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0. Summary. The paper studies hypothesis testing problems for the mean of
a vector variate having a multivariate normal distribution, in cases where the
alternative is restricted by a number of linear inequalities. A new criterion which
can be regarded as a generalization of the “maximin-r"” criterion of Abelson and
Tukey (cf. [1]) is introduced: we try to obtain tests which are “most stringent”
among the ‘“somewhere most powerful” tests, (Section 2). For an important class
of testing problems (Section 3) such tests can be characterized by a (half-) line
Iy minimizing a maximum angle (Sections 4, 6 and 7). This (half-) line /, can be
obtained by means of a method described by Abelson and Tukey (Section 5).
The theory of this paper can be applied to a large number of actual testing prob-
lems. Such applications, (one of which is treated in Section 8), generalizations
and details of the theory of this paper will be considered in the thesis [5].

1. Introduction. The subject is introduced by considering two applications
which elucidate the formulation of the problems (Section 3) and of the criterions
(Section 2).

First, let X;have independent normal N (u; , o) distributions, ¢;* being known,

and (¢ = 1, ---, k). Homogeneity of means (u1 = w2 = -+ = w) has to be
tested against an alternative defined by a number of homogeneous linear in-
equalities, e.g. against an upward trend (u1 = pe £ - -+ = e, with at least one

inequality strong). Paper [2] is a key paper in this connection. Bartholomew
applies the likelihood ratio principle and obtains tests entailing rather compli-
cated calculations. Power calculations suggest that no worth-while improvement
on his tests is possible, (cf. [2], p. 239). In contrast to Bartholomew, Abelson and
Tukey restricted their attention to tests based on linear contrasts Dk ieX
(2_%_1¢; = 0). They describe a method to obtain a “maximin-r*’ contrast in the
special case o = g5’ = -+ = o), (cf. [1]), 7 being the correlation coefficient
between the c; and the u; . Power calculations of Bartholomew (cf. [2], p. 268)
suggest that the test of Abelson and Tukey against an upward trend cannot be
improved upon to a worth-while extent : both Bartholomew’s likelihood ratio test
and that of Abelson and Tukey based on the maximin contrast seem to be useful
for testing homogeneity of means against an upward trend.

Next we consider the following problem: let (Xi, ---, Xix) have a multi-
variate normal distribution with known covariance matrix; the hy-
pothesis H: u; = 0(¢ = 1, ---, k) has to be tested against the alternative
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Ki:u 200 =1,---,k), (with at least one inequality strong). Paper [3] is a
key paper in this connection. Following Bartholomew, Kudé applies the likeli-
hood ratio principle to this problem (H, K;).

With regard to the above-mentioned problems, application of the likelihood
ratio tests (Bartholomew, Xudd) involves rather complicated calculations, es-
pecially if certain tables (cf. [2], p. 248) are irrelevant. Furthermore these tests
are ‘“‘nowhere most powerful’’; whereas tests ¢ based on certain linear combina-
tions of Xy, ---, X} give rise to simple calculations and moreover such tests ¢
will be “somewhere most powerful” (S.M.P.) which means that ¢ is M.P. (among
the tests of given size a) for at least one simple hypothesis out of the alternative.
We propose formulating this requirement first, so we restrict our attention to the
class C of all S.M.P. size-a tests. Finally, we must choose the “best” test ™ out of
C. We shall select ¢ from C so that the maximum shortcoming over the whole
alternative is minimized. In other words the most stringent S.M.P. size-a test must
be obtained.

In the problem of testing homogeneity of means (o,° = ¢° = -+ = ¢,°) this
criterion leads to the same tests as those of Abelson and Tukey (v. Sections 5 and
8). In Kuddé’s case the linear combination obtained has, as is to be expected,
positive coefficients.

We now consider two further problems, each of them giving rise to a certain
modification of the criterion “most stringent S.M.P. size-a”.

First, let X, (j = 1, .-+, n:) be a sample from the normal N(u;, ¢°) dis-
tribution (¢ = 1,---, k) with o wunknown. Homogeneity of means
(w1 = we = --- = w) has to be tested against an upward trend (u; = w2 =

- < w, with at least one inequality strong). Unfortunately we cannot con-
struct the class of S.M.P. size-o tests, owing to the nuisance parameter ¢° and
therefore we shall try to obtain the most stringent test among the S.M.P. simdlar
size-a tests.

Next, using the same notation, we consider the two-sided problem where
homogeneity of means has to be tested against an upward or a downward trend.
In this case we shall try to obtain the most stringent test among the S.M.P. un-
biased size-a tests.

2. Notation and definitions. We use the following notation:
®(z) = [To (2r)Fexp (—27%") du; ¥X(z) = 1 — B(2); Ua = (@7 (a);

further ¢;,, is the solution of P(T; = t;.«) = « where T, has Student’s ¢-distribu-
tion with f degrees of freedom. R* will denote a linear subspace of dimension d
(through the origin) in the sample space R". A superscript® is used sometimes in
order to denote that the corresponding symbol has one, and only one, fixed
value.

We recapitulate some definitions, most of which are generally used. For that
purpose, let (H, K) be a hypothesis testing problem, with composite alternative
K. Let 8,(0) = Es{o(X)} denote the power in 8 of the test ¢.
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The test ¢ is of size a, if
SUPger Bo(0) = o
and is semilar of size a, if
B,(0) =a forall 6eH
and is unbrased of size o, if
Supser B,(0) = @,  infox Bo(0) 2 a.
The envelope power function 85™(6) of a class D of tests ¢, is defined by
85"(6) = supyen B, (6).
The shortcoming v,,0(8) of a test ¢ with respect to the class D, is defined by

Yo.0(8) = Br*(8) — Bo(8).

A test ¢ in a class C of tests, is said to be most stringent in C with respect to D for
testing against K, if test ¢ minimizes in C the maximum shortcoming with respect
to D on the alternative K:

SUDsex Yo,0(0) = infy.c SUPsex vv,0(6).

In the special case C = D, we obtain the most stringent (D) test. On specializing
further, we obtain the most stringent size-a test in case D is the class of size-a
tests.

The minimax principle leading to the preceding definitions is sometimes quite
unreasonable, a minimized maximum shortcoming on K often going with a large
shortcoming for “many”’ alternatives 6 ¢ K, (cf. [4], p. 13). This objection to the
two foregoing principles seems to be realistic for many problems of the form
(H, K1) and (H, K,) that will presently be considered. For these problems, it
seems reasonable to restrict our attention to the subclass C of D, containing the
tests ¢ which have the shortcoming v,,5(8) equal to zero for some 6 in K. Tests
satisfying this condition are said to be somewhere most powerful with respect to the
class D, (abbreviated: S.M.P. (D) ). By specializing the definition of ‘“most strin-
gent in C with respect to D for testing against K”’, in case C is the class of S.M.P.
(D) tests, we obtain the most stringent S.M.P. (D) test. The following special
cases will be applied:

(i) D is the class of size-a tests; we obtain the most stringent S.M.P. size-a
test; ‘

(ii) D is the class of similar size-a tests; we obtain the most stringent S.M.P.
similar size-o test;

(iii) D isthe class of unbiased size-a tests; we obtain the most stringent S.M.P
unbiased size-a test.

Obviously the most stringent S.M.P. (D) test has in general a larger maximum
shortcoming than the most stringent (D) test, whereas the latter test has a larger
shortcoming generally in a region inside the alternative. For many problems of the
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form (H, K;) and (H, K,) which will be considered, no clear-cut preference will
exist for either one of the two principles mentioned above.

3. The formulation of the problems. Let X = (X;, ---, X,) have the multi-
variate normal distribution N (¢, =) with pdf

(1) [AF/(2re") " exp (= (20")7 2 205 a”(ws — &) (a0 — &)

where the matrix A is nonsingular and known; = = ¢*47".

Problems will be considered where ¢” is known, in which case we take o” to be
equal to 1, and also where ¢” is unknown. The outcomes z = (21, - - - , &) of the
random vector X and the vector ¢ = (&, -- -, &) of means, can be regarded as
points in the same n dimensional space R".

The vector ¢ of means is known to lie in a subset of a given s-dimensional
hyperplane V*in R* (s =< n) defined by the (n — s) equalities

(2) b + Z?'—‘l bihéi =0 ‘ (h =1, ,n— S)

where p*](4 = 1, --- ,m;h =1, --- ,n — s) is a matrix of rank n — s.
The hypothesis H is to be tested that £ lies in a given (s — r)-dimensional
hyperplane V" in V*, defined by

Hypothesis H: ™ 4+ > b, =0 (h=n—s+1,---,n — s+ 1)

where 1 < 7 < s;[b™(4 = 1, .--,n;h=1,---,n— s+ r)is a matrix of rank
n — s + r, (cf. [4] Chap. 7).
We shall first derive tests for H against the following “one-sided’’ alternative

Alternative Ky : 0™ 4+ 2 2qb®:, 20 (h=n—s4+1,---,n — s+ 1),
with at least one inequality strong;

corresponding to a subset of V*, which subset will be denoted also by K; .

We shall describe some transformations simplifying the formulation of the
problem defined above.We state here that the results of our investigations will be
put in forms which do not depend on the particular transformations used, so the
theory can be applied without an explicit construction of these transformations.

First, we choose the origin of B” in V*™" defined by the hypothesis H, thus ob-
taining a problem where

(3) ¥ =0 (h=1,---,m—s+r)

holds true. So we can assume (3) in what follows. In this case all hyperplanes V*
become linear subspaces R’, containing the origin.

Next, the problem can be written in a simpler form, by introducing a new basis
in R". (Transformation into independent normal variates has also been used by
Kudo, cf. [3], p. 404). Denoting the points (@1, - - - , z.) of B" by z, we define an
inner product in R" by means of the bilinear form

(4) (z,y) = 2i=1 2oi=a™zay;.
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Orthogonality z 1 y is defined by (z, y) = 0, the norm ||z|| is defined by
llz|* = (z, ) and the metric is defined by d(z, y) = |z — y|. We can construct
an orthonormal basis fi, -- -, f, for R*, e.g., by using the Gram-Schmidt or-
thogonalization process, such that f,_sy-41, - - - , f- sSpan the linear subspace R*"
defined by the hypothesis H and f,_s11, - - - , f» span R’ defined by the Equalities
(2). The problem can be reformulated by means of the coordinates ¥, -+, ¥,
with respect to the basis f1, - -+ , fa , of the sample point X: V; = (X, f;) and by
means of the new coordinates 71, - - -, 5, of the vector ¢ of mean values. The
original coordinates X, ---, X, of the sample point X having the normal
N (¢, =) distribution (1), the new coordinates Y1, ---, ¥, of X will have inde-
pendent normal N (5, o) distributions given by the pdf

(5) (276") ™ exp {— (20") 7 20 (ys — 1)),
since

Z?=1 Z:Ll aij(xi —&)(x;— &) = Hx - 5”2“: -1 (ys — 771‘)2-

The vector £ of means 71, * -+ , 1, is known to lie in the s-dimensional linear sub-
space R, defined by the equalities
(6) m=0 =1, ,n—s)

and the hypothesis H is to be tested, that £ lies in the subspace B*" of R’, defined
by

Hypothesis H: 5, = 0 t=n—s+1---,n— s+ 7)),
whereas the alternative K; becomes a subset in R° of the form
Alternative K : rad™iz0, (h=1,---,1),

with at least one inequality strong;
where [d"](4 =n —s+1, .- ,n—s+r;h =1,---,r)is a matrix of rank .

4. Problem {(H, K1), ¢" = 1}. By applying the Neyman-Pearson fundamental
lemma and Theorem 7 of [4], p. 91 we obtain the M.P. size-« test

(7) DSV 2wl 25 O

for testing the hypothesis H against the simple alternative @ = (9, --. 5,)
in K ; so n" satisfies

=0 (Gi=1--,n—35); 2Nad"% 20 (h=1---,r).

Evidently the critical region is a half-space of n dimensions, bounded by a
hyperplane of (n — 1) dimensions parallel to R*" defined by H.

But Test (7) is uniformly M.P. size-« for testing the hypothesis H against the
auxiliary alternative:

Alternative A;: 5; =0 (ft=1,---,n—35s)
m=0mL (GG=n—s+1,---,n—s+7r),0>0
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which corresponds with a half-R*™*' through »® and bounded by the R*™" de-
fined by the hypothesis H.

Test (7) can be rewritten in a form without reference to both the particular
basis for R” and the particular point ” in A, . For that purpose, let R be the r
dimensional subspace perpendicular to R*" in R’. The intersection of an alterna-
tive K with R will be denoted by K’. So A4, is the half-line I of points
(m, -+, na) satisfying

=0 (=1, ,n—sn—s+r+1,---,n), ne = 0"

t=n—s4+1---,n—s+7r),

where 6 > 0. Let X' denote the projection of the sample point X on to the R
spanned by I. X" is determined by

6 = (2T XSy,
hence
X7 = { i 2 | it Y.
Let OX' be defined by || X'|| in case X' e1(6 > 0) and by — | X in case

X" £1(8 < 0). The uniformly M.P. size- test (7) for problem {(H, A,),¢" = 1}
obtains the following form

(8) ox' = u,.

In order to find the most stringent S.M.P. size-a test for Problem {(H,K;),
o® = 1}, we must determine the half-line l, corresponding with this test.

The intersection K’ of K; and R" is a polyhedral angle with vertex O and edges
e, -+, e defined by:

(9) e: 20 Tnd =0 (h=1,---,rshg); It d%> 0.

The critical region and hence the power function 8,(8) of each S.M.P. size-a
test ¢ in class C and also the envelope power function 8,*(8) = B8.*(8) are in-
variant under translations parallel to B*". So we can confine our attention to the
power functions and the envelope power function over K;'.

The maximum shortcoming over K, of the 8.M.P. size-a test ¢, which is uni-
formly M.P. size-a against the half-line [ in K;’, can be studied by considering
the maximum shortcoming over each half-line m in K;":

(10)  SUPsex; Yo,0(0) = SUPsex,” Yo,0(0) = SUDmcx,’ {SUDbem Yo,c(0)}.

The power of the test ¢ which is uniformly M.P. size-a against the half-line
lin Ky, is equal to &(d) in the point @ on the half-line m; d denotes the (signed)
distance between @ and the boundary OX’ = wu, of the critical region (8). We
have

d = u, — 0Q cos {¥(l, m)}
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where ¥(I, m) is the angle between [ and m. Hence
Bo(Q) = ®ua — 0Q cos (¥(l, m)}].

The envelope power function 8,*(Q) = B¢*(Q) is obtained when ¥ (I, m) = 0.
Hence, the maximum shortcoming of test ¢ which is uniformly M.P. size-« against
the half-line [, is determined by

SUDpen Yp,c(8) = SuPogso {Bc™(Q) — B,(Q)}
SUPogso [B7 (U — 0Q) — ¥[ua — 0Q cos {¥(I, m)}]]
(11) = def Ml,a{\l’(la m)}
on the half-line m. The function M;,,(¥) introduced above is strictly increasing
for0 = ¥ < $m; Mi,0(37) = (1 — @) and My ,(¥) = 1for ¥ > }7. The maxi-
mum shortcoming over K; of test ¢ is determined by

I

SUPser;’ Yo.c(0) = M1,a[SUPm &, {¥ (I, m)}]

and we obtain the most stringent S.M.P. size-a test ¢, provided that the cor-
responding half line /, minimizes sup,, {¥({, m)}.

THuEOREM. The most stringent S.M.P. size-a test g for Problem { (H, K;),s" = 1}
is given by (8), where X" is the projection of the sample point X on to the R' spanned
by the half-line Iy satisfying

(12) SUPm &, Y(lo, m) = infic k' SUPmex,’ (I, m).

The mazximum shortcoming SUDse k, Yoo,0(8) of the test ¢y is determined by
My, (W), where ¥, 1s the minimum mentioned above:

(13) Wy =9 inf; - x,” SUPmc &, Y(I, m).

A method of obtaining the half-line I, will be considered in the following
section.

6. The determination of /, by means of a method of Abelson and Tukey. It is
fairly obvious that the half-line [, satisfying (12) can be obtained by first deter-
mining the half-line [ in R" which satisfies

(14) Y, e) = ¥(l,e) = - =¥(e)

(11is the axis of the circumseribed semi-cone of revolution of the polyhedral angle
K.'). In the case when I © Ki' it is obvious that [ is the half-line I, satisfying
(12). We notice that I < K, holds true for the greater number of the applica-
tions we have in mind. Further (14) admits simple explicit solutionsin these cases
and so we obtain tests involving simple computations, (v. Section 8 and [5]).

In case that I ¢ K;', we have to search for a polyhedral angle Kf,l,...,g, with
the fedges e, , -, e,(l S g < g < -+ <gs=r) (s0 K;l,...,gf is a f-di-
mensional “face” of K;') such that the half-line I, in the R’ spanned by these
edges, which is determined by

\I’(l/; 601) = \I'(l,; eyz) = = ‘I’(l’; eﬂf) = def ‘I’glw--,gf
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(1 is the axis of the circumsecribed semi-cone of revolution of the polyhedral angle
Ky, s;), satisfies () I’ € Kgy g, and (i) W(1, ) S Wpyog(g =1, -+, 7).
In this case I" is the half-line l, satisfying (12).

Indeed, Abelson and Tukey (cf. [1], pp. 1353-54, 1366-68) have proved that

the half-line /o can be obtained along the preceding lines.

6. Problem {(H, K), ¢" unknown}. By arguments similar to those of Section
4, we can derive the most stringent S.M.P. similar size-a test for Problem
{(H, K1), ¢" unknown]}.

By applying an obvious modification of Theorem 1 in [4], p. 161, we obtain
the uniformly M.P. similar size-a test ¢:

(15) OX'/|X" = X"|| 2 taestria/(n — s + 7 — 1)}

for Problem {(H, 4,), 7 unknown} where the alternative A, is defined in Section
4; X" is the projection of the sample point X on to the R' spanned by the half-
line I = A/, X" is the projection of the sample point X on to the R"**" per-
pendicular to the R*" defined by the hypothesis H, in the sample space R". So
the class C of S.M.P. similar size-a tests for Problem {(H, K;), ¢" unknown} is
determined by (15) for I varying over K;'.

We observe that the critical region belonging to Test (15) consists of the points
whose orthogonal projections on to R"**" are inner or boundary points of asemi-
cone of revolution with axis [ and semi-angle

(16) Av=cot ™ {(m—s+7r— 1) ra).

It can be proved that the maximum shortcoming supgem v,,c(6) of Test (15)
over the half-line m in K;', is a non-decreasing function of W(l, m) which strictly
increases for ¥(I, m) = A; and is constantly equal to 1 for (I, m) > A;.

Applying considerations similar to those of Section 4, we obtain the following
result.

THEOREM. In case ¥y = Ay, the most stringent S.M.P. similar size-a test o, for
Problem {(H, K1), " unknown} is determined by (15), taking for | the half-line
lo satisfying (12).

In case ¥y > A;, each S.M.P. similar size-« test has the maximum shortcoming
on K; equal to 1, so that no uniquely determined most stringent S.M.P. similar
size-a test exists for Problem { (H, K;), ¢" unknown} in this case.

7. The two-sided problems {(H, K), " = 1} and {(H, K), ¢" unknown}. The
“two-sided’’ alternative K is defined by

Alternative Ky : b% + Diub®, 20 (h=n—s+1,--+,n— s+ 1),
with at least one inequality strong,
or
P Db <0 (h=n—s+ 1, ,n—s+7),

with at least one inequality strong;



TESTS AGAINST ALTERNATIVES RESTRICTED BY LINEAR EQUALITIES 1169

using the formulation of Section 3. So K is the combination of a region of the
form K; and the reflection of this region with respect to an arbitrary point of H.
Problem {(H, K,),¢" = 1} does not present particular difficulties. We obtain the
following result.

TrEOREM. The most stringent S.M.P. unbiased size-o test ¢y for Problem
{(H, K,), ¢" = 1} is determined by

(17) 1X7] 2 ua
where X' is the projection of the sample point X on the line l, in K., satisfying
(18)  SUPmeky’ ¥(lo, m) = infic g, SUPmx,” V(I, m) =def .

The maximum shortcoming SUDsex, Yo,,0(0) Of test oo, with respect to the class
D of unbiased size-a tests, s determined by M,,.(W,) where

(19) M;..(¥) = supog>o [¢X(uéa - 0Q) + <I>X(u§a_-l- 0Q)
— & (uge — 0Q cos ¥) — " (u3e + 0Q cos ¥)],

Problem {(H, K;), ¢° unknown} presents a particular difficulty which restricts
the class of problems to which our criterion can find an exact application. We
consider the theory for Problem {(H, K,), ¢° unknown} in order to indicate the
origin of this difficulty.

First, applying Theorem 1 in [4], p. 161, we derive the uniformly M.P. un-
biased size-« test ¢

(20) ”XI”/”XI - XII” g tn——s+r——1;§a/(n — 8 + r — 1)‘;

for Problem {(H, A,), ¢" unknown} where A, is the two-sided analogue of the
alternative A, of Section 4, (see Section 6). Test (20) will be uniformly M.P.,
among the tests of the class D of unbiased size-a tests for Problem {(H, K,),
o” unknown}, for testing against A, , if and only if Test (20) belongs to this class
D. This holds true because D is a subclass of the class of unbiased size-« tests for
Problem {(H, A,), ¢° unknown}. Test (20) will be unbiased size-a for Problem
{(H, K,), ¢ unknown]} if, and only if,

(21) SUPmexy T(I, m) < A,

where A, is a suitable angle. So the class C' of S.M.P. unbiased size-a tests for
Problem {(H, K;), ¢* unknown} is determined by (20) for ! varying over Ky’
and provided that

(22) SUDicxy’ SUPmek, (I, m) = Ap

is satisfied. We obtain the following result.

TrEOREM. If (22) holds true, the most stringent S.M.P. unbiased size-a test oo
for Problem {(H, K,), " unknown} is determined by (20), taking for I the line I,
satisfying (18).

The determination of the angle A, , for which (21) is necessary and sufficient
in order that Test (20) belongs to the class D of unbiased size-« tests for Prob-
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lem {(H, K,), ¢" unknown}, is an intricate problem. We presume that the fol-
lowing formula

(23) Ay =cot™ {(n— s+ r— 1) max (1, tuspripa)}
holds true, (cf. [5]).

8. An application. The theory of Section 6 will be applied to the problem of
testing homogeneity of means (w1 = ue = --- = ux) against an upward trend
(p1 S pe = +-- = i, with at least one inequality strong), as mentioned at the
end of Section 1. This problem is of the form {(H, K;, ¢" unknown} where X,
corresponds with X;; whenv = > soymy+4 (v = 1, -+, n). The indices v = 1,

-, n are subdivided into k blocks of n;, na, - -+, n; indices respectively. We
have

s = k; r=%k —1; (z, y) = ZZ”=1 TolYo = Z’§-=1 Z}ﬁl TiYij

R =R'={(um - mspe - p e ml

which notation indicates that the points of R’ have coordinates which are equal
within each block. Similarly we have, always mentioning the jth coordinate of
the 7th block:

R =R ={(p-mwp-n-wl;
R =R"'= {(ul R U R A #k)}
where Z'Z=1 nu: = 0 has to be satisfied;
R = R = {(T1 +++ Tiny 5Ta1 ++* Tij +* Ting) }
where > %1 D 7 xs; = 0 has to be satisfied.

Ther = (k — 1) edgese, (g =1, -+, k — 1) of Ky’ in " = R*™ are de-
termined by

€y = {(ﬂl e Mgt it ME))
where us = —0s,™ (1 £ ¢);ui = 0(n — s,)"" (> g); 60 > 0, with the notation:

(24) Sg = D (g=1,---,k); so = 0
The “arbitrary’’ half-line

(25) I= {(Bwy -+ 6wy ; 0wy -+ Ow; -+ - Owy)}, 6>0

isin K, provided that

(26) Dtana; =0 W S W S v S Wk

The angles ¥(l,¢,)(g = 1, --- , k — 1) are determined by
W(l, ¢,) = cos™ {(1, ¢)/Illll llesll}

= cos {—n! 201 nawy/( X im nawd)is, (n — s,)%).



TESTS AGAINST ALTERNATIVES RESTRICTED BY LINEAR EQUALITIES 1171

Consequently [ is the half-line I, , making equal angles
(27) ¥y = cos ' {( D=1 naws’)

with the edgese, (9 =1, --- ,k — 1), if the “Welghts” wi; (=1, -+, k) satisfy
the equations

—n} >0 naws = s, (n — s,)} (g=1,---,k).

The solution
(28) wi=n"n T — i) —sfn—s)f} G =1, -, k)
of these equations satisfies the Inequalities (26). So Iy, © K" and I, satisfies

(12).
The projection X’ of the sample point X on [/, is determined by (25) where
9 has to minimize 5=y > 1% (Xs — 6w;)® So

(29) = (Dhanwd) ™ DhanwX.; 0X' = 0>t nawd)?

where X.. denotes the sample mean n;™" > X .
The projection X** of X on R"™**" = R is determined by

=Xn—X., -, X;i — X, ooo, Xjimp, — X..)
where X.. = n™" D 5, > M, X ; so we have
(380) [IX = X"P = X" — |XT* = 220 24 (Xy — X.)T — (0X)".
The Condition ¥, = A; (see (16) and (27)) can be written in the following
form

(31) tn—2;a = (n - 2)%( Z?:l niwiz - 1)—}.

Applying the theorem of Section 6, we obtain the following result.
CoRroLLARY. The test

(Zk—l nzwf)—l Zk—l ni,U)’l, tn—2;a
1=1 Zr‘ﬂ (Xw - X. ) - (21“1 nﬂlh 1(2’3-1 nz’wiXi-)z}% B (n - 2)*

where the weights w; (1 = 1, -+ | k) are determined by (28) and (24), is the most
stringent S.M.P. similar size-a k-sample test against an upward trend if (31) holds
true.

Next we apply the second theorem of Section 7 to the two-sided k-sample
problem of testing homogeneity of means against an upward or a downward trend,
as mentioned at the end of Section 1. Obviously we can confine our attention to
the Condition (22) merely, assuming (23). Some calculations show:

\%

SUPick,’ SUPmcxy’ W(l, m) = SUDs go1,... k-1:7< ¥(er , €)
= SUDP;s,gm1,+ k—1;7<g | COS_I {Sf}(n - 30)%/('” - Sf)%so%}]

= cos {nnit/(n — )} (n— m)})
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and consequently Condition (22) can be written in the following form (assuming
(23))

(32) max (1, tr9,1a) = 7 Hn — e — m) " H(n — 2)dnd,

s0 we obtain the following result.
CoroLLARY. The test

(Z’f‘=1 ’ﬂ{wiz)—% ] lec'=1 ’ﬂzszzI > lh—23a
{ZI§=1 Zjnil (Xz'j - X~-)2 - (Z’§=l nz’wiz)_l(Z’@;l n{win)Q}% - (n - 2)%

where the weights w; (¢ = 1, - -+ , k) are determined by (28) and (24), is the most
stringent S.M.P. unbiased size-a k-sample test against an upward or a downward
trend, if (32) holds true.
We remark that the weights (28) constitute a generalization of the maxi-
min-* weights obtained by Abelson and Tukey in the special case ny = n, =
- = ny for the trend-problem where * = 1.
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