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1. Summary and introduction. In an attempt to refine the axiomatic model of
a probability space introduced by Kolmogorov [11], Gnendenko and Kolmogorov
[5] introduced the concept of a perfect probability measure. The desirability of
some sort of refinement has been pointed out by several well known examples
[2], [3], [8], which display a certain amount of pathology inherent in Kolmogorov’s
theory. It is known that if (X, 8, u) is a probability space and u is perfect, then
each of the examples mentioned is ruled out. There have been attempts (e.g.,
[1], [10]) at characterizing all those measurable spaces (X, §) having the property
that every probability measure u on 8 is perfect. There have also been investiga-
tions [12], [13], [14] of the measure-theoretic properties of perfect measures and
their relationships to other concepts in measure theory and probability theory.

In this paper, we consider mixtures of perfect probability measures and their
relationship to regular conditional probabilities. In Section 2, mixtures are de-
fined and some interesting special cases are considered. Section 3 is a brief study
of the imbedding of mixtures in a regular conditional probability space. Using
known results and some results from Section 2, the perfectness of the underlying
probability measure of a regular conditional probability space is characterized.

Unless explicit mention is made to the contrary, the notation and terminology
of [6] will be used throughout; however, the word ‘function,” used without
qualification, will always mean ‘real-valued function.” If (X, 8, u) is a proba-
bility space, then u is called perfect if for every $-measurable function f on X
and every set A on the real line for which f~'(A) belongs to §, there is a linear
Borel set B contained in A such that u(f(4)) = u(f(B)). It is known (see
[13]): (1) that a measure is perfect if and only if its restriction to every countably-
generated sub-sigma-algebra is perfect, and (2) that the restriction to any sub-
sigma-algebra of a perfect measure is perfect.

Since the following characterization of perfectness will be used frequently in
the sequel, we quote it here as a lemma. A proof may be found in [14].

LemMmaA 1. A measure p on a measurable space (X, 8) is perfect if and only if
for every S-measurable function f on X there is a linear Borel set B(f) contained
in f(X) such that w(f(B(f))) = w(X).

The following definitions are those of Jifina [9]. Let (X, 8, u) be a probability
space and let 8; and $; be sub-sigma-algebras of $. Any function u(-, - | 81, S2)
defined on 8; x X will be called a conditional probability (c.p.) if it satisfies:

CP1. for fixed Sin 81, u(S, - | 81, S2) is S;-measurable, and
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CP2. for every S in 8;, and every T in S,
[.L(Sl'l T) = fTﬂ(Slyxlslasz) d(#l82))

where (u | 82) is the restriction of u to 8, . If the c.p. u(-, - | 81, S2) also satisfies:
CP3. for each fixed z in X, u(-, x| 81, S2) is a probability measure on 8, ,
then it will be called a regular conditional probability (r.c.p.).
It is well known that if (X, 8, u) is a probability space, $; is any sub-algebra of
8, and 8 is any sub-sigma-algebra of 8, then thereisa c.p. u(-, - | 81, 82). We shall
denote by u(-, - |8, 82) any function satisfying CP1 and CP2, with 8; = 8.

2. Mixtures of probability measures. Suppose there is given a measurable
space (X, 8) and a probability space (Y, 3, ») such that for every 5 in Y there is a
probability measure p, on 8§ and such that u..)(S) is 3-measurable for each S in
8. The set function u defined on 8 by u(S) = fy uy(8) dv is readily verified to be
a probability measure on 8. It is usually called a mixture measure; more precisely,
it is a »-mixture of the u,’s. The properties of u depend, in general, upon properties
of v and of the w,’s. In particular, the following questions arise. If the u,’s are all
perfect, is u perfect? Conversely, if u is perfect, does it follow that the u,’s are
perfect, except possibly for 3’s in a v-null set? The answer to the first question
will be shown to be negative, but the answer to the second question is unknown
to us.

Before considering the general case, we discuss a few special cases of interest.
If the mixing measure » is discrete (i.e., if (Y, 3, ») is a discrete probability space),
then the mixture measure p is perfect if and only if u, is perfect for every y in Y.
The easy proof of this fact can be based on Lemma 1.

If (X, 8) is a measurable space and u; and ws are probability measures on §
such that u; << w2, then the perfectness of up implies that of w; . Indeed, if
{uy : v €T} is a family of probability measures on § which is dominated by a
probability measure A, then the perfectness of X implies that of u,, for each vy
in T. From this, it follows that the domination of the family {u, : y ¢ Y} by a
perfect probability measure is sufficient to insure the perfectness of the mixture
measure u, whatever be the mixing measure, ». For, if {u, :n = 1,2, ---} is an
equivalent countable subset of the {u,’s} (see [7], p. 232), then certainly u. is
perfect, for each n. And if 5(S) = D ne1 2 "ua(S), then & is perfect, since it is a
discrete mixture. It is clear that u << &, and the result follows from the opening
sentence of this paragraph.

Of course, the perfectness of u does not imply the existence of a perfect prob-
ability measure which dominates the family {u, : ¥ ¢ Y}. As a counter example,
we may take X = Y = [0, 1] and § = 3 = the sigma-algebra of Borel sets of X.
Let » be Lebesgue measure on 3 and for each y in Y, let u,(S) = Is(y), the
indicator function of the set S. Then u is also Lebesgue measure on the Borel
sets of [0, 1]. Moreover, u, v, and each u, are perfect probability measures on 8.
But, if there were a measure \ on 8 such that {A\} > {u, :y ¢ Y}, then \({y}) > 0,
for each y in Y, which is impossible. However, the following is true: if the family
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{uy 1y € Y} is dominated by a probability measure X and u 3>\, where u is perfect,
then pu, is perfect, for every y in Y.

The example of the previous paragraph can be generalized so as to yield an
example of a mixture of perfect measures which is not perfect. Let X be any
set, and §, any sigma-algebra of subsets of X. Take ¥ = X, J = $ and let »
be any probability measure on 3. For each y in Y, let u,(S) = Is(y). By taking »
as the mixing measure, and the probability measures {I,(y): ¥ ¢ Y} as mixand
measures, it is easy to see that for every S in 8, u(S) = »(8). Thus, any non-
perfect mixture of this family {u, : y ¢ Y} is itself nonperfect. That there is such a
nonperfect mixing measure is well known (see, e.g. [14]). Hence not every mix-
ture of perfect measures is perfect. A natural conjecture is that a perfect mixture
of perfect measures is perfect, but whether or not this conjecture is true remains
an open question.

3. Regular conditional probabilities and perfectness. In order to discuss mix-
tures and regular conditional probabilities, we introduce some convenient defi-
nitions. A family {u, : v ¢} of probability measures on a measurable space
(X, 8) will be said to be an equiperfect family if for every $-measurable function
f on X there is a linear Borel set B(f) contained in f(X) such that
uy (FH(B(f))) = 1 for every v in I. If the index set T' consists of a single point,
then this definition reduces to that of perfectness (cf. Lemma 1). If the index set
T has the structure of a probability space (T, F, @), and if for every $-measurable
function f on X there is a linear Borel set B(f) contained in f(X) and a set N (f)
in § such that a(N(f)) = 0 and u,(f (B(f))) = 1 for every v not in N(f),
then {u, : v ¢ T} will be called an equiperfect, almost everywhere [«] family (an
e.p.a.e. [o] family).

If (X, 8, u) is a probability space and $; and 8. are sub-sigma-algebras of §
for which thereisar.c.p. u(-, « | 81, 82), then u | 8; is a u | S;-mixture of the family
{u(-, z |81, 8:): z e X} of probability measures. What will be shown in the fol-
lowing is that given any mixture problem, it is possible to construct an asso-
ciated probability space into which the mixture structure can be imbedded.
We remark that the mixture structure cannot be completely recovered after
imbedding into the r.c.p. space, since the imbedded structure is related to the
original through isomorphisms of certain probability spaces.

Let (X, 8) be a measurable space and (Y, 3, ») a probability space such that
for each y in Y, u, is a probability measure on 8 and such that u.,(S) is a 3-measur-
able function for each S in 8. Let u be a p-mixture of the w,’s; i.e., u(S)=
[ ¥ 1y(8) dv, 8 in 8. Consider the measurable space (X x Y,8 x 3), where X x ¥
is the Cartesian product of X and Y and 8§ x 3 is the sigma-algebra generated by
the class of sets {S x T:S¢8, T ¢3}. For any set Ein 8 x 3, let E” denote the
y-section of E;i.e., B = {x: (z,y) ¢ E}. Define a function A\(-, -) on (8§ x 3) x
(X xY) by NME, (2,y)) = u(E’) and a function A\(-) on $ x Iby A(E) =
fy N(E, (z,y)) dv. We observe that A(-, -) and A\(-) are well defined, since the
class® = {S x T:8S¢8, T ¢35} is a semi-algebra of subsets of X x Y which is
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contained in the normal class U of subsets of X x Y for which UY belongs to
8 for every y in Y and u,(U") is a 3-measurable function. A well known lemma
(see [6], p. 28) insures that the normal class generated by ® coincides with the
sigma-algebra generated by ® , from which we conclude that § x 3 C .

Tueorem 2. (i) (X x Y, 8 x 3, \) is a probability space. (ii) (X x Y,
§ x Y, N (8 x YV)) and (X, 8, ) are set-isomorphic probability spaces, as are
(X xY, X x3, M| (X x3))and (Y,3,v). (iii)) N+, -) isar.c.p., (-, - |8 x 3,
X x 3).

Proor.- (i) is a special case of a result of Yushkevich ([15], Lemma 2, p. 218).
To prove (ii), we observe that N(S x Y, (2, %)) = m(8), NS x Y) = u(S),
MX x T, (z,y)) = I+(y),and N(X x T) = »(T). The desired set isomorphisms
are given by v1(S) = S x Y and v.(T) = X x T. To prove (iii), we note that
NE; (z, y)) is a constant function of the argument z and hence that N(E, -)
is, for fixed £ in 8 x 3, an X x J-measurable function. For every Ein § x J
and every Fin X x 3, \(EnF) = [yu(E n F)”dy, which may be written as
fp ME, (z,y)) d(AN| X x 3). Since p, is a probability measure on § for each y
in Y, it follows from the properties of y-sections of measurable sets that
(-, (z,y)) is, for fixed (x,y) in X x Y, a probability measure on § x 3.

If (X, 8, u) is a probability space, and 8; and 8. are sub-sigma-algebras of §
for which there is a r.c.p. u(+, - | 81, 82), then u | 81 is a u | $;-mixture of the prob-
ability measures {u(-, |81, $2): x € X}. This fact, together with the following
lemma, will yield our next theorem.

LemmA 3. The mixture measure p is perfect if and only if {u, : ye Y} is an
e.p.a.e. [v] family.

Proor. The proof follows from Lemma 1 and standard integration techniques.

TueoreMm 4. If (X, S, u) is a probability space and $; and S; are sub-sigma-
algebras of $ for which thereisar.c.p. u(+, « | 81,8z2), then u | 81 is perfect if and only
if {u(-, 2|81, 8): zeX} is an e.p.a.e. [u]| 8] family.

Jifina [9] has shown that if (X, 8, u) is a probability space and $; and 8, are
sub-sigma-algebras of $ with $; countably generated, then the perfectness of u
implies the existence of a r.c.p. u(-, - | 81, 82). Our next lemma is a sharpening of
this result which will allow us to improve Theorem 4.

Lemma 5. Let (X, 8, p) be a probability space and 8 and $; be sub-sigma-
algebras of S, with $; countably generated. If u | 81 is perfect, then there is a r.c.p.
u(-, l$1y82)'

Proor. A proof for this lemma can be constructed along the lines suggested by
the proof of a theorem of Doob (see [4], p. 31), after noting that the hypotheses
of the lemma ensure the existence of an $;-measurable function » on X such that
8, coincides with the class of inverse images, under h, of the linear Borel sets.
This, in turn, implies ([4], p. 29) the existence of a ‘“wide-sense” r.c.p., and the
proof now follows via Lemma 1.

TureorEM 6. Let (X, 8, u) be a probability space, and let 8, and 8» be sub-sigma-
algebras of 8, with $; countably generated. The probability measure u | $1 is perfect



PERFECT PROBABILITY MEASURES 1277

if and only if (1) there is ar.c.p. u(-, - | 81, 82) and (i) {u(-, x| 81, 82):2 ¢ X} s an
e.p.a.e. [u| 8] family.

Proor. (i) follows immediately from Lemma 5. Theorem 4 gives (ii), even
without the countability restriction. The converse has been proved above.

TuroreM 7. Let (X, 8, u) be a probability space and $; any sub-sigma-algebra of
8. The probability measure u is perfect if and only if (i) there is a r.c.p. u(-, - | 81,
82) for every countably generated sub-sigma-algebra 81 of 8, and (i) {u(-, |8, 82):
ze X} is an e.p.a.e. [u|S) family.

Proor. (Necessity). (i) follows from Lemma 5 and (2) of Section 1. Suppose
that f is any $-measurable function on X, and let 8; be the class of inverse images
under f of the linear Borel sets. Since for any Sin 8, u(S,z | 8, 82) = u(S,z | 81, 82)
except for z’s in a set N(S) in 8, with (u | $2) (N (S)) = 0, we see that there is a
set Ni(f) in 8; such that (u]|S8:)(Ni(f)) = 0 and if z is not in N:i(f),
then w(-, - |81,82) = (u|8)(, - |8, Ss). It follows from Theorem 6 that there
is a linear Borel set B(f) contained in f(X) and a set Na(f) in 8; such that
(1] 8) (No(f)) = 0and u(f(B(f)), z|81,8:) = 1 for each x not belonging to
Na(f). Hence for z not in Ni(f) u No(f), u(f (B()), z|8, 8:) = 1, and
(1] 82) (N1(f) u Na(f)) = 0, which proves (ii).

(Sufficiency). If 8; is any countably generated sub-sigma-algebra of 8, then
by (i), there is a r.c.p. u(-, - | 81, 82). If f is any 8;-measurable function, then,
by (ii), there is a set N1(f) in $; and a linear Borel set B(f) contained in f(X)
such that if z is not in N1(f), then u(f(B(f)), |8, 82) = (u|81)(F (B(),
z|8,8) = 1. But u(-, - |81, 8) and (u|8)(:, - |8, 8&) differ on (at most)
a set Na(f) in 8 with (u|82)(N2(f)) = 0. Thus for z not in N1(f) v Na(f),
w(fH(B)), |81, $2) = 1, and according to Theorem 6, u | 8; is perfect. It
now follows from (1), Section 1, that u is perfect.
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