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1. Introduction. Two-stage sampling (or sub-sampling) in sample surveys is
a procedure under which the population is considered as divided into a number
of “clusters” or groups of units of the population and sampling is carried out in
two stages. At first a sample of clusters is selected, and thus clusters become the
first-stage sampling units or primary sampling units (p.s.u.’s); then a sample is
taken from each of the selected p.s.u.’s. The ultimate units of the population are
these second-stage sampling units. Stratification and cluster sampling are special
cases of two-stage sampling when the rate of sampling is 100 % at the first and
the second stage, respectively. When the rate of sampling at each stage is less
than 100 %, one generally uses the term ‘‘two-stage sampling’’ or “subsampling.”’

In the current practice of choosing a survey design, the statisticians use one
of the two principles: (i) to get an estimator of maximum precision for a given
total cost of the survey, or (ii) to get an estimator of a given precision for a mini-
mum total cost of the survey. The allocation of the resources for a given survey
is usually carried out keeping one or the other of these two principles as the guide.
The author [1] considered jointly the losses resulting from the errors in the esti-
mators and from the cost of sampling, and obtained Bayes and minimax pro-
cedures for the estimation of mean in the case of an infinite population as well as
a finite population. The loss function was taken as the sum of two components,
one proportional to the square of the error of the estimator and the other propor-
tional to the cost of obtaining and processing the sample. Both the case of a sim-
ple random sample and stratified random samples were discussed and a formula
was obtained for the optimum allocation of the resources with a simple cost func-
tion.

In this paper we shall discuss two-stage sampling. We shall also use, for sim-
plicity, the term “‘clusters’ for first-stage units. The two cases, infinite and finite
populations, shall be treated separately. For the sake of generality, we shall con-
sider the case where the clusters are of unequal sizes and obtain the results for
equal size clusters as a special case.

2. Infinite populations. Unequal-sized sampling at the second stage. Consider
the situation where a statistician is required to estimate the mean u of some ran-
dom variable Y with a known upper bound ¢, (> 0) for variance. He chooses
a random sample of some predetermined size, say m (=1), but is not allowed to
or is unable to observe the values obtained, say w1, u2, * - - , um - He is, however.
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BAYES AND MINIMAX ESTIMATION IN TWO-STAGE SAMPLING 1187

allowed to observe a predetermined number of observations, say n; (= 1) each
from the conditional distribution of some other random variables, X; (z = 1, 2,

-, m), corresponding to the values ui, p2, - -+, um obtained and unobserved
by him, the conditional distributions of the X, being such that
2.1) EX;|u) = e, El(X:— pi)’ | wil sl (> 0); i=1,2 - , m.
He is given the values of o3’ o1’, 02’ -+ -, om, and is required to estimate u, the
loss function L being given by
(2.2) L(u,8) = a(d — p)* + com + 21 ca,

where § is a numerical-valued function of the sample observed by the statistician
and used to estimate u, ¢, the sampling cost per unit for choosing the sample
(u1, pa, -+, um) at the first stage and ¢; , for each 7, the sampling cost per unit
of observations on X; conditional upon u;, and « is a positive constant. Without
loss of generality we may take o = 1. The problem is: what function é should the
statistician adopt as an estimator of u, and further, what values of the m and n;
should he decide on for the sample sizes. The loss function with « = 1 may now
be written as

(2.3) L(u,8) = (06— u)' 4+ em + i,

3. Bayes and minimax strategies. Since the number of observations corre-
sponding to the different values of the u; may be different, we shall obtain Bayes
and minimax strategies corresponding to a fixed choice of the u; , i.e., correspond-
ing to a fixed choice of clusters, by using the methods developed in [1]. That
these strategies lead to an overall minimax strategy follows from a theorem which
we shall state and prove presently. This theorem is similar to Theorem 6.1 of
[1] which enables us to obtain minimax estimators for the given n; in the case of
stratified sampling and then choose the optimum 7, against the largest allowable
oi. We state the theorem as follows:

TurorEM 3.1. Suppose the space of strategies for the statistician is a union of
spaces, say D = U, Dy . Suppose \ is chosen randomly (i.e., not by the statistician
of his free will) and that he must use a strategy from Dy if N is chosen. Suppose o
is minimazx in Dy against the space of nature’s strategies . Then the strategy & of
using 6, when \ ts chosen is minimax against Q if:

(i) the risk R (w, 8,) = rx s constant (independent of w) for each \,

(ii) 7\ 2s a bounded function of N, and

(iii) there exists a sequence of 6’s in Q (not depending on \) such that the Bayes
risk against 8 in Dy — ry for all \.

Proor. Since 6 is the strategy which says, “Use 6, when X is chosen,” we have

(31) R(‘*’) 6) = E()\) R(w) 6)\)7

where the expectation is taken over the random variable .
Now,
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3.2) max, R (w, §) = max, Eoy R (v, &)

I\

Eo max, R(w, &) = Ean

because of the Condition (i).
Further, let 8" be a strategy for the statistician which chooses 8 € Dy when-
ever X is chosen. Then utilizing Conditions (iii) and (ii) respectively,

max, R (v, ') = max, Eoy R (v, &)
33) - 2 limy Eoy B (8, &)
= Eolimg R(6, 8)
= EnlimgR(6, ) = Eoyn .
From (3.2) and (3.3) it follows that
(3.4) max, R (w, §) = Epyry < max, R(w, )

for any &', proving that 8 is minimax.

Consider now the problem of obtaining Bayes and minimax estimators cor-
responding to a fixed choice of clusters. Since we do not expect a least favorable
distribution for u, we shall find a sequence of Bayes estimators corresponding to
a sequence {Ag} of prior distributions of u, where Ay is normal with mean zero and
variance 6°, and will be denoted as N (0, 6°).

Regarding the n; as fixed pro tem, we may omit the terms ezm + 2, ¢n; from
the loss function (2.3) and note that the loss function is simply the mean square
error. By an argument similar to that in Section 5 of [1], the Bayes estimator,
05, is the mean of the conditional distribution of u given the sample, and the
Bayes risk, 7y, is equal to the expected value of the variance of this conditional
distribution.

Let the sample available for observation be denoted by z = {X;; ;¢ = 1,
2,---,m;j =12, ---,n;} where X;; is the jth observation on the conditional
distribution of X; given u;, and the sampling is independent for each X;. As-
sume that Y is distributed as N (u, o5°) and that the conditional distributions
of the X;, given u;, are N (u;, oi'). We notice that each X, = n;," > Xy
is a sufficient statistic for the corresponding u; and since the distribution of the

u: depends upon g, it follows that the set X* = (X, , X5, -+, X) is sufficient
for u. We may thus replace the sample z by the set X* and obtain

(3.5) b = E(u| X¥),

(3.6) Ty = Edili* ,

where the notation for conditional expectation is quite obvious.

Since X, for given p; is distributed as N (u;, o’/n;) and p; for given
u is N (i, 03), it follows by the independence of their distributions that X; for
given p is N (u, ov + oi’/n;). As the prior distribution of x has been assumed to
be N (0, 6*), the joint distribution of the X; (i = 1,2, - -+ , m) and u is (m+ 1)-
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Variate_normal, from which it can be seen that the conditional distribution of k,
given X*, is N (a, 8), where

3.7) a= 2w/ (Xt we + 077,
(3.8) B=[2tw + 077,

and where

(3.9) w; = ni/ (o’ + ai).

Thus, we see that, for a fixed choice of clusters, the Bayes estimator & = a,
where « is given by (3.7), and since the variance 3, given by (3.8), is independent
of X*, the Bayes risk r, = 8.

4. Minimax estimator. We now apply Theorem 2.2 of [1] for obtaining a mini-
max estimator if one exists. By letting § — o, it is seen that r, — r where

(4.1) r= (Craw) ™ = [0 ni/ (nioy’ + o)

We must now search for an estimator 8 corresponding to which the risk does
not exceed r. Let us try for such an estimator,

4.2) limg.,, 8 (z) = D1y WX/ ws = 6% (x), say.

Since the X, are normal and independent with mean u each and variances 1/w, ,
8™ (z), being a linear function of the X; , is also normal, with mean u and variance
(Z'Ll w;)”". Hence, the risk corresponding to the estimator 8* is equal to r,
from which it follows that 8* is a minimax estimator of u.

5. Removal of the assumption of normality. We shall now drop the assumptions
on the distributions of Y and the conditional distributions of the X, . Under the
statement of the problem in the beginning of Section 2, Y is a random variable
with mean p and variance < o5, and for each ¢, the conditional distribution of
the X, , given u,;, has mean y; and variance =< o, Tt is easily verified that the
risk corresponding to the estimator §* of u, under these more general conditions,
R(u, &) £ r, and thus 6" is indeed a minimax estimator under the conditions
stated in Section 2.

6. Minimax choice of sample sizes. A minimax sampling scheme for the given
m clusters is, by Theorem 6.1 of [1], one which chooses the 7, so as to be “opti-
mum?”’ if the conditional variances of the X; given u; are as large as the assump-
tions allow, viz. ¢ . Thus, the choice of the n; for the given m clusters can be
made by minimizing the risk

6.1) R(u, 6%) = Dom ny/ (o’ + o)™ 4 com 4+ 2o e

Theoretically speaking, the risk (6.1) should be minimized over the choice of
the n; under the restriction that they be positive integers. However, even without
this restriction, the problem of the minimization of (6.1) appears to be a hopeless
task to attempt, in general. Under some simplifying assumptions, it may be
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possible to obtain approximate solutions, and we shall discuss one such case in
Section 9, after first considering the case of equal-sized sampling.

7. Infinite populations. Equal-sized sampling at the second stage. For the
special case of equal-sized samples from each cluster, we assume that for each
i,m; =m, ¢ = ¢, and o = a,. The Condition (2.1) and the loss function
(2.3) then reduce to

(7.1) E(Xilu) = pe, ElXs — )| pd £ 0" (>0),
and

(7.2) Lu, 8) = (6 — u)* + csm + cumn,
respectively.

Since the number of observations for each value of the u; is the same, we do
not need Theorem 3.1 for this special case. We may simply assume that the
numbers m and n have been determined somehow and restrict ourselves to the
choice of Bayes and minimax estimators corresponding to fixed m and n. The
procedure outlined in Sections 3, 4 and 5 will now lead to the following results,
obtained by replacing each n; by n, ¢’ by ¢,” and ¢; by ¢, :

(7.3)  Bayes estimator 8 = n8”* >y X,/ (mn6® + noy’ + 0,°)

(74) Bayes risk 7o = [mn/(noy’ + 0,°) + 671 + em + comn.
(7.5) Minimax estimator § = X
(7.6) Minimax risk = (e5°/m) + (0’ /mn) + cym + c,mn.

8. Minimax strategy for choosing m and n. By a repeated application of The-
orem 6.1 of [1], a minimax strategy for the statistician to choose m and n is to
choose the “optimum” values of m and n against the maximum allowed vari-
ances. An exact solution of m and n minimizing the risk (o5 /m) + (ou°/mn)
+ esm + comn is difficult to obtain. However, an approximate solution is pro-
vided by standard calculus methods, ignoring the discreteness of m and n, as

m 2 av/cyt and
n =2 (co/cw)’ (0uw/b).

9. A special case in unequal-sized sampling—approximate solution to the
minimax choice of sample sizes. Suppose cio2 = ¢ for all 4, then the minimax
risk for the given m clusters, given by (6.1), can be written as

9.1) Ry, &%) = {2201 1/[05 + (c/en) ™ + em + YT e,

and this is minimized, for given > 7y cin;, when Dy (¢ + (c/em))™ is
maximized. It is easily seen that this requires ¢, to be the same for all ¢ (neg-
lecting the discreteness problem). It then follows that o /n; = cioilfems = k
(say) for all 7. Thus the w,, given by (3.9), are the same for all ¢, and from

(8.1)



BAYES AND MINIMAX ESTIMATION IN TWO-STAGE SAMPLING 1191

(4.2), the estimator 8* becomes the simple mean of the (cluster) sample means.
The risk (9.1) reduces to

(9.2) R, 8%) = (or°/m) + (k/m) + csm + (em/k),

where k is at our disposal (through the n.). The minimum of (9.2) occurs for
k = mc’, which determines the values of the n; for given m.
In this case we can also say something about the choice of m. Neglecting the

discreteness problem, we see that the minimum of (6.1) over ny, ng, -+, N,
where ¢;o° = ¢ for all 7, is given by
9.3) R, M, ciy -y em,00, oy om) = (on/m) + esm + 2¢*.

Taking the expectation over the joint distribution of the ¢; and the ¢, we note
that, if m “clusters’ are taken,

(94)  ER(um,c1, -, Cm,0rs -, om) = (a2/m) + em + 2¢".
It is easily seen that the value of m which minimizes (9.4) is given by
(9.5) m = integer nearest to [(os/cs) + i]%.

It may be pointed out here that the overall sample mean will not ordinarily
be minimax. From the form (4.2) of the minimax estimator obtained, it is clear
that if it were the overall sample mean, the minimax choice of the n; would have
to be one making w; proportional to n; which from (3.9) indicates that n,es’ + o’
should be the same for each 7. This leads to n; = @ + (0w’ — oi)/0s, where
7 and o, are simple averages of the n; and the o, respectively. This would be
rather surprising since the “clusters” with larger upper bounds for the variance
would then be allocated the smaller number of sampling units.

10. Finite population. Unequal-sized clusters and unequal samples from the
sampled clusters. Suppose we have a finite population consisting of M (>1)
sub-populations, the 7th sub-population (¢ = 1, 2, ---, M) consisting of N,
(>1) units, and that X;; denotes some numerical characteristic of the jth unit
(j=1,2,---,N,;) in the ¢th sub-population, the mean for which is denoted by
wi = N Z?’;‘l i - In what follows, we shall use the terms clusters or first-
stage units or primary sampling units indiscriminately for the sub-populations.
Tt is required to estimate the population mean u = (2 2% N.)™ D%, N
= QoM NHT 2K, DN X,;, with a two-stage sampling plan as follows.
An ordered set of positive integers is decided upon, say (m, ny, na, -+, ny).
A simple random sample (without replacement) of m clusters is drawn out of
the total M clusters in the first stage. In the second stage, whenever the 7th
cluster of the population, 7 = 1,2, --- , M is selected in the sample at the first
stage, a simple random sample (without replacement) of size n; units is drawn
from the N; units comprising that cluster. Tlus, a sample consisting of a total
number of ) n; units is obtained for observation, where the summation ) is
taken over those values of ¢ which are selected in the first stage. If ¢, is the cost
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of sampling per cluster at the first stage and ¢, the cost of sub-sampling per unit
in the ith cluster, the loss function L is assumed to be given by

(10.1) Lu,8) = 06— u)’ + esm + 2 cna,

where 6 is an estimator for u.

We assume that this finite population has been obtained by nature (or a
conscious being) in the following manner. Nature first chooses a real number p
and then, using some distribution w, in the hyperplane ys + po + «++ + par = Mp
in the M-dimensional Euclidean space (M-space), and subject to the restriction
that

(10.2) Bo{ 2% (wi— w)' [ S (M — 1)ad,

where o} is a given positive number, obtains u; , u2, + -+, ua . Next, by using an
ordered set {w; ;¢ = 1, 2, ---, M} of distributions w; on hyperplanes in the
N ;-spaces of the form .

and subject to the restrictions that
(10.4) E, {220 (X — w)|lud £ (Ns— D)od; G=1,2, -+, M),

where the ¢; are given positive numbers, nature obtains the finite population
I={X;;j=1-+--,N;;¢2=1, -+, M}. The parameter w ¢ @ thus consists
of the ordered set (u, wp, w1, -+ , wy) Whose elements have been defined above.
If the sample obtained for observation is denoted by z = {x,;} where j ranges
over the n; values selected from (1, 2, ---, N;) in the second stage (and re-
numbered as 1, 2, ---, n; for the sake of convenience of notation), while ¢
ranges over the m values selected from (1, 2, ---, M) at the first stage (and
also renumbered as 1, 2, -+, m for the sake of convenience of notation), p,
for w & Q is the distribution of z from the population II distributed according to w.

By Theorem 6.1 of [1], a minimax strategy for this problem is a minimax
strategy for a given m, where m is chosen in an optimum way. By Theorem 3.1,
this would be a minimax strategy corresponding to a given choice of m clusters.
Accordingly, we shall obtain Bayes and minimax strategies corresponding to
some given m clusters. In addition to m, if we also fix the n; for the time being,
we note that the terms esm + 2 ens in the loss function (10.1) may be omitted
temporarily, thus reducing the loss function to mean square error. If ¢ denotes a
prior distribution used by nature for picking w e 2, and § denotes the estimator
used by the statistician to estimate g(w) = u, it will be seen, as before [1], that
a Bayes estimator §; and the Bayes risk r; are given by

(10.5) d:(z) = E(ulz),
and
(10.6) ri = BB — 6(x))" | 2],

respectively.
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11. Bayes estimators. Let the strategy £ of nature for picking w ¢ @ be a mem-

ber of the sequence {\s} where A is defined as follows: Pick u from N (0, 6°), and
given u, let the distribution s, with probability one, be singular M-variate
normal with mean u, variance o3> (M — 1)/M for each component and covari-
ance — a5 /M for each pair of components, and for each u; 4 = 1,2, -+ , M) so
produced, let the distribution w;, with probability one, be singular N;-variate
normal distribution with mean u; , variance o> (N; — 1)/N; for each component
and covariance —o,’/N; for each pair of components. Although the distribution
of the sample « can be obtained from the Jomt distribution of the u;, 7 = 1,
m, and the z;;, ¢ = 1, m;j =1, -+, n;, which is a > (n; + 1)-Var1ate
normal distribution, it is not necessary to do so. We note that since the distribu-
tion of the u; depends upon u, theset (Z1, %, « -+ , &m) Where &; = n; - Z,’»‘il ZTij,
which is sufficient for the set (ui, p2, ** , um) in the conditional distribution of
the sample (which depends upon uy, s, - -+, um), is also sufficient for u when the
distribution of the sample x depends upon u. Consequently, the set (%, &, - - -,
Zm) may replace the sample in Equations (10.5) and (10.6) above. We shall use
6 rather than £ as the subscript in both & and r.

The distribution of #;, given u;, can be seen to be N (u;, v;) where
v; = (n;' — N;')e, and since the sampling is independent for each cluster,
the joint distribution of the Z; given the u, is the product of m normal distribu-
tions. The sampled p; are themselves distributed as m-variate normal with mean
w and variance i’ (M — 1)/M for each component and covariance —a3>/M for
each pair of components. Let &*, u*, and e denote the m X 1 column vectors
with components (1, -+, Tm), (W1, -, um), and (1, ---, 1) respectively
and 7 an m X m unit matrix. If N, (u, Z) denotes the k-variate normal distribu-
tion with mean vector u and covariance matrix Z, then, given g, p* is distributed
as Nn(ue, A) where A = o (I — M 'e¢’), and, given p*, the distribution of
" is N (u*, B) where B is the diagonal matrix with the v; as the diagonal ele-
ments. It is then easily seen that Z* for given u is distributed as N (ue, W),
where W = A + B. Since u has the prior distribution N (0, 6°), the joint distribu-
tion of u and Z*is (m + 1)-variate normal from which it can be shown that the
conditional distribution of u, given &*, is N (e, 8), where

(11.1) a=eWE /(W e + 67,
and
(11.2) B = (W + 657"

Thus, for fixed choice of clusters, the Bayes estimator 8 = @, and since the
variance g is independent of &*, the Bayes risk r, = B8, where a and 8 are given
by (11.1) and (11.2), respectively.

12. Minimax estimator. We again apply Theorem 2.2 of [1] for obtaining a
minimax estimator if one exists. When § — o, we see that rp —r = (¢'W 'e)™".
We must now search for an estimator 8* corresponding to which the risk does
not exceed r. Let us try

(12.1) 8% (2) = limpw 8 (z) = €W 'Z* /W e.
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The risk corresponding to the estimator 8%, apart from the sampling costs, is
given by
(12.2) E,06" — u)’ = [1/ (W ) B[ W™ @* — ue)l’

= W' WW e/ (€W e)?,
where Wy = A, + Bi, A1 = n°(I — M 'e¢’), and B is the diagonal matrix
with diagonal elements v;” = (n;' — N; ")/, and where

Il

123)  owm'= (M — 1)7TE {220 (wi — w) 4 S o,
and
(124)  nd = (Vi — D7 Bof 20 Xy — )’ |wd S oy i=1, -+, M.

After some algebraic manipulations, it can be shown that EWW W e <
¢' W, thus leading to the result that £, (6* — p)* < (W 'e)™ = r and proving
that 8™ (2) is a minimax estimator of u. We note that this estimator is a weighted

mean of Z1, - - , Tm , and may be written as

(12.5) 0 () = 2T wid/ DT ws
where w; is the ith element of W e, and is given by
(12.6) wi = [di(1 = (o/M) D di I
and where

12.7) di = (ny ' — N Dol + ov.

The maximum possible risk, apart from the sampling costs, is givea by
(12.8) r= (W) = (Dt w)”
= (Z?=1 di—l>—1 - M—10b2~

13. Minimax choice of sample sizes. As discussed in Section 6, a minimax
sampling scheme, for the m sampled clusters, is one which chooses the n; so as
to be “optimum?” if the variances “within clusters” are as large as allowed by the
assumptions, viz., o;°. Thus the choice of the n; for the given m clusters can be
made by minimizing the risk

(13.1)  R(u, %) = O radi ™)™ — Mo’ + com + D imiems.

As mentioned earlier, the risk (13.1) should be minimized over the choice of
the n; under the restriction that they be positive integers. However, even with-
out this restriction, the problem of minimization of (13.1) appears to be hopeless
in general. The problem may be solved, in special cases, with the techniques
available for numerical analysis.

14. Finite population. Equal-sized clusters and equal-sized sampling from the
sampled clusters. For this special case, suppose that, for each 7, N; = N and
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n; = n. We may also assume that ¢; = ¢, and o;° = ,° for each . Since the
number of observations from each sampled cluster is the same, it is not necessary
to appeal to Theorem 3.1 for this special case. We may assume, as before, that
the numbers m and n have been determined somehow and restrict ourselves to
the choice of Bayes and minimax estimators for u corresponding to fixed m and
n. The procedure of Section 11 can be gone through now to obtain Bayes esti-
mators directly or the same result can be obtained by substituting N for N;,
n for n; and o,” for ¢ in the results (11.1) and (11.2). It will be noticed that
v; now becomes independent of 7, say v, and thus the matrix B reduces to vl.
The square matrix W is now of the form in which each diagonal element has the
same value, say a, and each off-diagonal element has also the same value, say
b # a. By utilizing an easily derivable result, that the sum of the elements of
any row or column of the inverse of such a matrix W is equal to the reciprocal
of the sum of the elements of any row or column of W, we obtain, from (11.1)
and (11.2) respectively, the following results: ’

(14.1) Bayes estimator 8 = 6°z../ (68" + V), and
(14.2) Bayesriskrg = (67 + V)™ + eym + cuomn,

where Z.. and V are defined by

(14.3) Eo=m )&,

the overall sample mean, and

(14.4) V=mwm"=MDYw+m'n"' =N,

respectively.

By using the limiting process directly as in Section 12, or noticing that the
d; and hence the w; of that section are independent of ¢ for this special case, and
thus the estimator (12.5) becomes a simple average of all the sample means,
Z1, &2y -+, Tm, 1t is seen that the overall sample mean, Z.., is a minimax esti-
mator for given m and n. The minimax risk, for given m and n, becomes

(145) R= (m"' — M oy + m™' (0™ — N Do’ + am + cumn.

By a repeated application of Theorem 6.1 of [1], a minimax strategy for the
statistician is to choose the “optimum’ values of m and 7 against the maximum
allowed variances. An approximate solution is provided by standard calculus
methods, and we get, ignoring the discreteness of m and n,

(14.6) m = (o5 — 0,'/N)/co]'
n 2 [(ev/cw) (00°/ (08 — o’ /N))].
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