a permutation of $(0, \dots, j-1)$. Then π^* , a permutation of J, is defined by this induction: $\pi^*(\emptyset) = \emptyset$; if π^* has been defined on J_n , $b \in J_n$, and $i = 0, \dots, j-1$, then $\pi^*(bi)$ is $\pi^*(b)$ followed by the $\pi(b)$ -image of i. Of course, if $b \in J_n$ is an ancestor of c, then $\pi^*(b) \in J_n$ is an ancestor of $\pi^*(c)$. If g is a function from J to some set, then πg is this function from J to the same set: $(\pi g)(b) = g(\pi^*(b))$, $b \in J$.

Let (Ω, Q) be a probability space. Let π be a mapping from $\Omega \times J$ to $(0, \dots, j-1)!$, with these properties:

- (i) for each $b \in J$, $\pi(\cdot, b)$ is measurable, and takes each of its j! possible values with probability 1/j!;
 - (ii) as b ranges over J, the $\pi(\cdot, b)$ are independent.

If $\omega \varepsilon \Omega$ and $\tau \varepsilon V^B$, then $[\pi(\omega, \cdot)]\tau^*$ is a function from J to $\{0, 1, \text{ undefined}\}$ \times {live, dead}. If also $b \varepsilon B$, let $Z_b(\omega, \tau)$ be the first coordinate of $\{[\pi(\omega, \cdot)]\tau^*\}$ (b), and $L_b(\omega, \tau)$ the second. Plainly, the stochastic process $\{Z_b, L_b : b \varepsilon J\}$, defined on the probability triple $(\Omega, Q) \times (V^B, \mu^B)$, is a $(\mu(A), f_k)$ -process on the 2^k -tree, in the sense of Section 3. There is an (α, γ) -exceptional node in J_n for this process evaluated at (ω, τ) if and only if $\tau \varepsilon (A, k, \alpha; n, \gamma)$. Apply Lemma 5, noting that $f_k'(1) = (2 - \mu^*)^k$, to complete the proof of (4).

Let $(A, k, \alpha; f.o., \gamma)$ be the set of $\tau \in V^B$ with $\tau \in (A, k, \alpha; n, \gamma)$ for finitely many n only. If $\mu(A) < \alpha < 1$, and $\mu^* < 1$, there is a positive integer k and a positive $\gamma < \frac{1}{2}$ with

(5)
$$\mu^{B}(A, k, \alpha; f.o., \gamma) = 1.$$

PROOF OF (5). By (4) and the Borel-Cantelli lemma, it is enough to choose k and γ so that

$$(6) \qquad (2-\mu^*)^k m(\beta_k, \gamma) < 1$$

and

$$\beta_k < \gamma,$$

where β_k and M are defined in (3). Since $\mu(A) < \alpha < 1$, M < 1, $f_k(M) \to 0$ as $k \to \infty$. Since $f_1'(0) = \mu^*$, for each $\epsilon > 0$ there is an $E(\epsilon) < \infty$ with

(8)
$$\beta_k \leq E(\epsilon)(\mu^* + \epsilon)^k/(2 - \mu^*)^k, \quad k = 1, 2, \cdots.$$

Since $m(\theta, \gamma) \leq 2\theta^{\gamma}$, the left side of (6) is no more than

(9)
$$2E(\epsilon)^{\gamma}[(2-\mu^*)^{1-\gamma}(\mu^*+\epsilon)^{\gamma}]^k.$$

Since $\mu^* < 1$, $(2 - \mu^*)\mu^* < 1$ and $\mu^*/(2 - \mu^*) < 1$. Choose $\epsilon > 0$ so small that $(2 - \mu^*)(\mu^* + \epsilon) < 1$, and $(\mu^* + \epsilon)/(2 - \mu^*) < 1$. Choose $\gamma < \frac{1}{2}$ so large that $(2 - \mu^*)^{1-\gamma}(\mu^* + \epsilon)^{\gamma} < 1$. Then choose k so large that $\beta_k < \gamma$, using (8), and so large that (9) is less than 1, which completes the proof of (5).

PROOF OF THE THEOREM IN CASE $\mu^* < 1$ AND $\nu^* < 1$. Find a Borel subset A of V and a real number α with $\mu(A) < \alpha < \nu(A)$. Let A' be the complement of A in V. Use (5) to find a positive integer k and a positive $\gamma < \frac{1}{2}$ with

$$\mu^{B}(A, k, \alpha; f.o., \gamma) = 1$$

and

$$\nu^{B}(A', k, 1 - \alpha; f.o., \gamma) = 1,$$

A SPECIAL CASE. Some nuisances in the rest of the proof disappear if, for example, $r=\frac{1}{2}$, μ and ν both concentrate on the two-point set $\{(\frac{1}{2},0),(\frac{1}{2},w)\}$, and $0<\mu\{(\frac{1}{2},w)\}<\nu\{(\frac{1}{2},w)\}<1$, where 0< w<1. This case will now be argued. For A, use the one-point set $\{(\frac{1}{2},w)\}$. For C^* , take the set of σ ε $(A,k,\alpha;f.o.,\gamma)$ with $\sigma(b)=(\frac{1}{2},0)$ or $(\frac{1}{2},w)$ for all b ε B. For D^* , take the set of τ ε $(A',k,1-\alpha;f.o.,\gamma)$ with $\tau(b)=(\frac{1}{2},0)$ or $(\frac{1}{2},w)$ for all b ε B. Property (1) is clear. For (2), let σ ε C^* , τ ε D^* , x ε I. It must be seen that

(10) the ratio of
$$M(\sigma)(x+h) - M(\sigma)(x)$$
 to $M(\tau)(x+h) - M(\tau)(x)$ does not converge to a finite, positive limit as $h \to 0$.

Write b(n, x) for the first n digits of the non-terminating binary expansion of x. Clearly, (10) holds if for some n, b(n, x) is either σ -dead or τ -dead. So, suppose that for all n, b(n, x) is both σ -live and τ -live. If $b \in B_n$ is an ancestor of $c \in B_{n+k}$, then c is a k-child of b. Let N be the set of n for which: at least one k-child c of b(nk, x) is σ -live and τ -live and has $\sigma(c) = (\frac{1}{2}, 0)$ and has $\tau(c) = (\frac{1}{2}, w)$. Plainly, N is infinite, even having density $\geq 1 - 2\gamma > 0$.

For $b \in B_n$, $b^* \in I$ has binary expansion b followed by 0's, and $b^{**} = b^* + 2^{-n}$. If $\rho \in V^B$ and $u, v \in I$, then $\rho[u, v]$ is the slope of the chord joining the points in the graph of $M(\rho)$ whose abscissas are u and v. There is a $\delta > 0$, depending only on k and w, with the following property. If $n \in N$, there is an $i \leq k + 1$ and an i-child d of b(nk, x) such that:

$$\frac{\sigma[b(nk, x)^*, d^{**}]}{\tau[b(nk, x)^*, d^{**}]} / \frac{\sigma[b(nk, x)^*, b(nk, x)^{**}]}{\tau[b(nk, x)^*, b(nk, x)^{**}]}$$

and

$$\frac{\sigma[d^{**}, b(nk, x)^{**}]}{\tau[d^{**}, b(nk, x)^{**}]} / \frac{\sigma[b(nk, x)^{*}, b(nk, x)^{**}]}{\tau[b(nk, x)^{*}, b(nk, x)^{**}]}$$

both differ from 1 in absolute value by δ or more. Since the closed interval $[b(nk, x)^*, b(nk, x)^{**}]$ shrinks to x, and x is in either $[b(nk, x)^*, d^{**}]$ or $[d^{**}, b(nk, x)^{**}]$, (10) holds. This completes the proof in the special case.

To return to the general case, if $b \in B_n$ is an ancestor of $c \in B_{n+i}$ for some $i=0, \dots, k$, then c is a k-descendant of b. If K is a subset of V, $\tau \in V^B$, then $b \in B$ is (τ, K, k) -good if $\tau(c) \in K$ for all k-descendants c of b. If $0 \le g \le 1$, then $b \in B_n$ is (τ, K, k, g) -good if a fraction at least g of $b(0), \dots, b(n)$ are (τ, K, k) -good. Let $\langle K, k, g \rangle$ be the set of all $\tau \in V^B$ for which there is an $n(\tau) < \infty$ such that $n \ge n(\tau)$ and $b \in B_n$ imply b is (τ, K, k, g) -good.

Use Lemma 6 to find compact subsets K and K' of V, with $K \subset A$, $K' \subset A'$, (r, 0) and (r, 1) not points of accumulation of $K \cup K'$, and for $g = 1 - [(1 - 2\gamma)/k]$,

$$\mu^{B}\langle K \cup K', k, g \rangle = \nu^{B}\langle K \cup K', k, g \rangle = 1.$$

Let

$$C^* = \langle K \cup K', k, g \rangle \cap (A, k, \alpha; f.o., \gamma)$$

and

$$D^* = \langle K \cup K', k, g \rangle \cap (A', k, 1 - \alpha; f.o., \gamma).$$

Property (1) is clear. The proof of (2) is a routine generalization of the special case, especially in view of the similar material in Sections 1 and 5–8 of [3]. This completes the discussion of the Theorem in case $\mu^* < 1$ and $\nu^* < 1$.

5. Proof of the Theorem in case $\mu^* = 1$ or $\nu^* = 1$. If A is a Borel subset of the closed unit interval I, then \widehat{A} is the weak* Borel subset of $F \in \Delta$ which assign measure 1 to some point in A. If $\mu^* = \nu^* = 1$, there are disjoint Borel subsets U and V of I, with $P_{\mu}(\widehat{U}) = P_{\nu}(\widehat{V}) = 1$. For example, use (9.17) of [3] and the Strong Law of Large Numbers. Clearly, $F \in \widehat{U}$ is strictly singular with respect to $G \in \widehat{V}$. If $\mu^* = 1$ but $\nu^* < 1$, take \widehat{I} for C, and take for D the set of all continuous $F \in \Delta$ with F(0) = 0. By (4.4) of [3], $P_{\nu}(D) = 1$. This completes the proof of the Theorem.

REFERENCES

- [1] CHERNOFF, HERMAN (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. *Ann. Math. Statist.* 23 493-507.
- [2] DUBINS, LESTER E. and FREEDMAN, DAVID A. (1963). Random distribution functions. Bull. Amer. Math. Soc. 69 548-551.
- [3] Dubins, Lester E. and Freedman, David A. (1965). Random distribution functions.

 To appear in Fifth Berkeley Symposium.
- [4] FELLER, WILLIAM (1958). An Introduction to Probability Theory and Its Applications. 1 (2nd ed.). Wiley, New York.