A NOTE ON MUTUAL SINGULARITY OF PRIORS!

By Davip A. FREEDMAN
Unwersity of California, Berkeley

1. Introduction. The main result of this note is an improvement of (8.1) of
[3], and is a by-product of an extensive collaboration with Dubins on that paper.
I am also indebted, as usual, to David Blackwell for many helpful suggestions.
Section 3, on branching processes, is almost self-contained, and may be of
general interest.

2. Summary. Let 0 < r < 1. Let u be a probability on S, the closed unit
square, which assigns probability 1 to the vertical line with abscissa r. Let A be
the set of distribution functions on the closed unit interval I. Endow A with its
weak * Borel o-field. For any closed sub-interval H of I, let (H) be the linear func-
tion which maps I onto H and sends 0 to the left endpoint of H; and H, (respec-
tively, H1) be the image of [0, r] (respectively, [r, 1]) under (H). Write B for the
set of all finite sequences of 0’s and 1’s (including the empty sequence ). For
beBande = 0orl, Isc = (Is), where Is = I. For G ¢ A, let |G| be the unique
probability on I with G(z) = |@|[0, z] for all z & I. Let Y} :b ¢ B be independent
random variables, such that (7, Y;) has distribution u. Let P, , a probability on
A, be the distribution of the (random) F & A satisfying: |[F|(Ig) = 1 and
|F|(Ivo) = Y |F|(Is) for all b e B. For a more detailed description, see [2], or
Sections 1 and 2 of [3].

Say F ¢ A is strictly singular with respect to G ¢ A if there is no z for which the
ratio of F(z + h) — F(x) to G(x + h) — G(z) converges to a finite, positive
limit as A tends to 0. The object of this note is to prove the

THEOREM. Let 0 < r < 1. Let u and v be distinct probabilities on S, both assigning
measure 1 to the vertical line with abscissa r. Then theie are weak » Borel subsets C
and D of A, with P,(C) = P,(D) = 1, and each distribution function in C strictly
singular with respect to each distribution function in D.

Let u* = u{(r,0)} + u{(r, 1)}, and »* = v{(r,0)} 4+ »{(r, 1)}. The easy case
(either u* = 1 or»™ = 1) of the Theorem is proved in Section 5. The harder case
(v* < 1and »* < 1) is proved in Section 4. Section 3 contains preliminary ma-
terial on branching processes, which may be of general interest.

3. Branching processes. For this section, j is a positive integer, and n is a non-
negative integer. J, is the set of n-tuples formed with 0, ---, j — 1; the only
element of J, is the (empty) O-tuple &. If beJ,,andi = 0, --- , 5 — 1, then
b followed by 4, namely b3, is inJ 11, and is a child of b. The j-treeis J = Uj_oJ, ,
and beJ is a node. Moreover, p is a real number with 0 < p < 1, and
(pr, -+, pj) X is a probability distribution on (1, ---, j), with probability

Received 6 August 1965.
! Prepared with the partial support of the 8loan Foundation and the National Science

Foundation GP 2593.
375

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

The Annals of Mathematical Statistics. KGN ®

www.jstor.org



376 DAVID A. FREEDMAN

generating function ¥; that is, ¥(z) = pw + --- + pja’. The stochastic process
{Zy, Ly : beJ} is a (p, ¥)-process over the j-tree J; that is, its joint distribution
satisfies the following conditions. Z; takes only three values: 0, 1, undefined. L,
takes only two values: live, dead. Z, is undefined if and only if L, is dead. If L, is
dead, so is Ly; forz = 0, - -- ,j — 1. Let N, be the number of L;; which are live,
forz =0, ---,7 — 1. Then Ly is live, Z is 1 with probability p, 0 with prob-
ability 1 — p, and N4 has probability generating function ¥. Of course, Zy and
N g need not be independent. Form = 0, 1, - - - , given Z, and L forb ¢ UT53J, ,
and L, for b ¢J, : provided ¢ eJ, and L, is live, the pairs (Z., N,) are con-
ditionally independent, with common conditional distribution equal to the un-
conditional distribution of (Zy, Ng). Finally, form = 0,1, - -+, given Z; , L,
and N, for b ¢ U7_oJ, : provided ¢ £ J,,. , the j-tuples (Leo, - - - , Le¢i_1) are con-
ditionally independent; and for each ¢ eJ, , all j-tuples formed with N, values
live andj — N, values dead are conditionally equally likely for (Le , - - - , Legi—yy)-

“Ly is live” may be abbreviated to “b is live.” If beJ, and 0 < 7 < n, then
b(2) eJ; is the first £ components of b, and is an ancestor of b.

Lemma 1. (i) b eJ, is live with probability [~ (1)]".

(ii) Giventhatb eJ,islive,b(0), - -- ,b(n — 1) arelive;and Nyy , -+ * , Npn—yy
are conditionally independent with common conditional probability generating func-
tion

z — ¥ (2) /¥ (1).

Proor. Verification is needed only forn = 1. Given Nz = 4, b is live with con-
ditional probability ({33)/({) = /4. Thus, b is live and Ny = ¢ with uncon-
ditional probability ip:/j. ®

LeMMA 2. Given that b £ J, is live, and given which children of b(0), - -+ ,b(n — 1)
are live: as c¢ ranges over the live children other than b(i + 1) of b(z), for
1=0,:--,n — 1, Z, are conditionally independent, 1 with conditional probability
p, 0 with conditional probability 1 — p.

Proor. Clear. @

IfO<a<1land0=0=<1,let
m(8, @) = [0/a]*[(1 — 6)/(1 — a)]""

An interesting fact in Chernoff (1952) is recorded here as:

Lemma 3. Let X1, X;, - - - be independent random variables, each assuming the
value 1 with probability 0, and O with probability 1 — 6. Let0 < a < 1,and letnbea
positive integer. Then Xy + -+ + X. = na with probability no more than
[m(8, «)]".

If b and ¢ inJ .41 are different children of the same node inJ, , they are brothers.
If 0 < a, ¥ = 1 are real numbers, b £J, is a-exceptional if it is live and of the live
brothers c of b, a fraction at least « have Z, = 1. Moreover, b is (a, v)-exceptional
if it is live and there are at least nvy integers ¢ = 1, --- , n for which b(7) is
a-exceptional.
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LeEMMA 4. Let a be a real number, with p < a < 1, and let b €J, . Given that b ¢s
live: for i = 1, --- , m, the events ‘“b(i) is a-exceptional”’ are conditionally inde-
pendent, with common conditional probability no more than ¥'Im(p, a)]/¥'(1).

Proor. As usual, only » = 1 needs verification. By Lemma 1, given b is live,
the number Ny — 1 of live brothers of b has conditional probability generating
function x — ¥'(z)/¥’(1). By Lemmas 2 and 3, given b is live and given N,
the conditional probability that b is a-exceptional is no more than m(p, a)"2 ™. @

LemMA 5. Let a and « be real numbers, with p < a < 1 and 8 = ¥'[m(p, a)]/
¥'(1) < v < 1. The probability that there is an (a, v)-exceptional node in J, is at
most [¥'(1)m(B, v)I".

Proor. m(6, v) increases with  for < +. So, using Lemmas 3 and 4, given that
bed, is live: b is (a, v)-exceptional with conditional probability at most
[m(B, v)]". But there are j” nodes inJ, ; apply Lemma 1. ®

A path through J is a sequence by, by, - -+ such that by = &, and for all =,
thereisans = 0, - - - ,j — 1 with b,41 = bai. The probability P on the two-point
set {0, 1} assigns mass p to 1, and P’ is the probability on the set of functions f
from J to {0, 1} for which: as b ranges overJ, the functions f — f(b) = O or 1 are
independent with common distribution P.

The next Lemma, and its proof, are taken from [3], with the permission of
Dubins.

LeMMA 6. Ifp < o < 1 and m(p, o) <7, then for P’ -almost all functions f from
J to {0, 1}, there is an n(f) < « such that: for each n = n(f) and path by , b, , - - -
through J, f(bo) + +++ 4+ f(bn) < na.

Proor. Let E, be the set of all functions g from J to {0, 1} such that, for some
path by, by, --- through J, g(bo) + -+ + g(bs1) = ne. By Lemma 3,
P'(E,) < 7" [m(p, «)]", which is summable in n. ®

4. Proof of the Theorem in case u* < 1 and »* < 1. It is necessary to give a
more formal definition of P, ; unfortunately, this involves further notation. B is
the 2-tree, V is the vertical line segment {(z,y):z = r,0 < y < 1}, and V* is
the set of functions 7 from B to V. For b ¢ B and r ¢ V2, 7(b) = (r, r2(b)), with
0 < 74(b) £ 1.If u is a probability on (the Borel subsets of) V, then u® is the
probability on (the Borel subsets of) V5 for which: as b ranges over B, the func-
tions 7 — 7(b) are independent with common distribution u. A function M will
now be defined from VZ to A so that P, = w®M . Introduce the set 27 of all
functions from the positive integers Z to the two-point set {0, 1}. For b ¢ B, b is
the set of £ £ 2% which extend b; thus & = 27and 00 = {£: ¢ £ 27, £(1) = £(2) = 0}.
For r ¢ V?, P(7) is the probability on 27 for which

P(7)(50) = 72(b)P(7)(b), all beB.

For £ e2% let f(£) = Ma=o Ltw---toy € I. Then M(7) € A satisfies: |M(7)| =
P(r)f .

The object of this section is to construct Borel subsets C* and D* of V*, such
that:
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(1) w2(C*) = (D% = 1;
(2) ceC* and reD* implies M(s) is
strictly singular with respect to M(r).

If r ¢ V7, then b & B is 7-live unless it has an ancestor either of the form c1 with
ro(¢) = 1, or of the form c0 with 73(¢) = 0. If n is a non-negative integer, B, is
the set of n-tuples of 0’s and 1’s. If k is a positive integer and b # ¢ ¢ B, have
the same ancestor in B,_; (that is, b(n — k) = ¢(n — k)), then b and c are
k-cousins. If A is a Borel subset of V, n and k are positive integers, 0 < o < 1,
then b € By is 7-(A4, k, o) -exceptional if it is -live, and of its r-live k-cousins ¢, a
fraction at least « have 7(¢c) e A. For 0 < v = 1, (4, k, a; n, v) is the set of
r ¢ V? for which: there is a r-live beBu, with a fraction at least y of
b(k), -+ , b(nk) being 7-(4, k, a)-exceptional.

Recall u* = u{(r, 0)} + u{(r, 1)}. Letfl(w) = p*z 4+ (1 — u*)2’, fara(z) =
fi(fa(2)). From XIL5 of [4], f. is the u®-probability generating function of the
- random variable whose value at 7 is the number of r-live b ¢ B,

Abbreviate

(3) M = m(u(4), @) and B = fi'(M)/fi'(1).

The main step in proving the Theorem is establishing this inequality: if
u(Ad) <a<1land B < v < 1, then

(4) W (A4, &y a3n,v) S [(2 — ) 'm(Be, VI

Proor or (4). The 1nequa,hty will be verified by applying Lemma 5 to a suit-
able (u(4), f)-process on the 2*-tree, as follows. In Section 3, put j = 2*. Order
B, and J, lexicographically, and let 0, be the order-preserving map of J, onto
B . If 7 £ V2, then ™ is this function fromJ to {0, 1, undefined} X {live, dead}.
If b eJ, , the second coordinate of ‘T*(b) is live or dead according as 0,b € B,y is
r-live or 7-dead; the first coordinate is undefined if and only if the second is dead;
if the second is live, the ﬁrst is 1 or 0 according as 7(0,b) € 4 or zA Unfortu-
nately, the process {r — 77(b): b £ J}, on the probability space (V% u?),isnot a
(u(4), fi)-process.
Let rbea mapping of J into (0, - - - ,j — 1)!; that is, for each b £ J, 7(b) is a
_permutatlon of (0, ---,5 — 1) Then =¥, a permutation of J, is defined by this
induction: = (Q’) = ,@’, if #* has been deﬁned ond,,bed,,and 7z = 0,
j — 1, then #*(bi) is = (b) followed by the =(b)-i -image of . Of course, if b eJ,, 1s
an ancestor of ¢, then 7*(b) eJ, is an ancestor of = *(¢). If ¢ is a function from J
to some set, then «g is this function from J to the same set: (rg)(b) = g(r*(d)),
bed.
Let (2, Q) be a probability space. Let = be a mapping from @ X J to
(0, ---,j — 1)1, with these properties:
(i) foreachbd eJ,=(-,b) is measurable, and takes each of its j! possible values
with probability 1/5!;
(ii) as b ranges overJ, the =(-, b) are independent.
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If w e @ and 7 & V7, then [=(w, -)]7* is a function from J to {0, 1, undefined}
X {live, dead}. If also b £ B, let Z4(«w, 7) be the first, coordinate of {[x(w,-)]7*} (),
and Ly(w, 7) the second. Plainly, the stochastic process {Z; , L, : b £J}, defined on
the probability triple (2, Q) X (VZ, u®), is a (u(A), fi)-process on the 2*-tree, in
the sénse of Section 3. There is an (e, v)-exceptional node in J, for this process
evaluated at (w, 7) if and only if 7 £ (4, k, a; n, v). Apply Lemma 5, noting that
£ (1) = (2 — u®)¥, to complete the proof of (4).

Let (A, k, a; f.0., v) be the set of v ¢ V® with 7 & (4, k, a; n, v) for finitely
many n only. If u(4) < a < 1, and u’s < 1, there is a positive integer k and a
positive v < § with
(5) ﬂB(A) k, a; f.0.,v) = 1.

Proor orF (5). By (4) and the Borel-Cantelli lemma, it is enough to choose %
and v so that

(6) (2 — u")'m(Be,v) < 1
and
(7) 616 < 'Y’v

where 8; and M are defined in (3).Since u(4) < a < 1, M < 1, fi(M) — 0 as
k — . Since f;'(0) = p*, for each ¢ > 0 there is an E(e) < » with

(8) B S B(e) (" +9%/2 =™ k=12,
Since m(6, v) < 26", the left side of (6) is no more than
(9) 2E(e)"[(2 — »*) (™ + T

Since p* < 1, (2 — p*)u* < 1and u*/(2 — 1*) < 1. Choose ¢ > 0 so small that
(2 — p™)(W* +¢) <1,and (0™ + €)/(2 — 1*) < 1. Choose v < % so large that
(2 — )" "(u* + €)” < 1. Then choose k so large that 8 < v, using (8), and so
large that (9) is less than 1, which completes the proof of (5).

ProoF oF THE THEOREM IN CASE u* < 1 AND »* < 1. Find a Borel subset 4 of
V and a real number a with u(4) < a < »(4). Let A’ be the complement of A
in V. Use (5) to find a positive integer k and a positive v < % with

“B(A’ k; a;f.O., 'Y) =1
and
VB(A,y k, 1 — a;f.o., v) =1,

A SPECIAL CASE. Some nuisances in the rest of the proof disappear if, for ex-
ample, r = 3, u and » both concentrate on the two-point set { (3, 0), (3, w)}, and
0 < uf{(3w)} <»{(}w)} <1,where0 < w < 1. This case will now be argued.
For A, use the one-point set { (4, w)}. For C*, take the set of ¢ & (4, k, a;f.0., ¥)
withe(b) = (3,0) or (%, w) for allb & B. For D*, take theset of 7 ¢ (A’, %k, 1 — «;
f.0., v) with 7(b) = (%, 0) or (3, w) for all b ¢ B. Property (1) is clear. For (2),
let ¢ £ C*, 7 ¢ D*, x ¢ I. It must be seen that
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(10) the ratio of M(¢)(x + h) — M(s)(z) to M(7)(x + h) —
M (7)(z) does not converge to a finite, positive limit as A — 0.

Write b(n, z) for the first n digits of the non-ierminating binary expansion of z.
Clearly, (10) holds if for some n, b(n, z) is either o-dead or r-dead. So, suppose
that for all n, b(n, z) is both ¢-live and 7-live. If b ¢ B, is an ancestor of ¢ &€ Bnyz ,
then c is a k-child of b. Let N be the set of n for which: at least one k-child ¢ of
b(nk, z) is o-live and r-live and haso(c) = (%,0) and has r(¢) = (3, w). Plainly,
N is infinite, even having density =1 — 2y > 0.

Forb ¢ B, , b* & I has binary expansion b followed by 0’s, and b** = b* + 27",
If p e V® and u, v € I, then plu, v] is the slope of the chord joining the points in the
graph of M (p) whose abscissas are u and v. There is a § > 0, depending only on k
and w, with the following property. If n ¢ N, thereisan ¢ = k 4 1 and an ¢-child
d of b(nk, z) such that:

olb(nk, z)¥, d**]/a[b(nk z)*, b(nk, z)**]
7lb(nk, x)*, d**]/ r[b(nk, z)*, b(nk, ) *¥|

and

old**, b(nk, z)**] / olb(nk, z)*, b(nk, )**]
T[d**7 b(nka x) **] 'r[b(nk’ 22) *’ b(nk’ 22) **]

both differ from 1 in absolute value by & or more. Since the closed interval
[b(nk, z)* b(nk, x)**] shrinks to z, and z is in either [b(nk, z) * d** or
[d**, b(nk, z)**], (10) holds. This completes the proof in the special case.

To return to the general case, if b & B, is an ancestor of ¢ € Bn: for some
i=0, -k, then cis a k-descendant of b. If K is a subset of V, r ¢ V", thenb ¢ B
is (1, K, k)-good if 7(c) € K for all k-descendantscof b.If 0 < g < 1, thenb ¢ B,
is (v, K, k, g)-good if a fraction at least g of b(0), - -, b(n) are (r, K, k)-good.
Let (K, k, g) be the set of all 7 ¢ V” for which there is an n(r) < « such that
n = n(r) and b & B, imply b is (, K, k, g)-good.

Use Lemma 6 to find compact subsets K and K’ of V, with K C A, K' c A,
(r, 0) and (r, 1) not points of accumulation of K u K', and for g =

1 —[(1 — 2v)/kl,
WEUuK kg =" KuK, kg =1

Let
=(KuK,kg)n (4,k a;fo., )
and
=(KuK,kgn(d,k1l— a;fo,).

Property (1) is clear. The proof of (2) is a routine generalization of the special
case, especially in view of the similar material in Sectlons 1 and 5-8 of [3]. This
completes the discussion of the Theorem in case p¥ <1 and »* < 1.
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5. Proof of the Theorem in case u* = 1or v* = 1. If A is a Borel subset of the
closed unit interval I, then A.is the weak+ Borel subset of F & A which assign
measure 1 to some point in A. If u* = »* = 1, there are disjoint Borel subsets U
and V of I, with P,(0) = P,(V) = 1. For example, use (9.17) of [3] and the
Strong Law of Large Numbers. Clearly, F ¢ U is strictly singular with respect to
GeV.Ifu* = 1but»* < 1, take I for C, and take for D the set of all continuous
F ¢ Awith F(0) = 0. By (4.4) of [3], P,(D) = 1. This completes the proof of the
Theorem.
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