WEIGHING DESIGNS WHEN 7 IS ODD'
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1. Summary and introduction. This paper attempts to add to the existing
understanding of weighing designs (WD). Let us suppose that n objects are to
be weighed in n weighings with a chemical balance having no bias. In the pre-
vious papers [14], [15], for odd n, optimum weighing designs are given for some
particular cases subject to the conditions, viz., (i) variances of the estimated
weights are equal and (ii) the estimated weights are equally correlated. Assum-
ing these conditions we find some more optimum designs when 7 is odd. Through-
out this paper n is assumed to be odd, except in Section 4, where n may take
any value.

Let

zip =1 if the jth object is placed in the left pan in the 7th weighing
= —1 if the jth object is placed in the right pan in the sth weighing
=0 if the jth object is not weighed in the 7th weighing.

The nth order matrix X = ((x:;)) is known as the design matrix. Also let y; be
the result recorded in the ¢th weighing, e; is the error in the result, w; the true
weight of the jth object, so that we have n equations

x;1w1—|—:c.-2w2-|—...—|—:c,.,,w,,=y,-.|_€“ i=1,2,"','ﬂ.

We assume X to be a non-singular matrix. The method of least squares or the
theory of linear estimation gives the estimated weights @ by the equation
% = (X'X)7' X'y where @ and y are the column vectors of the estimated weights
and the observations respectively.

If o° is the variance of each weighing, then

V(@) = (X'X)7* = ((ci))o"

where ((¢:;)) is the inverse of X'X.

The design will be called optimum in the sense of Mood, if det ((c:;)) (det
stands for determinant) is minimum and this is the case when det X'X is maxi-
mum. The efficiency of the weighing design can be measured, in the sense of Mood,
by det X'X/max det X'X [12].

If Amin be the minimum characteristic root of X'X, then the efficiency of the de-
sign can be measured, in the sense of Ehrenfeld, by Amin/max Amin [6].

According to Kishen, the efficiency can be measured by 1/, ¢ [11].
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The first two definitions of efficiency were first introduced by Wald in [16].
Kiefer gave some optimality criteria for experimental designs in which the three
criteria mentioned above were included and discussed them fully in [9] and [10].
He named these three definitions as D-optimum, E-optimum and A-optimum.
We use Kiefer’s notations in Section 6 for the definitions of efficiency of a weigh-
ing design given above.

2. Fundamental necessary condition. We shall confine ourselves to the case
when (i) the variances of the estimated weights are equal and (ii) the estimated
weights are equally correlated. In this case we get a design X with the parameters
n, s, A where n is its size, s the number of zeros in any column and

(2.1) N= Dt miiy, i iE G =12, n
Thus we get
(2.2) X'X = (n—s— NI, + B,

where [, is the identity matrix of order n and E.,., is the n X m order matrix with
positive unit elements everywhere. Hence

(2.3) det X = = (det X'X)?
= 4[n—s+ (n— DN\(n—s— NP8,

Since det X is real integral value, n — s 4+ (n — 1)\ is a perfect square.

THEOREM 2.1. A necessary condition for the existence of X is that n — s
+ (n — 1)) s a perfect square.

We have the design with the parameters n, s and . Denote this weighing design
by [n, s, \]. Let

(2.4) n—s+ n—Dr=d

where d is some integer. Since we are considering odd n, it takes the values either
1 mod 4 or 3 mod 4. Let

(2.5) n=4+ 1 if n is 1mod4
=4t + 3 if n is 3 mod4

where ¢ is non-negative integer. Let s take one of the values 4¢, 4t + 1, 4" + 2,
4t + 3 where ¢'( <t) is also some non-negative integer.

CasE (i).n = 4 + 1. Forn — s + (n — 1) to be a perfect square, s should
be 0, 1 mod 4. Hence, ‘

REMARK 2.1. The weighing designs [4¢ + 1, 46’ + 2, \] and [4¢ + 1, 48’ + 3, A]
do not exist.

Caskg (ii).n = 4+ 3. Whens — 2\ = 0,1mod 4,n — s + (n — 1)Aisnot a
perfect square.

REMARK 2.2. The weighing designs [4¢ + 3, 4¢', \], [4t + 3, 4t' + 1, \] where A
is even, and the designs [4¢ + 3, 44" + 2, \], [4¢ + 3, 4¢" + 3, \] where \ is odd, do
not exist.
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3. On the impossibilities of the [r, s, \] when A 5 0. We use here Legendre
symbols, Hilbert norm residues and the Hasse-Minkowski invariants for showing
the non-existence of some designs. The following lemma, given by Ogawa [13],
will be of use for our purpose.

Levma 3.1. If A = el, + fE,. where e and f are non-zero rationals, then

(B.1) Cp(4) = (=1, =1),(=1, €),"" (=1, g)s(n, 9)s(g, €),"(n, €),

where g = e + nf and p s any odd prime.

Since we are considering non-singular weighing design, its inverse exists and
is also a matrix with rational elements. Thus I, = (X ") (X'X)X . We have
that I, and X'X are rationally congruent and they can be written X'X ~ I, .
Hence

(3.2) Co(X'X) = Cp(IL) = (=1, —1),.
But X'X = (n — s — \)I,, + \E,, . From the lemrﬁa given above, we see that
(83) Cp(X'X) = (=1, =1)(—1,n — s — \),"™ PP
(=1, 9)p(n, g)u(n,m — s — N)p(n — s — X, ¢),""
whereg = n — s + (n — 1)\ = d°. Hence
(84) Cp(X'X) = (=1, =1)p(—=1,n—s— N),"" P, n—s—\),.
On equating the right hand sides of (3.2) and (3.4), we get for all primes that
(3.5) (=L,m—s5—=N),"" 2 (n,n—s—2A), = 1.
It follows from (3.5) that
(ny,m—s—2N),=1 for n =4+ 1;
(=n,m—s—2A),=1 for n = 4t + 3.

These results can be stated in the form of the following theorem :

THEOREM 3.1. A necessary condition for the existence of the [n, s, \] with \ = 0,
is that (n,n — s — N)p = 1l whenn = 1 mod 4 and (—n,n — s — \), = 1 when
n = 3 mod 4 for all primes.

Examples for some non-existing designs:

n 15 19 27 27 29 31 31 43
s 4 12 4 15 13 1 10 0
A -1 1 13 2 2 19 2 3

4. Structure of the design [n, s, A] with A £ 0. The distribution of the elements
+1, 0 and —1 in this matrix is of particular interest. Let the first row of this
matrix contain r positive units and ¢ zeros. We bring them in the columns
1,2, -+, rand in the last ¢ columns, respectively. Then we construct the matrix
Xyof n X (n — 1) in which the first row vanishes and it is given as

(4.1) X]_ = (x,; -_— xlixl), i = 2’ 3, cee L,
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where «; is the 4th column vector of X. After deleting the first row in X, there re-
mains a matrix X, which gives that

(42) det Xngz = det XIX
and
X}l X Xis
(4.3) X' X, = X}z ng Xos |,
X1z Xos Xam

where
Xu=(n—8=NUma+ Er1ra);
Xo=—m—8— NEgnitr;

(4.4) X = 0,1, (null matrix);
Xo=m—=8—= Nt + (n—354+3N)Entrntr;
Xos = 2NEn—t—r ¢ ;
X =(n—8s— NI+ NEy.

Hence from (4.2), (4.3) and (4.4) we get that
(4.5) r=(n—1)/2 %+ (d/20)(s + N — O]

where & = n — s + (n — 1)\. Since the design is non-singular, we know that A
can not be —1 for s = 1. Thus from (4.5) we see that, because r takes integral
values, ¢ is of the form s — (¢ — 1)\ where ¢ takes some of the values
0,1,2, -+ ,gand s — (¢’ — 1)A = 0. Further ¢ takes different values only when
it takes the values including zero. This is due to _j {; = ns where ¢; is the num-
ber of zeros in the jth row of X. When 7 does not take the value zero, then all ¢;*
are equal (= s). Same is the case with s < 3\. Hence

Lemma 4.1. A necessary condition for the existence of [n, s, \] having rows with
different number of zeros, where s > 0 and X 5~ 0, isthatn — s — Niseven or s = 3\.

Let Xo = [n, s, 0] which gives

(4.6) Xo'Xo = (n — 8)I, = XXy

Hence

LemMmA 4.2. The designs [n, s, 0] having rows with different number of zeros are
non-existent.

Now consider the designs having every row s zeros and A 0. Then (4.5)
becomes

(4.7) r=(n-—s=+d)/2

and (4.7)" shows that every row of X contains either (n — s 4+ d)/2 or
(n — s — d)/2 positive units. Let n; be the number of rows of X where each
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row contains (n — s 4 d)/2 positive units and let n, be the number of rows of X
where each row contains (n — s — d)/2 positive units and n; + 1, = n.
Write

(48) X = [ﬁ:ﬂ

where X, isn; X n (4 = 1, 2) matrix such that

(4.9) XonBny = dEny and  XopnEn = —dE,, .
Let

(4.10) X* = [_%::].

Consequently,

(4.11) X'X = X¥X* and X*E, = dE,.

Hence, we get
(4.12) (X*'X* = X*X*)' = (n — s — NI, + NEan

and also that every row and column of X* has the same number of positive units.
Since X with X > 0 implies X*, we use X* for [, s, A] and X, for [n, s, 0] here
afterwards when X has every row with s zeros.

4a. Some non-existing designs. Let N be a matrix obtained from X* (or X,) by
changing the negative units to zeros. Let M be a matrix obtained from X™* (or X,)
by changing positive units and negative units to zeros and zeros of X* (or X 0) to
positive units. Hence

(4.13) X* (or Xo) =2N + M — E,..

Let
(4.14)  NN' = ((\y), MM’ = ((#:)), MN' + NM' = ((v3;)).

We can deduce from (4.12), (4.13) and (4.14) that
(4.15) 4((Nj)) + 2((vs)) + ((ms5))

=(n—s—=NMNL+ (2s4+ X = n)Eu + 2((r: + 15))

where r; is the number of positive units in the sth row of X* (or X,). All r*
are equal in the case of design X*.

Let s = 0, then M = 0,, (null matrix). Hence (4.15) gives

Levmma 4a.1. A necessary condition for the existence of X™ with s = 0 or for the
existence of [n, 0, 0] except n = 2, is that n — N\ = 0 mod 4.

Again, considering (4.15), when 7 is even and X\ is odd or when 7 is odd and Y

is even, we have that u; is odd for 4,5 (¢ # j) = 1,2, - -+ , n. From the matrix
MM’ we get that

(4.16) ns = ns + D ititiem Mij .
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When all u3; are odd, it follows from (4.16) that
(4.17) s(s—1)+1=n

which gives
Lemma 4a.2. A necessary condition for the existence of X* (or X,), when n is
even and \ is odd or when n is odd and \ is even, is that n < s(s — 1) + 1.

Let
From (4.15) and (4.18) we get that
(419) 4((\y)) +2((#:5)) + ((8:5)) = (0 — s — NI + NEnn + 2((r: + 15)).

It follows from (4.19) that 8;; are odd when X is odd. Hence
Lemma 4a.3. When X is odd, a necessary condition for the existence of X™ is

that :

(4.20) n=(n-—s)mn—s—1)+1.
Some examples of non-existing designs:
n s A Reference n s A Reference
11 2 0 Lemmas 4.2, 4a.2 21 17 3 Lemmas 4.1, 4a.3
11 2 4 Lemmas 4.1, 4a.2 23 3 2 Lemmas 4.1, 4a.2
19 3 0 Lemmas 4.2, 4a.2 27 2 0 Lemmas 4.2, 4a.2
19 3 10 Lemmas 4.1, 4a.2 29 4 2 Lemmas 4.1, 4a.2

Now we can easily show that the existence of [n, 0, \] with A # 0 implies the
existence of symmetrical balanced incomplete block design (SBIBD) with the
parameters v* = n = b*, r*, r* = (n — d)/2 = k* and \* = (n — 2d + \)/4;
and conversely if a SBIBD exists with the above parameters, we get [n, 0, A].

6. The non-existence of the designs [n, 1, 1] and [n, 1, 3]. By the Lemma 4.1
we see that each row (and each column) of these designs contains one zero.
Hence on transforming to X* we get that every row (and every column) con-

tains the same number of positive units. Let this number be r. Hence r =

(n—1+4d)/2.

Consider the design [n, 1, 1]. Here M = I, and
(5.1) X*=2N+1I,— Eu.
Also

(5.2) X*(X*) =4NN' + 2(N + N') + (n — 4r — 2)Ep + I

= (n— 2)I, 4+ Eu .
Hence

(53) 2NN'+ (N + N') = [(n — 3)/2l, +(2r — (n — 3)/2)Enn .
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Let N = ((n)) wheren;; = LorOforalls,j = 1,2, ---,n. (5.3) gives that
(54) 2N + g +nj=2r — (n—3)/2 (4,5 (G #j) =12 --,n).

Let 2r — (n — 3)/2 be odd. Hence, N should be skew symmetrlc which is
impossible due to the fact that every row and column of X* contains
(n — 1 + d)/2 positive units and (n — 1 — d) /2 negative units. Thus it follows
that N is symmetric and n = 3 mod 4. Let n = 4¢ + 3. Then

(5.5) NN =r¢l, + (r—t — 1)N + (r = t)(Bpn — I, — N).

Easily we can show [2] that N is symmetrical partially balanced incomplete
block design (SPBIBD) with the following parameters: » = b = n,r = k =
m—14+d)/2,m=rm=n—r—1Ln=r—1t—1N=r—1tand

r—t—1 ¢
Pl_l: n—r—t—l]’

r—t ¢
Pz_l: n—r—t—2]'

For the existence of this design we must have A be a perfect square and n be
an integer where

(57) A=+ + 26+ 1; v =ph—pr; B =ph+ Ph;
n=[(v— 1)(1 —») — 2ms]/28%

(56)

This result is due to Connor and Clatworthy [4]. For the parameters given in
(56),A=4t+landyg = (n —1— 21')/2(4t + 1) On substituting the value
of rwegetn = —[(20 + 1)/(4t + 1)]* which is not an integer except for ¢ = 0.
Hence it follows that SPBIBD with the parameters given in (5.6) does not
exist; this shows that the design [, 1, 1] is impossible for n > 3. Similarly, we
can prove that the design [n, 1, 3] is also non-existent for n > 5.

6. Some optimum designs. Raghavarao [14], [15] showed that P, matrices
[n, 0, 1] are A-optimum, D-optimum and E-optimum. Ehilich [56] showed that
these matrices give maximum determinant. Hence in the D-optimum sense the
efficiency of the designs is one. But the existence of these matrices are limited to
some numbers with n = 1 mod 4 where 2n — 1 is a perfect square. In fact this is
a necessary condition for the existence of P, matrices. In this section we find
some more optlmum designs. Let the matrices [n, 0, —1], [n, 0, 3], [n, 0, 5] be
denoted by =%, Q. , R. respectively. By Lemma 4a.1 we have thatn = 3 mod 4
and n = 1 mod 4 are the necessary conditions for the existence of =% Q. and
R, respectively.

Cask (i). Let n = 4t + 3. With the help of the sections given above we can
show that the design sets [r, 0, 0], [n, 0, 1], [n, 0, 2], [r, 1, 0, [n, 2, 0] and [n, 1, 1]
do not exist. The efficiency of the design [n, s, \] in the A-optimum sense is
given by [14]
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(6.1) fn—sN) =(n—s=Nh—s+ (n— DN/
nn — s+ (n — 2)A];
f(n,3) —f(n — s,\) = (n — 3)(4n — 3)/n(4n — 6)

(6.2) —(n—s—=N[n—s+ (n— 1A/
nln — s+ (n — 2)A\] n — s, \ are positive,
n>s8s+Nors=0N=—1
=((n — s —9) — 65 + 9]
(6.3) + M(4s" — 13)n* + (4 — §")6n — 91/

n(dn — 6)[n — s + (n — 2)A]

where s’ = s + A.

For @, to be efficient, (6.3) should be positive. Ev1dently this i is positive when
N = —1and n > 3 and also it is positive when s’ > 3. When s’ = 3, (6.3) be-
comes (n — 3)*(3 — A\)/n(4n — 6)[n — 3 4+ (n — 1)A] which is non-negative
since N < 3. Hence (6.3) is positive for s = 3. Also we know that the design
[n, s, \] does not exist for 0 = s < 3. Thus

TuEOREM 6.1. Forn = 3 mod 4 and n > 3 the weighing design Q, is A-optimum
and E-optimum.

Consider the difference of the determinants Q,Q," and X'X where X is any
[n, s, N]:

(6.4) det Q.Q," — det XX’

I

(4n — 3)(n — 3)*

—In—s4+ (n— DN —s—N)""

n(n — 3)"7{(4 — 3/n)

— AN+ 1—s/n) 1 = (s =3)/(n— 3]}

where s = s 4+ \. For large values of n the expression in the braces of (6.5)
tends to 4 — (A + 1)¢ . Thus we have

[

(6.5)

(66) 4— AN+ 2a— (' + 1P =20 for

%

3.

It follows from (6.5) and (6.6) the difference of the determinants is positive
forn > 3,5 = 3and A = 0. We know that [n, s, \] does not exist for s’ < 3
except for s’ (s = 0, A = —1) = —1. From (6.5)

(6.7) det Q.Q. — det =,*=,* = (n — 3)" {(4n — 3) — [1 + 4/(n — )]}

and 4n — 3 — [1 + 4/(n — 3)]"" tends to 4n — 3 — ¢* for large values of n.
Hence, we have that the difference (6.7) of the determinants is positive forn > 14
and Qy; does not exist. Thus
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THEOREM 6.2. Forn > 15, Q, is D-optimum and =, is D-optimum for n < 15.

The maximum determinants for n = 3, 7, 11 are given as 4, 2°-9, 2"°-264,
respectively. Hence the efficiencies of =,* for n = 3, 7, 11 are respectively 1,
79, .84.

Cask (ii). Let n = 4¢ + 1. The above sections enable us to show that the
design sets [n, 0, \], A = —1,0,2,3,4;[n, 1, \, A = 0,1,2,3,4; [n, 2, ], [n, 3,
and [n, 4, 0] (n > 13) do not exist. Also [9, 4, 0] does not exist. For n = 13, P,
exists and it is the optimum weighing design.

Consider the difference

f(n,5) — f(n — s,\) = (n — 5)(6n — 5)/n(6n — 10)
(6.8) —(n—s8—=AN[n—s4+ (n— 1N/
nln — s + (n — 2)\]
{(n — s)[(6n — 10)s’ — 25(n — 1)]
(6.9) + \n(6n — 10)s" — (31n° — 60n 4+ 25)]}/
n(6n — 10)[n — s + (n — 2)A]

where s = s 4+ \. As in the case (i), (6.9) can be shown positive for s’ = 5.
Hence we have the following theorem:

TuEOREM 6.3. For n = 1 mod 4 and n > 5 also when P, does not exist, R, is
A-optimum and E-optimum.

Consider the difference of the determinants R,R," and XX’ where X is any
[n, s, A]:

(6.10) det R.R,’ — det XX' = (6n — 5)(n — 5)"

—In— s+ (= DN — s — N,
(6.11) =n(n — 5)"(6 — 5/n)

— A+ 1=§/m)1 = (s =5)/(n—5)]""
where s’ = s 4+ \. For large values of n, the expression in the larger braces of

(6.11) tends to 6 — (A + 1)¢~**® which is greater than 6 — (s’ + 1)e™"*.
Hence,

(6.12) 6—(s+1)""=z0 for § =5

It follows from (6.11) and (6.12) that forn > 5 and s’ = 5 the difference of the
determinants is positive. Also we know that [n, s, A\] does not exist for s <5
except for s = 0 and A = 1. Hence,

THEOREM 6.4. For n > 5 and n = 1 mod 4, when P, does not exist, R, is
D-optimum.

We know that the existence of SBIBD with the parameters v* = b* = n,
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TABLE 6.1
SBIBD Corresponding
v* r* A* WD
n (n — di)/2 (n — 2d; + 3)/4 Qn
n (n —1)/2 (n — 3)/4 Z*
n (n — d)/2 (n — 2ds + 5)/4 R,
TABLE 6.1.1
v* r* A* WD
7 3 1 =¥
7 6 5 Q
11 5 2 =4
15 7 3 =5
21 5 1 Ra
31 10 3 Qs

P =k = (n—d)/2,\" = (n — 2d + \)/4 when \ 5% 0 implies the existence
of [n,0,\]. Let di’ = 4n — 3 and d;° = 6n — 5 where d; and d; are integral values.
Thus we have Table 6.1.

We also give some examples from the Table 11.3, pages 469-470 of [3].
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