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1. Introduction and summary. In the theory of sequential analysis developed
by Wald [6] there appear sums of the form X = »_7 x; where both the z; and N
are random variables. In this note we shall consider conditions for the existence
of E(X") when the z; are independent random variables and the event N = 1
is independent of z; , i1, -+ .

Let |z = i, Y = 2.1 y: . We show that sufficient conditions for E(Y*) < w
are that B(y¥) < 8 < «, BE(N*) < o,k =1,2, --- (proved fork = 1 in
[7]), and that if we can find a constant ¢ < o« such that P(y: = ¢)E(y: | y: £ ¢)
>a>0fori=1,2, - ,anecessary condition for E(Y*) < « is E(N*) < <.
We also show that E(z:) = 0, E(z™) £ Bx < «, BE(N*) < » imply that
E(X®) = liMp.o BE(XA™) < w fork = 1,2, --- (proved fork = 1, 2in [1],
for k¥ = 3 proved independently in [5]).

2. General conditions and notations. In this paper we always assume that the
x; are independent random variables and N is a random variable taking values
1,2,3,---, > P(N =) = 1. Theevent N = i is independent of z; , Ziy1, « - -.

In order to use this in a convenient way we define, following [4], n; = 1 (0)
if N = (<) 7. We note that z; is independent of any n; with j £ <. We use the
following representation,

N = Z?ni, Nn = ZT”: = min (m, N), X = Efn,-xi, Xn= Z;"mx.-,
Ixil =y, Y = Z? NYi, Ym = Zin niYi .
A useful convention is Xy = Y, = 0.

3. Results.
TuroreM 1. The conditions E(y¥) £ 8 < © (1 =1,2,--+), B(N*) < =
imply BE(Y*) < o. If we can find a constant ¢ < « such that

P(ys £ c)E(yilyi £¢) 2 a> 0, 1=12 -,

then the condition E(Y*) < « implies E(N*) < «.
PROOF. Since nim' = Nm,

B(Yn') — E(Yna) = 25=0 (DE[Yia(nmym) ]
= 2528 ) E(Yhanm) E(yn"™).
E(Y\") = 0(1) 2528 2ome1 E(Ypanm) = O(1) 252 E(Y5'N )
= O[E(N) + E(Yx"7'N)] = O[E* (Y., E"*(N")].
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Hence E(Y ") = O(1) as M — « and E( Y*) < o, thereby proving the first
part of the theorem. To prove the second part, put ye: = ¥ if y; < ¢, otherwise
Yoi = ¢. Then ¥V, £ Y, 0 < a £ E(Yei), Yoi = C; in the sequel we will drop c.
Put 2; = y; — E(y;); then |z;] = 2¢ and

|E(X.*) — B(Xh)| = | 250 D E(Xiinm) E(xn ™),
0f{ %22 El(2cNmv) '} = OLE(Nw'"nm)].
OlE(N ™). Since E(Xn) = 0, this is true for

I

Hence for k = 2, E(X.")
PN = ™% nE(ys). Then alVy < No* < N, and
(—1)*E(N.™) — E(Xx)
= TS (DM HEWLMYT) = 0055 BN s )]

Hence fork = 1
E(N.™) = O[E(N.™ + 23 B NHE*MY,5] = OB N
Therefore E(N,") = O(1) asm — « and E(N*) < =.

TaroreM 2. If E(z:) = 0, B(x™) < Bu <  fori=1,2, - and E(N*) < »

then E(X™) = lilmsw B(Xn'") < .
Proor.

B(X.%) — B(X%,) = 235 (D E(Xh ) E(za™ ™)

OLB(nn) + B(Xn5nm)]:

E(X,™) = OLB(N) + X5 E(X{5'n))]
= O[E(N) 4+ 274 E(X" ")),

since, as X1, X', - - - form a semimartingale, so do X 27X . forf £ m,
and B(X,*? — X¥7) = E[(X."" — Xi5")n,] = 0. Hence

E(Xm2k) - O[E(N) + E(Xm2k—2N)] — O[E(k—-l)/k(Xm2k)Ellk(Nk)]
— O[E(k-l)/k(XMZk)].
Therefore E(X,.,*) = O(1) as m — « and, by [2], p. 325,
E(X™) = lilpow B(Xn") < o.
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