ON MOMENTS OF CUMULATIVE SUMS

By RAGNAR ERICSON

University of Lund

1. Introduction and summary. In the theory of sequential analysis developed by Wald [6] there appear sums of the form $X = \sum_{i=1}^{N} x_i$ where both the x_i and N are random variables. In this note we shall consider conditions for the existence of $E(X^k)$ when the x_i are independent random variables and the event $N \ge i$ is independent of x_i , x_{i+1} , \cdots .

Let $|x_i| = y_i$, $Y = \sum_{1}^{N} y_i$. We show that sufficient conditions for $E(Y^k) < \infty$ are that $E(y_i^k) \leq \beta_k < \infty$, $E(N^k) < \infty$, $k = 1, 2, \cdots$ (proved for k = 1 in [7]), and that if we can find a constant $c < \infty$ such that $P(y_i \leq c)E(y_i | y_i \leq c) \geq \alpha > 0$ for $i = 1, 2, \cdots$, a necessary condition for $E(Y^k) < \infty$ is $E(N^k) < \infty$. We also show that $E(x_i) = 0$, $E(x_i^{2k}) \leq \beta_{2k} < \infty$, $E(N^k) < \infty$ imply that $E(X^{2k}) = \lim_{m \to \infty} E(X_m^{2k}) < \infty$ for $k = 1, 2, \cdots$ (proved for k = 1, 2 in [1], for $k \geq 3$ proved independently in [5]).

2. General conditions and notations. In this paper we always assume that the x_i are independent random variables and N is a random variable taking values $1, 2, 3, \dots, \sum_{i=1}^{\infty} P(N=i) = 1$. The event $N \ge i$ is independent of x_i, x_{i+1}, \dots . In order to use this in a convenient way we define, following [4], $n_i = 1$ (0) if $N \ge (<)i$. We note that x_i is independent of any n_j with $j \le i$. We use the following representation,

$$N = \sum_{1}^{\infty} n_{i}, \quad N_{m} = \sum_{1}^{m} n_{i} = \min(m, N), \quad X = \sum_{1}^{\infty} n_{i}x_{i}, \quad X_{m} = \sum_{1}^{m} n_{i}x_{i},$$
$$|x_{i}| = y_{i}, \quad Y = \sum_{1}^{\infty} n_{i}y_{i}, \quad Y_{m} = \sum_{1}^{m} n_{i}y_{i}.$$

A useful convention is $X_0 = Y_0 = 0$.

3. Results.

THEOREM 1. The conditions $E(y_i^k) \leq \beta_k < \infty \ (i = 1, 2, \dots), E(N^k) < \infty$ imply $E(Y^k) < \infty$. If we can find a constant $c < \infty$ such that

$$P(y_i \le c)E(y_i | y_i \le c) \ge \alpha > 0, \quad i = 1, 2, \dots,$$

then the condition $E(Y^k) < \infty$ implies $E(N^k) < \infty$.

PROOF. Since $n_m^2 = n_m$,

$$\begin{split} E(\boldsymbol{Y_{m}}^{k}) - E(\boldsymbol{Y_{m-1}}^{k}) &= \sum_{j=0}^{k-1} \binom{k}{j} E[\boldsymbol{Y_{m-1}}^{j}(n_{m}\boldsymbol{y_{m}})^{k-j}] \\ &= \sum_{j=0}^{k-1} \binom{k}{j} E(\boldsymbol{Y_{m-1}}^{j}n_{m}) E(\boldsymbol{y_{m}}^{k-j}). \\ E(\boldsymbol{Y_{M}}^{k}) &= O(1) \sum_{j=0}^{k-1} \sum_{m=1}^{M} E(\boldsymbol{Y_{m-1}}^{j}n_{m}) = O(1) \sum_{j=0}^{k-1} E(\boldsymbol{Y_{M}}^{j}\boldsymbol{N_{M}}) \\ &= O[E(\boldsymbol{N}) + E(\boldsymbol{Y_{M}}^{k-1}\boldsymbol{N})] = O[E^{(k-1)/k}(\boldsymbol{Y_{M}}^{k}) E^{1/k}(\boldsymbol{N^{k}})]. \end{split}$$

Received 30 August 1965; revised 4 April 1966.

Hence $E(Y_M^k) = O(1)$ as $M \to \infty$ and $E(Y^k) < \infty$, thereby proving the first part of the theorem. To prove the second part, put $y_{ci} = y_i$ if $y_i \le c$, otherwise $y_{ci} = c$. Then $Y_c \le Y$, $0 < \alpha \le E(y_{ci})$, $y_{ci} \le c$; in the sequel we will drop c. Put $x_j = y_j - E(y_j)$; then $|x_j| \le 2c$ and

$$|E(X_m^k) - E(X_{m-1}^k)| = |\sum_{j=0}^{k-1} {k \choose j} E(X_{m-1}^j n_m) E(x_m^{k-j})|,$$

= $O\{\sum_{j=0}^{k-2} E[(2cN_{m-1})^j n_m]\} = O[E(N_m^{k-2} n_m)].$

Hence for $k \ge 2$, $E(X_m^k) = O[E(N_m^{k-1})]$. Since $E(X_m) = 0$, this is true for k = 1.

Put
$$N_m^* = \sum_{1}^m n_i E(y_i)$$
. Then $\alpha N_m \leq N_m^* \leq c N_m$ and

$$(-1)^{k} E(N_{m}^{*k}) - E(X_{m}^{k})$$

$$= \sum_{j=0}^{k-1} (-1)^{j+1} {k \choose j} E(N_{m}^{*j} Y_{m}^{k-j}) = O[\sum_{j=0}^{k-1} E(N_{m}^{j} Y_{m}^{k-j})].$$

Hence for $k \geq 1$

$$E({N_m}^{*k}) \ = \ O[E({N_m}^{k-1}) \ + \ \sum\nolimits_{j=0}^{k-1} E^{j/k}({N_m}^k) E^{(k-j)/k}({Y_m}^k)] \ = \ O[E^{(k-1)/k}({N_m}^k)].$$

Therefore $E(N_m^k) = O(1)$ as $m \to \infty$ and $E(N^k) < \infty$.

THEOREM 2. If $E(x_i) = 0$, $E(x_i^{2k}) \le \beta_{2k} < \infty$ for $i = 1, 2, \dots$ and $E(N^k) < \infty$ then $E(X^{2k}) = \lim_{m \to \infty} E(X_m^{2k}) < \infty$.

PROOF.

$$\begin{split} E(X_{m}^{2k}) - E(X_{m-1}^{2k}) &= \sum_{j=0}^{2k-2} {2k \choose j} E(X_{m-1}^{j} n_{m}) E(x_{m}^{2k-j}) \\ &= O[E(n_{m}) + E(X_{m-1}^{2k-2} n_{m})]. \\ E(X_{m}^{2k}) &= O[E(N) + \sum_{j=1}^{m} E(X_{j-1}^{2k-2} n_{j})] \\ &= O[E(N) + \sum_{j=1}^{m} E(X_{m}^{2k-2} n_{j})], \end{split}$$

since, as X_1^2, X_2^2, \cdots form a semimartingale, so do $X_1^{2k-2}, X_2^{2k-2}, \cdots$, for $j \leq m$, and $E(X_m^{2k-2} - X_{j-1}^{2k-2}) = E[(X_m^{2k-2} - X_{j-1}^{2k-2})n_j] \geq 0$. Hence

$$E(X_m^{2k}) = O[E(N) + E(X_m^{2k-2}N)] = O[E^{(k-1)/k}(X_m^{2k})E^{1/k}(N^k)]$$
$$= O[E^{(k-1)/k}(X_m^{2k})].$$

Therefore $E(X_m^{2k}) = O(1)$ as $m \to \infty$ and, by [2], p. 325, $E(X^{2k}) = \lim_{m \to \infty} E(X_m^{2k}) < \infty.$

4. Acknowledgment. I wish to express my great appreciation for the substantial improvement of the proofs made by the referee and for the helpful comments of Professor Gunnar Blom.

REFERENCES

- [1] Chow, Y. S., Robbins, Herbert and Teicher, Henry (1965). Moments of randomly stopped sums. Ann. Math. Statist. 36 789-799.
- [2] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.

- [3] HARRIS, T. E. (1947). Note on differentiation under the expectation sign in the fundamental identity of sequential analysis. Ann. Math. Statist. 18 294-295.
- [4] JOHNSON, N. L. (1959). A proof of Wald's theorem on cumulative sums. Ann. Math. Statist. 30 1245-1247.
- [5] TEICHER, HENRY (1965). Higher moments of randomly stopped sums. Ann. Math. Statist. 36 1608. (Abstract).
- [6] Wald, A. (1944). On cumulative sums of random variables. Ann. Math. Statist. 15 283–296.
- [7] WOLFOWITZ, J. (1947). The efficiency of sequential estimates and Wald's equation for sequential processes. Ann. Math. Statist. 18 215-230.