CONTRIBUTIONS TO SAMPLE SPACINGS THEORY, II: TESTS OF THE
PARAMETRIC GOODNESS OF FIT AND TWO-SAMPLE
PROBLEMS!

By SAur BLUMENTHAL
Rutgers—The State University

0. Summary. This paper is concerned with tests based on sample spacings for
the two sample problem with nuisance location and scale parameters—Part A—
Sections 1 through 4, and for the goodness of fit problem with nuisance scale
and location parameters, Part B, Sections 5 through 7. Estimation of the nui-
sance scale parameter is also considered. The notation and methods of proof, as
well as the basic results of the preceding paper, Blumenthal (1966) are used
without restatement. That paper is referred to as Spacings I, throughout the

sequel.

A. TWO SAMPLE PROBLEM

1. Introduction. The problem of testing whether two random samples have
parent distributions which belong to the same family indexed by a location and a
scale parameter will be considered here. Specifically let the samples be X,
X:, -+, Xnand Yy, Yy, ---, Y, with parent distribution functions F(x)
and G(zx) respectively. The hypothesis to be tested is

(1.1) Hy':F(z) = G((z — u)/o)

where p and ¢(>0) are two unspecified nuisance parameters. This is the “para-
metric” two sample hypothesis, and by setting u = 0, ¢ = 1, we obtain the usual
two sample hypothesis,

(1.2) H,: F(z) = G(z).

We shall consider here a family of possible tests of the parametric hypothesis
Hy' all based on the sample successive differences (sample spacings) of the two
random samples. The large sample properties of all the tests will be described in
terms of limiting distributions for the test statistics and one particular test will
be chosen for detailed analysis.

The test statistics are based on the quantities S,(r) whose construction is
given in Section 1 of Spacings I. Using these S,(r) the symmetric statistic

(1.3) Ta(r) = Sa(r)Sa(—1), 0<r=s1,

will be studied for testing the hypothesis Hy'. The consistency of tests based on
this statistic will be demonstrated and limiting distributions will be described.
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926 SAUL BLUMENTHAL

These distributions are found using the theory developed in Spacings I for the
Sa(r).

We find that when 0 < r < 3, the limiting distributions of T, (r) when H,' is
true depend on the function G(z) so that tests of Hy' cannot be based on T, (r) for
these values of ». When 3 < r < 1, however, the limiting distributions are inde-
pendent of G(x) and the statistic T, () can then be the basis of an approximately
size a test for H,'. The distribution-freeness of T,(r) is only asymptotic. For
finite sample sizes, the function G(z) will influence the distribution of T,(r) even
when Hy' is true. This phenomenon will be encountered with most test statistics
for Hy' due to the nuisance parameters which must be estimated or eliminated in
some manner, and to do this it is necessary to sacrifice the property of invariance
under probability transformations enjoyed by most ‘‘non-parametric”’ test sta-
tistics.

We shall single out for further discussion the test based on T,(%) since this
statistic enjoys the desirable property of limiting normality. The large sample
power of this test is shown to be less than that of the Kolmogorov-Smirnov test.
For equivalent power the present test needs (n logn) observations where the
Kolmogorov-Smirnov test needs only n. For comparison, it should be noted that
the popular x* test of fit needs n*’* observations where the Kolmogorov test needs
only n. Thus the loss of power is not too great.

In Section 4, we discuss the use of the S,(r) to estimate ¢ when H,' can be
assumed true, and also the use of the S,(r) to test the variant of Hy' given by.

Hy:F(z) = G(z — p),
HIZ: F(CL‘) = G((x - ”‘)/a)’ (‘7 > 0,0 # 1)
where u (real) is not specified.

2. Distribution and convergence properties. Before stating the convergence
theorems, we give a result of Weiss (1957) which will be needed here and in
Section 3.

Lemma 2.1 (Weiss). Let F(z) and G(x) be two distribution functions and u,
v (0 £ u < v £ 1) be two given numbers, and assume F(u), F'(v), G (u),
G (v) are all uniquely determined. Let F(x) have a derivative f(x) on [F(u),
F'(»)] and G(z) have a derivative g(z) on [G*(u), G(v)]. If F(z) =
G((x — p)/o) for all z in [F(w), F'(v)] for some constants p, o(a > 0), then
FFy)) = (1/0)g(G(y)) for all y in [u, v]. If in addition, f(z) > 0 for « in
(F(u), F7'(v)), the converse is true.

The proof is given by Weiss (1957). Blumenthal (1962) gives an example
showing the necessity of the extra condition for the converse.

The basic result of this section establishes the relation between the T,(r) and
the U’s and V’s defined in Spacings I.

TuaeoreM 2.1 Let F(z) = G((x — u)/o) and let F(x) satisfy the conditions of
Theorem 3.0, Spacings I. Then as n increases,

(2.12) log n[(1/n log n)*T.(1) — 1]
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—p(1/n) 22 ((UJ/V3s) + (Vi/Us) — 2logn), r=1,;
(2.10) (" ar/sin o) [(sin 7r/nwr) Ta(r) — 1]
—p(1/n) 25 (U V)" + (Vi/U)" = 2(xr/sinar)), § <r<1;
(2.1¢)  (n*/2(log )))[(2/70)"Tu(3) — 1]
—2(1/nlogn)' 2 (US/V)! + (ViU — ), r=4
(ar/sin wr)n¥[(sin wr/nar) T, (r) — 1]
(21d)  —p(1/n) X (US/V) + (Vi/U) — (2wr/sin wr)
+ [ (Us — V) /(sin 7)) (n — & + DI Tein WG/MG); 0 < 1 < 3.
Proor. Due to the similarity of the results, only (2.1a) will be given in detail
log n[(1/n log n)’T»(1) — 1] = (log™' n)[(1/n0)8a(1) (¢/n)Su(—1) — log*n}
(2.2) = [(1/n0)8.(1) — logn]
+ [(1/onlog n)Sa(1)][(s/n)Su(—1) — logn].
Using (I-(3.4a)) and Lemma 2.1, we have
(1/n0)Sa(1) —p 2 (U/V3),
(¢/n)8a(—1) "’PZ (V./U.)

and using Theorem 4.1 of Spacings I, along with Lemma 2.1, (1/on log n)S,(1)
—p 1. This completes the proof.

The right sides of (2.1) are sums of independent random variables whose
distributions can be handled as in Theorem 3.1 of Spacings I. It is only necessary
to observe that

P((UJV) + (V/U) < x)
(2.3) = 0, fOI' z < 2’
={lo+ (@ — O — 2"z + (& — DI + 2" forz > 2.

We summarize these results as:
TurorEM 2.2. Let the assumptions of Theorem 2.1 be satisfied. Then asn increases,

(2.4a) &flog n[(1/nlogn)*T.(1) — 11} — S(1, 1, —2, 7/2), r=1;
(24b)  &{(n*xr/sin wr)[(sin wr/nar) T, (r) — 1]}
— S[1/r, —1,0, (—(2/r)M(1/r) cos (w/2r))],
(240)  £{(vn/2(2log m))[(2/7n)"Tw(}) — 1]} — (), r
(24d)  £{(wr/sin xr) (/o (n, ) (sin wr/nar) T, (r) — 13
—®(z), 0<r<i}
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928 SAUL BLUMENTHAL

where
o’ (n, r) = (4nr/sin 2ar — 4a’r’/sin’ 7r + 2)
+ (2% /sin® wr) (1/n) 20 {1/ (0 — 4 4+ D12 Fo (W G)/H G,

®(x) s the standard normal distribution function, and S(a, b, ¢, d) represents the
stable distribution function whose characteristic function is specified by the four
gien parameters. The exact nature of this relation is spelled out in Spacings I.

For the present purpose, it is sufficient to observe that that first index (a)
gives the highest order moments which exist for the distribution. Thus, for T'.(r),
no moments of order greater than (1/7) exist for the limiting distributions with
r > 1, Further implications of Theorem 2.2 will be discussed in Section 3.

It is also possible to use Theorems 3.0 and 4.1 of Spacings I, and the methods
of Theorem 3.2 of that paper to establish a general version of Theorem 2.2. We
state the result only for r = 1 for reasons which will be explained in Section 3.

TurorEM 2.3. Let the assumptions of Theorem 3.0, Spacings I be satisfied. Then
as n increases,

(25)  £{(rn*/201(log n)})[(2/7n)’Tu(3) — ([3 (9(¢ (=) /fF(2)))" da)
(S GFH@)) /96 (2)))} da)]} — @(a),
where
off = (J§ G (2))/9(G7(2)))} d)*([5 9(G7 () /f(F () da)
+ (5 (@@ @) /f(F () do)*( 3 F(F (=) /(G (=) dir).

Finally, we note the stochastic convergence properties of T',(r).
TuroreM 2.4. Let F(z) and G(z) satisfy the conditions of Theorem 4.0, Spacings
I. Then asn increases,

(2.6a)  (1/nlogn)’Ta(1) —» ([3(g(G(2))/f(F(z))) dx)
(fs G(F (=) /9(G(®))) da), 7 = 1;
(2.6b)  (sin wr/nar)*Ta(r) —» ([3 (9(GC (@) /F(F ' (2)))" de)
(JyGF (=) /(@M @)) dx), 0 <r <1

8. Tests based on T,(r). Examination of Theorem 2.2 shows that as we de-
crease r, we increase the concentration of the limiting distribution as measured
by the highest order moments which exist. For all » < }, the limiting distribution
is normal with moments of all orders existing. If we wish to test the hypothesis
Hy' (see Equation (1.1)) using 7.(r), we could presumably obtain (asymptoti-
cally) equivalent tests for all » < 4, except for one thing. A close look at o (n, )
in (2.4d) reveals that it depends on the distribution function F(z) through
(K (z)/h*(z)). Thus to find a critical region of size approximately « for large n,
one must know F(z) which we assume unknown. Therefore, no reasonable test
can be based on T,(r) with r < 1.
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The choice then is among the T,.(r), 3 < r < 1, since all are distribution free
in the limit. Here the choice would seem to be with T,(3) not only because of
the fact that the normal distribution is more accessible than the other stable
distributions, but also because power presumably is higher for tests based on
statistics whose distributions have finite variances as opposed to tests based on
statistics whose limiting distributions have infinite variance, especially if the
size « is small.

Thus, T.(3) would seem the most reasonable choice of test statistic, being
asymptotically distribution free and normal. It might be noted in passing that
the second moment of T,(3) does not exist for any finite sample size n.

Before going further into the test based on T'.(%), we wish to point out that
any of the statistics T,(r) (3 < r £ 1) will provide a consistent test of Ho'
against essentially all alternatives. Using Lemma 2.1 and Theorem 2.4, we see
that when Hy' is true,

(3.1) (1/nlog n)’*T,(1) —p 1, r=1;
(sin 7r/nar)*To(r) —» 1, 1sr<i

Also, it is easily seen that if a non-negative function z(z) is not constant on
the interval [u, v], then

(3.2) /(v — w)*fs g(x) dz % (1/2(2)) dz > 1.

By the converse to Lemma 2.1 when Hy' is not true, (f(F '(z))/g(G (z)))
will not be constant on [0, 1]. This establishes that any test which rejects Hy'
when T, (r) is “too large” will be consistent against all alternatives satisfying
the restrictions mentioned in the lemma.

Therefore, a consistent test of approximately size a for Hy' can be obtained
by rejecting H," whenever T,(%) exceeds (nw/2)%[(2(2 log ) Ko /b)) + 1]
where 1 — ®(K,) = a.

To get an idea of the approximate power of this test, we need Theorem 2.3.
Since r = 1 is the only case for which we need the power, the reason for limiting
of 2.3 to this case is apparent.

Denoting for convenience,

(3.3) I(F, Q1) = [i (@@ (2)/f(F(2)))" da, 0<|r] =1,
we can express the large sample power of a test based on T.(3) as
(34)  @{UI(F, G DI(F, G, —3) — 1)(7n*/201(logn)") — (2'Ko/01)}.

Using expression (3.4), we can investigate limiting power against sequences
(F., G,) such that lim,.q Fo(z) = limy.e G.((x — u)/0). It is common to
choose a parametric family for which to study limiting power but the usual
normal distribution cannot be used here since its only parameters are scale and
location and the hypothesis and test statistic are invariant under changes of
these parameters. We must go then to a three parameter family to study large
sample power. A natural family is the Weibull family
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1%

(3.5) f(z) = (B(x — w)*/a) exp [~ ((& — u)f/a)], x

where we let 8 = 1 for f.(z), and 8 = B(n) for g.(z), and lim,., B(n) = 1.
This family is “natural” since one hazard rate h.(z) = o, and the other
hazard rate g.(z) = o 8(n)(z — u)*™ " which approaches o
In this situation, we need merely study the behavior of I(F, G, %), I(F, G, —3%),
and o; (see (2.5) and (3.3)) as functions of 8(n) to determine for which se-
quences 3(n) the expression (3.4) has a non-trivial limit. It is straightforward to

verify that such a limit will be obtained for
(3.6) B(n) = 1+ C(logn/n)i.

Using the facts that I(F, G, r) = [Zu [g(u)/f(F(G()))]'g(w) du and for the
exponential (f(z) = ¢™*), f(F(z)) = (1 — ), it is easily checked that for this
situation,

Ky

I(Fr G; %)I(F, Ga _%) = )\1r/sin A\

where A = (3)(1 — B(n)™), and &1® = (A\['(A))’T(1 — 21) + (T(1 — A))%
T'(1 4 2)1), so that as n increases

(/201) (n/log n)*(I(F, G, $)I(F, @, —}) —1) — [#'\"/12(2)!](n/log n)}

— C*r*/48(2)},
and ¢,® — 2.
Thus, the limiting power of the T,(3) test is
(3.7) d((C**/48(2)") — K.).

In order to have a basis for judging whether the proposed test is terribly in-
efficient or not we can make the following observations. It is known that the
Kolmogorov-Smirnov test for the present problem will have a non-trivial limiting
power if the distances sup. [F.(z) — G.(z)| behave like 1/n! (see for instance
Kage, Kiefer, and Wolfowitz (1955)). A computation shows that it is then neces-
sary to have

(3.8) B(n) =1+ C/nt.

The Pitman efficiency of the T.(3) test relative to the Kolmogorov-Smirnov
test would then be zero, but on the other hand, the important comparison is
that for equivalent power, the T'.(3) test requires roughly n log n observations
where the Kolmogorov-Smirnov test requires n observations. This may not be
too high a price to pay for computational ease in many instances. It should be
recalled that the popular % test of goodness of fit is even less efficient requiring
n®* observations for equivalent power to that achieved with n observations by
the Kolmogorov test. Thus for the present problem, the proposed test is relatively
more efficient than is the widely used x* test for the goodness of fit problem. The
proposed test has the added advantage of not requiring auxilliary estimates of
the unknown scale and location parameters.
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Another observation we can make is that if one wants to test whether
F(z) = G((x — u)/o) except in the “tails” where by tails we mean F(z) < u,
and F(z) > 1 — v (0 £ 4 < v = 1). In this case, the truncated statistics
S.(r, u, v) which are described in the next section can be used to define a trun-
cated T,(r, u, v) in the obvious way and all of the previous results will apply.
An advantage will be that no restriction need be made on the behavior of F(z)
in these “tails” in order for the theorems to apply. This is discussed more in
Section 4.

4. Estimates and tests based on S,(r). Under the assumption that Hy': F(z) =
G((x — u)/0) is true, we can now use the S,(r) quantities for estimating the
“relative scale parameter’”’ ¢. We can in fact consider as possible estimates any

of the quantities
(4.1) $:(1) = (1/n logn)S.(1),
sa(r) = [(sin 7r/7rn) Sn(r)]*7, 0<r<l1.

. By virtue of Lemma 2.1 and Theorem 4.1 of Spacings I (setting F(z) = G(x)
in the theorem), any one of these estimates s,(r) (0 < r = 1) is consistent,
provided that the distribution G(x) is sufficiently regular in the tails. Not all of
the s,(r) seem reasonable as estimators in view of Theorem 3.1 of Spacings I
which shows that the limiting distributions will depend on the unknown G(z)
when 0 < r < . Thus for estimates whose limiting properties are independent
of G(z), we should restrict attention to the s,(r) for § < r = 1. Since the limiting
distributions are known, any of these s,(r) could be used to derive confidence
intervals for ¢. In practice since the stable distributions are not tabulated, s.(3)
has a distinet advantage since the limiting distribution of (82(3))} is normal.
In particular, using Theorem 3.1 of Spacings I along with Lemma 2.1 we have

(42) £{(mn/ (20 log n)))[(sa(3))} = ']} — 2(2).

From (4.2) it is easy to verify that an approximate 100(1 — «)% confidence
interval for ¢ is:
(4.3) [7"2‘11&231&(%)/(7"‘1" + 2%(«/2))2] <o < [Wzanzsn(%)/(ﬂ'an - 2§K(al2))2]

where a, = (n/logn)? and 1 — ®(K;) = 6.

Tt is apparent from the preceding paragraphs that under the assumption that
F(z) = G((x — u)/o), the quantities s,(r) (3 = r < 1) can be used to produce
approximately size o tests of the hypothesis that ¢ = 1, i.e. tests of

H: F(z) = G(z — u) versus
HE: F(z) = G((x — u)/o), a#1 (e >0).

Again being specific, an approximate size a test for this problem is given by the
rule: “accept Hy if and only if the confidence interval (4.3) includes unity.”

In the discussion of this section, we have been limited by the assumption that
G(x) satisfies the tail limitations imposed by Theorem 3.0. If this assumption
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does not seem reasonable, truncated statistics can be used for estimating o or
for testing H,® against Hy .
The truncated statistics are given as follows:

(44) Sn(r’ U, ll) = Ezﬁml (DXi/DYi)" 0< Irl =1

where 0 < u < v < 1 are given and [z] is the greatest integer not exceeding z.
By using S.(7, u, v), we need only put restrictions on the behavior of G(z) in
the interval G (u) < < G~'(v), and for conveniently chosen u, v regularity
of G(z) in this interval may be much more plausible than regularity on the
entire real line. In the replacement of S,(r) by S.(r, %, v) one need only replace
n by n{v — ) in the normalizing factors in (4.1), (4.2), and (4.3), except that
log » should be left unchanged. The stochastic convergence and limiting dis-
tribution arguments are as given in Spacings I for the untruncated statistics.

B. GOODNESS OF FIT PROBLEM

6. Introduction. Given a sample X;, X,, ---, X, of independent random
variables having a common unknown distribution F(z), we want to test the
hypothesis

(5.1) H,:F(z) = G((z — u)/0),

where G(z) is a specified distribution function with x (real) and ¢ (positive)
being unspecified parameters (nuisance parameters).

We are then testing whether F(z) belongs to the class of distributions gen-
erated by varying u and ¢. A well known example is the test of normality ob-
tained by taking G(z) as the standard normal distribution. Another example of
this hypothesis is the test of exponentiality encountered in life testing situations,
where G((z) is taken as the standard exponential distribution.

Use of sample spacings to test H, has been considered previously by Weiss
(1957) who proposed a test which we shall describe below. Minimum distance
methods for testing this version of H, were examined by Kae, Kiefer, and
Wolfowitz (1955).

In further papers, Weiss (1961), (1963) considers a sample spacings estimate
of o in the situation where H, is true.

The parametric goodness of fit problem seems to have received more attention
in the literature than the parametric two sample problem which we have con-
sidered above.

We shall introduce below a family of statistics all based on sample spacings.
In the following section, we shall study the asymptotic distributions and
stochastic convergence properties of these statistics, and in the last section, we
shall apply these results to study tests of H, based on these statistics. In particu-
lar, it will be shown that a subclass of these statistics give tests of Hy, whose
large sample power in discriminating exponential from Weibull distributions is
comparable to that of the Kolmogorov test. Among this subclass, a best test is
then found.
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Using the notation previously adopted for the two-sample tests, we define a
family of statistics which are analogous to the S,(r), namely

(5.2) Wa(r) = 25 (ng(s) DX.)', rz —1,r=0.
In terms of W, (r), the test proposed by Weiss (1957) is based on
(5.3) Zn = nWa(2)/(Wa(1))",

with the difference that Weiss used truncated versions of W,(r) in order to avoid
putting regularity restrictions on the tail of G(z).

From the distribution results of Section 6, it can be seen that any W,(r) can
be used to generate an estimate of ¢ if H, is true. Also, the W, (r) can be used
to test

(54) H¢:F(z) = G(z — u) versus
H':F(z) = G((z — p)/o), ¢ > 0,0 # 1, u (real) not specified.

The details of constructing such estimates and tests are similar to those of
Section 4 and will not be carried out here. The test statistics for Hy which we
shall study are defined as

(5.5) P.(r) = Walr)Wo(—r), 0<r=1.

In the following section on distribution theory, we shall make use of the methods
used previously for the two-sample statistics S.(r) and T,(r). Although great
similarities exist and are exploited, there are certain differences due to the sym-
metry of the distribution of S,(r) in r and (—7) which does not exist for the
distribution of W,(r).

6. Distribution and convergence results. First we relate the W,(r) to the
analogous statistics based on the U, in place of DX; .

TuarorREM 6.0. Let F(2) and G(z) satisfy condition (3.5) of Theorem 3.0, Spac-
ings I, except that it is not necessary to interchange q(z) with h(x), and/or r with
(—r). For this theorem, r ranges over [—1, «)(r = 0), instead of (0, 1]. The
definition of a(3, r) becomes,

(6.1a) a(8, 7) = max {1, (—log )™}
and that of b(8, r) becomes
b(s, r) = 8*(—logd)?, r= —1,
(6.1b) = 3 —1<r< -4
= s(—logs), r= -}
= 4, -3 <nrr#0.

Then as n increases,

(6.22) (L/MYWa(r) = (1/0) 22 (gD U/(E), —1=r<—%;
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(6.2b) (1/n logn)Wa(—3%) —¢ (1/n logn)'2 (g(i)U/f(i)7, r=—%;
(6.2¢)  (1/n)Wa(r) —p (1/n)22 () Ui/f(3))"
[=r(Us = 1)/(n = i + D] 252 dDH@O/BT (@), r> —4,7 #0.
Proor. From the expansions (2.6) and (2.7) of Spacings I, we obtain
2. (ng(d) DX)" = X {(g()/h(2))'U{ — rUS(H(X) — H())
(6.3) (g @O @)/ (0)) — rUS(H(X) — H(4)' (4)
QR(E)R"(Xi) — (2 + ) (B (X)) /B (0)].

The study of (6.3) is then done exactly as in Theorem 3.0 and Lemma 3.1 of
Spacings I. Since E(U,") does not exist for r < —1, U, variables are needed
here also and are defined by

(6.4) U/ = U, if U;> (nlogn)™
= (nlogn)™ ifU; £ (nlogn)™

In arriving at (6.1a, b) it is merely necessafy to identify the normalizing con-
stants and moment properties for —1 < r £ —3 here with 4 < r £ 1 previously,
and r > —1, 7 5 0, here with 0 < r < % previously. This completes our outline

of the proof.
TreoreM 6.1. If F(2) = G((z — u)/o), and F(x) satisfies the conditions of
Theorem 6.0, then as n increases:

(6.52)  L{logn[(s/n logn)W,(—1) — 1} — 81, 1, —v, ©/2), r= —1;
(6.5b)  £{(1/n)[(c")Wa(r) — nT(1 + n)]}
— S[(=1/r, —1,0, (1/r)M(—1/7) cos (—=/2r)], —1<r < —3
(6.5¢) £{(1/n log n)'[(eHWa(—3) — na'l} — 2(2), r=—%
(6.5d)  £f(1/na’ (P (e Wal(r) — nT(1 + 1l} - &(z), —3<rr#0
where
v = 0.57721 - - - (Euler’s constant):
M) = [T (¢ — 14+ y)/y™) dy;
o’(r) = T(2r+1) = I'(r +1) — 2[I(r + 2) — I'(r + 1)]
o (L =2)Tfs W(F()/WF(y))) dyl dw
+ 7[5 (1 = )2 (F @)W F(9))) dyl de

(taking u = 0, ¢ = 1 in computing h(z)).

Proor. The multiplying factor of ¢ is a consequence of Lemma 2.1. The ex-
pressions (6.5) then follow from the same arguments used in Theorem 3.1 of
Spacings I. This completes the proof.
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For r = 1, with some manipulation, (6.5d) above agrees with Weiss’s (1963)
result. An important point to note is that oo’(r) depends on G(z). If G(z) is
unknown as in the two sample problem, this lack of ‘“‘distribution freeness” is a
series drawback. In the present problem, as we shall see in the next section it
does not cause any trouble.

Stochastic convergence of the W,(r) is treated next.

TaroreM 6.2. Let F () and G(z) satisfy the conditions of Theorem 4.0, Spacings
I, with the same exceptions as in Theorem 6.0, and with the redefinition:

(6.6) d (s, ) = (—logd)™, r=—1,

= 5"+ (—log §)” Y, -1<r<—j3

= —&log s, r= —%

=&, —1 < 7(r #0).
Then as n increases,
(6.7a) (1/nlog n)Wa(—1) —» [5 F(F(2))/9(C(2))) dz, ro= —I;
(6.7b) (1/n)Wa(r) — T(1 + 7) [5 (g(G(2))/f(F(2))) da,

r> —1

The proof is omitted.

The next theorem deals with the products P,(7). A lack of symmetry will be
noted when r = 1, since in these cases W,(r) is asymptotically normal but
W.(—r) has a stable distribution which does not possess a second moment. As
might be expected, the more diffuse variable determines the limiting distribution

of the product.
TasoreM 6.3. Let F(x) = G((x — u)/0) and satisfy the conditions of Theorem

6.0. Then as n increases
(6.82) £{lognl(1/n” logn)P.(1) — 1]}

— 8(1, 1, —v, 7/2), r = +41;
(6.8b) LMY [(1/n*T(1 + 7)Pu(r) — T(L — )}

— S[1/r, —1,0, (—1/r)M(1/r) cos (x/2r)], 3 <r < 1;
(68¢) & (n/logm)![(2/n'r)Pu(}) — «']

— ®(x), r = 3;
(6.84)  £{(n*/e))[(1/n’T(1 — r)T(1 + 7)) Pal(r) — 1]}
—®(x), 0<r<g;

where v, and M (u) are as gien in Theorem 6.1 and
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of = (P(1 — 2r)/T*(1 — 1)) + (A + 2r)/T*(1 + 1))
+ (2/T(1 =T +1)) — 4
+ (DL 4+ 7) — T(1 — )"/ (T 4+ )T = 1))]
S5 (/= @) W EFE ) /AE () dylf de.
Proor. We shall consider first (6.8a). Write the left side as
log n((o/nlog n)Wa(—1)(1/ne)Wa(l) — 1) = logn((1/ne)Wa(1) — 1)
+ ((1/ne)Wa(1)) log n((a/nlog n)Wa(—1) — 1).

By means of Theorem 6.0 it is easily verified that the first term, log
n((1/ne)W,(1) — 1) approaches zero stochastically, while from Theorem 6.2
and Lemma 2.1 we see that ((1/n¢)8.(1)) approaches unity stochastically. It
then follows from Slutsky’s theorem (Cramér (1946), p. 254) that the expression
in question has the same limiting distribution aslogn((¢/nlogn)W.(—1) — 1)
which is given by Theorem 6.1.

We handle (6.8b) and (6.8¢) in the same manner. For (6.8d), note that
2[(1/n°T(1 — r)T(1 + 7))P.(r) — 1] has the same limiting distribution as
2 (e Wa(—r)/aT(1 — 7)) + (Wa(r)/ne’T(1 4 r)) — 2] which can then be
handled by the approach of Theorems 6.0 and 6.1. This completes the proof.

In the next section, it will be necessary to consider distributions of the P,(r) for
0 < r < 1 for general F(z) and G(z). The result needed is given next without
proof.

TuroreEM 6.4. Let F(x) and G(x) satisfy the conditions of Theorem 6.0. Then as
n increases,

(6.92) S{I(—3%)(n/I(—1)logn)[(1/n’I(H)I(—=$))Pa(}) — 1I} > (),

r=3;
(6.9b) &{ (/o) (1 /n* (1) I(=7))Pu(r) — 1]} — &(x),
0<r<i;
where
(6.9¢) I(r) = T(1 + ) [s (9@ @) /f(F (@) dz,  —1 <
(6.9d) I(-1) = [i ((F(2))/9(@ ' (2))) de, r= —1;
and

or = (1/I(r)I(2r) — (P(1 + )I(2r)/T(1 + 21))]
+ (1/P(—r))[I(—=2r) — (T(1 — r)I(=2r)/T(1 — 2r))]
+ (2/I()I(—=r)[L — T(1 + r)T(1 — 7)]
+ (/I()I(=)) s (1 = 2)™
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AL (r) 2w (9)o(y) dy — I(—7) [0 (y)o(y) dy] de
+ @/I(I(=)) [s (T2 + 7) = T(1 + r)w'(2)
+ (T2 — 1) = T(L 4+ r))w " (@)]1 — 2)
AL (r) [ow” (9)o(y) dy — I(—7) [z (y)o(y) dy] da,
defining
w(z) = g(G () /f(F(2));
v(z) = K (F ' (2))/W(F(z)).
7. Tests based on 7',(r). Using the stochastic convergence of W,(r) (Theorem
6.2), Lemma 2.1, and (3.2), it can be seen (as in Section 3) that any test which
rejects Ho whenever P,(r) is “too large” will be a consistent test. Further, using

Theorem 6.3, an approximately size « test can be found based on any P,(r)
statistic.

No test based on a P,(r) will be distribution free for finite sample sizes. Some,
as Theorem 6.3 indicates, will be asymptotically distribution free allowing critical
regions of approximately correct size to be established independently of the
distribution G(z). This property applies to the P,(r) for 3 < r =< 1. If a P,(v)
is used with 0 < r < %, then the critical region will depend on the particular
G(z) which appears in H, through the variance oi’. Having computed o, the
approximate critical region is easily found for these P,(r) using tables of the
standard normal distribution. Thus a simple linear transformation makes these
P,.(r) essentially distribution free under Hy .

We now want to consider the choice of the value r. It will be noted that for
1 < r £ 1, the limiting stable distributions are not available either as formulas
or in tables. This makes use of these P,(r) impossible at this time. Further, it
is doubtful whether these statistics could provide very powerful tests of H, when
compared to tests based on statistics whose limiting distributions have finite
variances.

For rin the range 0 < r < 1, any P,(r) can be used to define an approximately
size « test of H, . The critical regions are

(7.1a) P.(3) > («'n%/2)(x* + Ka(logn)i/n), r=1%
(7.1b) Pu(r) > (W'T(1 — 1)T(1 4+ 1)1 + (a:Ka/n')), 0<r<3;
(taking K, so that 1 — ®(K,) = a).

To make a choice among these tests, we must use the limiting distributions
in the general case. From Theorem 6.4 and Equations (7.1), the approximate
large sample power of the tests based on P,(r) (0 < r < %), is seen to be
(7.2a) @{(L/I(—1)(QIGI(—3})/7) — DIG) (n/logn)} — K.}, r=14;
(7.2b) @{(T(1 + r)T(L — r)ay/I(r)I(—r)or)

[(IOI(=)/TA + NI = 1) = D (/o) = K.,
0<r<i



938 SAUL BLUMENTHAL

TABLE 1
r .40 .30 .25 .20 .15 13 12 1 .10
a2 767 143 .060 .022 .0065 .0036 .0025 .0019 .0014
(/1) .183 .238 .256 272 .278 .281 . 287 277 .270

The expressions (7.2) will give non-trivial values only if F(z) and G(x) are
“close” in the sense that (I(r)I(—7r) — T'(1 + r)T(1 — 7)) is of the order of
(log n/n)* (for r = £) or (1/n)f (for 0 < r < 3).

For the comparison of these tests we shall consider a special problem, namely
that of testing for exponentiality with the Weibull distribution as the alternative.
This gives a one dimensional set of alternatives indexed by the shape parameter 3,
just as in Section 3. Using (3.5), we see that H, corresponds to 8 = 1, and it is
necessary that a sequence 8(n) approaching unity be found, so that (7.2) will
have non-trivial limits.

Straightforward computations show that the sequences

(7.3a) B = 1+ C(logn/n)}, r=14
(7.3b) B, = 1+ C(1/n), 0<r<i;
lead to the following limiting powers:

(7.42) d((C*rt/24) — K.), r=%
(7.4b) ®((C*"*/601) — Ka), 0<r<i
where

(7.5) o = (D1 + 2r)/T*(1 + 1)) + (T — 2r)/T*(1 — 7))
+ (2/T(1 4+ 1T — 7)) — 4.

Note that (7.3a) is the same as (3.6), but (7.3b) drops the additional (log n)
factor. In fact, in view of this fact and Equations (7.4), we see that the test
based on P,(%) has limiting efficiency of zero relative to any of the tests based
on P,(r) (0 < r < %). Also, it is seen that the best choice of r (for this example)
is that which maximizes (7*/¢1), noting from (7.5) that ¢; is a function of r.
Table 1 shows the behavior of (r*/a1).

From Table 1, it is seen that the optimal r lies in the neighborhood of (but
below) 0.12. A value of § would not be too far from optimal and might prove
convenient for computing. For r = %, (r*/e) is 0.284.

Note that for testing exponentiality, the statistic W,(r) takes on the simple
form

(7.6) Wa(r) = 213 ((n — ©)DX,)".

In addition to the internal comparison above, we shall examine the limiting
power of the Kolmogorov test adopted to this problem. Kae, Kiefer and Wolfo-
witz (1955) found that this test also is distribution free only in the limit. The
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limiting power of this test will be non trivial whenever
(7.7) SUP—w<a<w |[F (2) — G(2)] = C/nl.

In the present case, (7.7) is equivalent to (7.3b). Thus, the P,(r) (0 < r < 1)
tests will have the same order of limiting power as does the Kolmogorov test. It
also follows that relative to the P,(r) tests, the x” test (adopted to this problem)
has zero efficiency. This is in contrast to the result of Section 3 and is seen to
stem directly from being able to use the sequence (7.3b) instead of (7.3a). This
is due to the fact that having the limiting variance depend on the common (or
hypothesized) F(x) is an inconvenience but not a block to using a test here,
whereas in the previous problem it prevented the use of the T,(r) (0 < r < %)
tests.
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