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1. Summary. The distribution of the latent vectors of a sample covariance
matrix was found by T. W. Anderson [1] in 1951 when the population covariance
matrix is a scalar matrix, = = ¢’I. The asymptotic distribution for arbitrary =,
also, was obtained by T. W. Anderson [3] in 1963. The exact distribution of the
latent vectors of a sample covariance matrix has been described by the author
[10] in 1965 when the observations are obtained from a bi-variate normal dis-
tribution. The elements of each latent vector are the coefficients of a principal
component (with sum of squares of coefficients being unity), and the correspond-
ing latent root is the variance of the principal component. In this paper, the
exact distribution of the latent vector corresponding to the largest latent root
of a sample covariance matrix is given when the observations are from a multi-
variate normal distribution whose population covariance matrix is arbitrary =,
and the distribution of the largest latent root is given when the population co-
variance matrix is a scalar matrix, = = ¢°.

2. Introduction. Let x be a p-component random vector with mean vector u
and covariance matrix &(x — u)(x — u)’ = = where

The variance of a linear combination v:'x is
(2.1) 8(n'x — &%)’ = &n'(x — W) (x — wW)'n = n'2n.

The linear combination normalized by v;y1 = 1 which has maximum variance
may be called the first principal component of x and the coefficients v; the latent
vector corresponding to the first principal component. The linear combination
uncorrelated with the first principal component and similarly normalized which
has maximum variance may be called the second principal component and the
coefficients the latent vector corresponding to the second principal component.
The other p — 2 principal components and the latent vectors corresponding to
each principal component are similarly defined. The variances of principal com-
ponents and the corresponding latent vectors are estimated by the latent roots
and the corresponding latent vectors of the estimated covariance matrix.
Let
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X ot Xiv
Xx=|: :
Xpl *°°  XpN,
be the sample matrix of N observations from N(u, Z). It is well known that

(2.2) nS = (nsij) = (Dote1(xir — &) (xit — %i))s n=N-—1,

has the Wishart distribution on n degrees of freedom. Since S is positive sym-
metric matrix we can write S = HDH', where H is the p X p orthogonal matrix
and

d 0 0

I U :
D= . 0
0 - 0 d,

with dy > dy > -+ > d, > 0. The first column of the orthogonal matrix H,
that is, the latent vector corresponding to the largest latent root d;, is repre-
sented by the p — 1 independent elements. Explicitly it may be written the
following way:

b = (huhss -+ hai -+« haps hp)
(2.3) = (cos 0y sin 61 cos by2 - - - H;;} sin 6y, cos 6;
oo+ JI25 sin 6y, cos 01,1 [ 125" sin 6y, sin 61, 4).

The purpose of this paper is to find the distribution of the latent vector corre-
sponding to the largest latent root d; for non-null case, and to find the distribu-
tion of the largest latent root dy for null case.

3. Notation and preliminary results.

3.1. On the Jacobian of the orthogonal transformation. In research on distribu-
tion problems in multivariate analysis, Tumura’s theorem for the Jacobian of
the orthogonal transformation is very useful. The orthogonal matrix is repre-
sented in terms of rotation angles. The p X p orthogonal matrix has
only p(p — 1)/2 independent elements, and every rotation in the p-dimensional
space consists of p(p — 1)/2 single rotations which is such a rotation in the two-
dimensional plane. Let R,’(6) be a single rotation matrix defined by

I 0 0 0
y | 0 cos® —siné 0
(3.1) R, (0) = 0 sinf cosé o )

0 0 0 y p—
where I, is the identity matrix (» X »). Let
(3-2) prwi) = Rg_l(op—l)R;_Z(opd) tee pr(Oy),

and
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(3.3) Hy(6:5) = Hp' (0:1)H, (025) -+ H ™ (8pmip1).

The matrix H,(0;;) defined by (3.3) is the general form of the orthogonal ma-
trix. Therefore, explicitly we can write

(3.4) Hy(0:) = H, (61) (é Hp—ll(oij)>’

where H, ;(0;;) is arbitrary orthogonal matrix of the p — 1 dimensional space.
Lemma 3.1. (Tumura’s theorem). The Jacobian of the transformation

U = HAH' is

(35)  J(U;\, 6) = mod [T%; (\: — Ay) TTES TI2=7 sin™ " 645,

where U is p X p symmetric matriz, A, is a p X p diagonal matriz with diagonal
elements in descending order, H = H,(0;;), that is, the orthogonal matriz defined
by (3.3), and 60’s range in the intervals: 0 < 0;; S 7 (j = p — 2),0 < 0ipa < 2.

The proof has been described in detail in (11).

3.2. On a property of the zonal polynomaals. With S any positive definite sym-
metric p X p matrix the zonal polynomials Z,(S) are defined for each partition
k= (b1, -+, kp), k1= --- = kp = 0, of k into not more than p parts, as cer-
tain symmetric polynomials in the latent roots of S. A detailed discussion of
zonal polynomials may be found in A. T. James [7], and [8]. The notation with
respect to the zonal polynomial given by A. G. Constantine [4] is used here,
that is,

(3.6) C(8) = c(k)Z(8)/1-3 -+ (2k — 1).
The fundamental property of the zonal polynomials is given by the following
integral, proved in [7]:
(3'7) fO(m) CK(H,SHT) d(H) = Cx(S)Cx(T)/CK(I)7
where I is the identity matrix, and d(H) is the invariant Haar measure on the
orthogonal group, normalized to make the volume of the group manifold unity.
Another derivation of this property has been given by Y. Tumura by repre-
senting in terms of rotation angles the orthogonal matrix.
LemMma 3.2. Let S and T be positive definite p X p matrices.

(38) (1/C) [ (tr H'SHT)* T123 T12= sin® 7 6, [125 1125 des;

) = 2. C(8)C(T)/C(T),
where « is a partition of k, and 8’s range in the integral is0 < 6;; = 7 (j = p — 2),
0 = 0ipa = 2m. The constant C, also, is given by
(39) € = [ TI% TI2= sin> o5 TI25 TI23 dos; = =%/ Tu(p/2),

where Tp(u) = 7? " [[2al(uw — (1 — 1)/2).
3.3. On a beta-function integral. Let S be a positive definite symmetric m X m
matrix, and R a positive definite m X m matrix, then
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(3.10) [3 || R gnRe (RSY 48

= {Tu(t, k) Tw(u)/Tu(t + u, ©)}C(R),

where « is a partition (k;, ---, kn) of kth degree, valid for all complex num-

bers t and u satisfying real (¢) > (m — 1)/2 and real (u) > (m — 1)/2, and
Tty k) = o™ Pl (t + ks — (5 — 1)/2).

The proof has been described in detail in (4). Let B = I in (3.10) and consider
the following transformation: S = HAH', where H is an orthogonal matrix, and
A is a diagonal matrix. By use of Lemma 2.1. on the left hand side of (3.10) we
can write it as follows:

[isng>eesams0 JA] 7R — AP0 () TTs (A — A5) dA
(811) [ [Isin™ 6, [1dos; = (#™"/Tm(m/2))
i emagso AT — APTRo () T (v = A5) dA.

Therefore we obtain the following lemma.
LemmA 3.3. Let A be a diagonal matrix with: diagonal elements1 > N > - -+ >

Am > 0. Then,
Jisn>eesngso AT T o (1 — 22 T (v — Ap)
(3.12) Ce(A) TTiadhi = (Tm(m/2)/7™")
(Tm(t, €) Tom(u)/ Tt 4 u, €))Cr(I).

4. On the distribution of the latent vector corresponding to the largest latent
root of sample covariance matrix. Let U have the Wishart distribution
W(p, n, X), where U corresponds to nS defined by Section 2. The probability
elements of U are

(4.1) K|U™ 72 exp (=4 tr 27'U) dU,
where K = |2[7"?/2""*T,(n/2). We shall make the following transformation:
(4.2) U = HD\H',

where D, is diagonal with diagonal elements Ay > Ay > -+ > A, > 0, and H
is orthogonal matrix. By use of (3.4) we can write

, M 0 )
br 27U = tr 3H, (é I~ ) T >(é = ) HY = h'= s
1 0 )\p 1
ramt1gy (10 . /1 oY
+ tr H1 2 H, (O Hp_1> : . : (0 Hp—1> )

0 Ap
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where M1 > Ag > --- > N\, > 0, the first column of H; is the latent vector hy,
H; is the orthogonal matrix H,'(6;;) with p — 1 independent elements,
O, 612, -+, 6151, Hpy is the orthogonal matrix of the p — 1 dimensional
space with (p — 1)(p — 2)/2 independent elements, 6;;,7 = 2, -+, p — 1,
j=1- ,p— 1, and hy is given by (2.3). We note that H; depends only on
the same p — 1 parameters as hy . 2,5 is the (p — 1) X (p — 1) matrix ob-
tained from H, = 'H, by deleting the first row and column, and

N - 0
a=(: 1)
0 - A
Then, by use of Lemma 3.1 we have from (4.1), the probability element of
01'1'7/[: 1""11’_ 17j= i;""p_ ]"a’ndki’/iz- 11"'71’7
K- (MADT " exp (—3 b/ =7 hahy)
(4.4) -exptr (—3Zp1H,AH 1) TI25 T1227 sin® " 6, [I2= T12=7 de;
: Hn?<j ()\i - )\j) II]Z‘,=_12 Sinp__j—1 01j H]Z':ll d91j Hf=1 d)\i .

Integrating (4.4) with respect to (p — 1)(p — 2)/2 independent elements of
H,_; we have from Lemma 3.2 the probability element of 6;;, j = 1, ---,
p—LlLandX,c=1,---,p,

K- (x""/Tpa((p — 1)/2))- (u JA) "
(4.5) -exp (—%h' =27 hoN) T2 sin® " 0y T2 dos;
T2 i — A 2080 2ok (Cu(—32p1)Ce(A) /k! Co(Tp)) TTE-1dNs .

We shall integrate (4.5) with respect to A\s, -+ -, A\p, Where the range of the
integral is A\; > Ay > -+ > Ay > 0. Let \; = A\, then the range of the inte-
gralresultin1 > L > --- > 1, > 0. Since we can write

Jasng> - oonp>0 (M AP TT 2 (N — A)CW(A) T2z dNs
= \ R f1>z,>-~->z,,>0 |Azl(n_p_m2
T (1 = 1) TT%ime (i — 1)Cu(A)) TTPedli,

by letting m = p — 1, ¢ = (n — 1)/2, and v = (p + 2)/2 in Lemma 3.3 we
have the probability element of 6;, 5 = 1, -+, p — 1, and A4,

K-Tpa((p + 2)/2)
(4.6) - 280 2dCi(=32Zp) Tpa((n — 1)/2, €)/k!Tpa((n + p + 1)/2, «)}
. )\1(1’7‘-*-2,0)/2—_l exp ('—%hl’ 2'1 h1x1) d)\l f_—'.—lz sinp—H 01j Hj:ll d01j .

Integrating (4.6) with respect to A; we obtain the probability element of



1000 T. SUGIYAMA

oijij =1--,p— 1,

(12T Tpa((p + 2)/2)/T(n/2))
A7) e X (Tpa((n = 1)/2, )T (pr/2 4 k) /kTpa((n + p + 1)/2, 0}

O = Zpa/ha’ = ) (B = ) 72 T2 sin® 7" 64 T1Z= dos;
Let (@) = [[Zi(a — (G — 1)/2)ss 6 = (bn, -+, k,) and, as usual, if @ is
such that the gamma functions are defined, then (a). = I'y(a, k)/Tp(a). There-
fore, (4.7) may be rewritten as

(|21 (pn/2)/T(n/2)) Bpa((p + 2)/2, (n = 1)/2)
(48) - 2o {(pn/2)i/kY e f((n — 1)/2)/ ((n+ p + 1)/2)d

O = Zpa/h T ) (27 ) M TS sin” 6y 1175 do,

where Bp_l(a, ﬁ) = (I‘p—l(a)rp—l(ﬁ)/rp—l(a + B))) Z;1-’—1 is the (p - 1) X
(p — 1) matrix obtained from Hy>7'H, by deleting the first row and column,
the first column of H; is the latent vector hy , Hy depends only on the same p — 1
parameters as hi, and 0 = 6y St =<p—2),0= 0 = 2m Therefore

we obtain the following theorem:
TaroreM 1. Let U have the Wishart distribution W (p, n, ), then the distribu-

tion of the latent vector corresponding to the largest latent root of the positive definite
symmetric matriz U is given by (4.8).
Let = = I in (4.8), then (4.8) can be written as follows:

(4.9) Const- [[2 sin”#™ 6y 117" déy;.

Integrating (4.9) with respect to 61; we obtain Const = I'(p/2)/2x”*. There-
fore we have the probability element of 61,7 =1, -++, P — 1, in the null case;
(4.10) (T(p/2)/2""™) - 122 sin™ oy T17= dbus

Also, let p = 2 in (4.8), then using the Kummer transformation formula we
find the same result as given in (10).

5. On the distribution of the largest latent root of sample covariance matrix
when the population covariance matrix is a scalar matrix. Let £ = I in (4.6).
Then we have the probability element of 6;;,5 = 1, --+, P — 1, and A,

K-Tpa((p + 2)/2)
(5.1) oy D {C =3, )Tpa((n — 1)/2, K)/kITpa((n + p + 1)/2, ©)}
AT oo (1N dhg T2 sin® 7 6y TT05 d6use
Integrating (5.1) with respect to 61; we obtain the distribution of the largest
latent root
(#®2/2™ T (p/2) Tp(n/2)) Toa((p + 2)/2)
(52) - i O =3 ) Tpa((n — 1)/2, ) /kITpa((n + p + 1)/2, 6}
A g (1) dy
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This result will be, also, easily derived from the formula that is obtained by
letting 2 = I in (4.1) by use of Lemma 3.3 and

(5.3) exp (trZ) = D jmo 2k Cu(Z) /),

where Z is a complex symmetric matrix. A. G. Constantine [4] has defined as
the series of zonal polynomials the hypergeometric functions ,F,(Z) of a com-
plex symmetric matrix Z defined by C. S. Herz [5] by means of a multidimen-
sional form of the Laplace transform. Namely

qu(al, ’a,p;bl’ ’bq;Z)
= 2050 2odl(@)e -+ (8p)Ce(Z)/(br)s -+ (bg)k].
By this definition, (5.2) may be rewritten as
(5.4) {«""/2" T (p/2)T5(n/2)} Bpa((p + 2)/2, (n — 1)/2)
aFi((n = 1)/2; (n+ p + 1)/2; — \/2) Tp-)M™ ™ exp (—3\) d)y .

Therefore we obtain the following theorem:

TueoREM 2. Let U have the Wishart distribution W (p, n, I), then the distribu-
tion of the largest latent root of the positive definite symmetric matriz U is given by
(5.4).
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