CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL
DISTRIBUTIONS

By Gorpoon B. CRAWFORD
Boeing Scientific Research Laboratories, Seattle, Washington

1. Introduction. Consider the following property of two independent random
variables X and Y:

W = min (X, Y) independentof X — Y,

In [2] Thomas S. Ferguson proves that if X or ¥ have a discrete part, then this
property implies that for suitable constants a, b, b(X — @) and (Y — a) have
(possibly different) geometric distributions; i.e.,:

Pb(X —a) =n] = (1 —p)p", n=20,
=0 otherwise.

In [3], by the same author, it is shown that if X and Y are absolutely con-
tinuous, then for suitable a, (X — a) and (¥ — a) have possibly different ex-
ponential distributions, i.e.:

PX—azc¢)=¢"" ¢=0,
=1 otherwise.

In [1] A. P. Basu gets the same results as [3] under slightly different conditions.
It is assumed that X and Y are identically distributed with absolutely continuous
distribution F(-); F(0) = 0; and the seemingly weaker independence condition:

W, the first order statistic, is independent of the difference | X — Y| of the
order statistics.

Basu’s result may be obtained from a paper [4] by G. S. Rogers by taking the
logarithms of the random variables considered in [4]. Rogers’ paper is interesting
in that the proof requires only that the regression of ¢! on W is constant.

In the concluding remarks of [3] Ferguson points out the unsettled problem
that arises if X or Y has a singular part. We intend to resolve this problem, as-
suming that W is independent of X — Y.

The main result here is that if the independent random variables X and Y
have the property that W is independent of X — Y, then X and Y are both
geometric random variables or they are both exponential random variables.

We attempt to avoid some measure-theoretic difficulties by working with the
distribution functions instead of the densities. The method is different from those
mentioned above; all of the results of Ferguson are achieved at little additional
expense. Lemamas 1 and 2 are consequences of the asserted independence of W
and X — Y. Theorem 1 gives a condition which is equivalent to discreteness,
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and Theorem 2 shows that if this condition is not satisfied, then X — @ and
Y — a are exponential. Theorem 3 gives Ferguson’s result of [2]; if X and Y are
discrete, then b(X — a) and b(Y — a) are geometric. Throughout we assume
that X and Y are non-degenerate.

2. Theorems and proofs, condition C. Hereafter we assume that X and Y are
non-degenerate independent random variables with underlying probability
measure P, and with the property that X — Y is independent of the order
statistic W = min (X, V).

In the sequel these conditions will be abbreviated by saying that X and ¥V
satisfy condition C.

Note that if X and Y satisfy condition C, then | X — Y| and W are independent.

Let Pw(-) denote the probability measure on the real line induced by W.

Lemma 1. Under condition C:

P(X>Y)>0, P(Y>X)>0 P(W>0)>0.

Proor. Suppose P(Y > X) = 0. Then W is a.s. equal to X, in this case X
and —Y are independent and X is independent of X — Y, hence the charac-
teristic functions satisfy

d_y(t) = Px-n(1)P-x(t) = Q—Y(t)q’x(t)é—x(t)'

We know that |®x(t)| < 1, it follows from the above that in a neighborhood of
the origin |®x(¢)| = 1, hence X is degenerate, which is a contradiction to condi-
tion C.

Similarly we may show P(X > Y) > 0.

Assume P(W > 0) = 0.

Then at least one of the random variables X and Y is a.s. non-positive. We
will assume that the right hand end point of the range of X is non-positive and
is no greater than the right hand end point of the range of Y.

Let 6 > 0 be such that P(X — ¥ > &) > 0. Let —9, (n > 0), be the right
hand end point of the range of X (and consequently the right hand end point
of the range of W). Then for 0 < ¢ < 8

P(_ﬂ§W>_77_e)>O7
P(X—Y>¢ >0,

but {(z,y):—» = min (z,y) > —n— ¢z —y > ¢ = F,henceWand X — Y
cannot be independent. |

If X and Y are independent and X — Y is independent of W, then the same
is true for the random variables X = (X — a) and ¥ = (¥ — a). Thus we
have

CoROLLARY To LEMMA 1. Under condition C the ranges of the random variables
X, Y, and W are unbounded to the right.

LemMma 2. If X and Y satisfy condition C, then
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P(X > Y)P(X > 6+ c)/P(X > 0)]
4+ P(Y > X)[P(Y >0+ ¢)/P(Y > 0)] =P(|X — Y| >c¢)

for all ¢ = 0 except on a 0 set of Pw measure 0. (The exceptional set not depending
on c.)

Proor. First we prove the assertion for fixed ¢. The assertion follows immedi-
ately on a countably dense set, and hence for all ¢, since the probabilities in-
volved, when considered as functions of ¢, are right continuous. Now, for fixed

cz0:
P(X—=Y|>c|W=20)=h(c) =P(X —Y|>c)
where h(c) is independent of 6 almost surely Pw(6).

h(c) =as. PX =Y >c|W=6X>V)PX>Y|W=09)
+P(Y—-X>c|W=0Y>X)P(Y>X|W=06)
+PY—-X>c|W=6Y=X)PY=X|W=06)

= PX —Y>c|YVY=6,X>Y)PX>Y)
+PY—-X>¢|X=6Y>X)P(Y >X)

= PX>0+¢]Y=6X>0PX>7)
+PY>0+c¢c|X=6Y>0PY>X)

=0 PX>0+¢c|X>0PX>Y)
+P(Y>0+c|Y>0PY >X)

h(c) =as. P(X > Y)[P(X > 0 + ¢)/P(X > 0)]

4+ P(Y > X)[P(Y > 6+ ¢)/P(Y > 0)]. ]
Hereafter we will abbreviate the identity of Lemma 2:
(1) plf(6 + ¢)/f(6)] + dlg(6 + ¢)/9(8)] = h(c),

letting f(a) = P(X > a), g(a) = P(Y > a), and denote by © the collection of
6 points whereon (i) holds for all ¢ = 0. Note then that if 6, is a decreasing
sequence in © converging to 6, then 6 is in ©, since f(-) and g(-) are right
continuous. Therefore © contains all of its left hand end points.

TuaroreM 1. Let X and Y satisfy condition C, if, in the above notation, there
exists 6o € © such that (0, 6o + ¢) n ® = & some ¢ > 0, then X and Y are dis-
crete.

ProokF. Since Pw(0©) = 1, it follows that Pw(0:60 < 8 < 6 + ¢) = 0, and
by the corollary, Px(8:0y < 6 < 8+ ¢) = 0 = Py(8:00 < 0 < 6o + ¢).

Using (i):

h(c) = plf(8s + ¢)/f(60)] + qlg(60 + ¢)/g(60)],
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hence A (c) is constant over the interval 0 < ¢ < e. It follows from (i) that for
any 6 &, f(-) and g(-) are constant over the interval (6, 6 + ¢).

Thus there can be atmost countably many points of decrease for f( - ) and g(-).1

THEOREM 2. Let X and Y satisfy condition C; if the hypotheses of Theorem 1 are
not satisfied, that is, if for every 6 ©, ¢ > 0, (6,0 + ¢) n © = O, then for some
constant a, (X — a) and (Y — a) have (possibly different) exponential distribu-
tion functions.

Proor. It follows from Theorem 1 and the preceding remarks that © is of
the form [a, + ) or (—w, 4 ). In the former case we may adjust the right
hand end point by adding a constant to X and Y; hence we may assume that
[0, +«) C ®.

Now, f and g are monotone functions; hence they have right derivatives
f7(-) and g*(-) almost everywhere. For some fixed 6, 7*(6) and g*(0) are both
finite, hence

(ii) Pl (0)/£(0)] + qlg*(6)/9(8)] = h™(0), finite.

Since (ii) holds for all non-negative 6, it follows that pf*(6) and gg*(9) are
finite for all non-negative , therefore the singular and discrete parts of the corre-
sponding cumulative distribution functions must vanish; hence pf(-) and gg(-)
are equal to the integral of these derivatives.

Integrating with respect to 8, 0 < 6,

qIng(8) = —pInf(0) — k6 + ks, ks

%
=]

Hence

%
=

g(8) = f(6)™"-exp [—kst + ki, 0=60<rk=0k
Going back to equation (i) we now have:
(iii) h(e) = plf(0 + ¢)/f(6)] + gexp (—kue)(f(6 + ¢)/£(6))™"
= plf(e)/f(0)] + g exp (—kue)(f(c)/f(0)) 7.
The equation
pX + gexp (k)X — plf(c)/f(0)] — gexp (—ke)(f(c)/f(0))™ = 0

in X has at most two roots, (since the derivative of the curve changes sign at
most once).

Therefore, if the identity (iii) in the continuous function (f(8 -+ ¢)/f(8) holds
for all 9, then the ratio f(6 4 ¢)/f(8) must be identically equal to the root
z = f(c)/£(0).

Hence, we have a form of Cauchy’s equation:
fle 4 6) = f(8)i(c), 020,c20,

and therefore f(a) = kyexp (—ksa), ks, ks = 0, for 0 < a.
We have proved that the right hand tails of the distribution functions of X
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and Y are exponential; we must show that they are exponential over their
entire range. Suppose otherwise, that over the interval (—a, —b), the function
f(+) is not exponential, and f(—a) < 1. Then since f(—a) < 1,

P(W = —a) > 0.

But this implies that the closed support of Py contains a neighborhood of a
point to the left of —a, hence f can be shown to be exponential on [—a, + ).

Similarly it is clearly that f(—a) < 1 implies g(—a) < 1; hence X and ¥
have the same range, proving Theorem 2. ]

TraeoreM 3. If X and Y are discrete random variables satisfying condition C,
then b(X — a) and b(Y — a) have (possibly different) geometric distributions for
suitable constants a and b.

Proor. It follows from Theorems 1 and 2 that there exists 6 such
that 6, + € £ © for all small ¢, hence there exists a smallest ¢, such that 6, + ¢ is
a point of decrease for f(-) or g(-). Now

plf (60 + ¢)/7(60)] + qlg(60 + ¢)/g(60)] = h(c).

Thus ¢, is the smallest positive point of decrease for A(-). Hence, it follows from
(i) that for any 6 & ©, 6 = 6 + ¢, is the next point of decrease for f(-) or g(-),
and §” = 6’ + ¢ is the next, and so on. Thus the support of Py is a right-un-
bounded collection of lattice points. If necessary, we make an affine transforma-
tion and assume they are a subset of the integers containing the non-negative

integers.
Using condition C we may write

PX—-Y>mPW=n)=PX—-Y>mW=n)
=P X—-Y>mX>Y=n)=PX>m+n)P(Y =n).
Let r(m) = lg P(X > m). Then r(-) satisfies an equation of the form
r(m + n) = s(m) + t(n)
r(m 4+ 1) —r(m) = (1) — ¢(0)
r(m) = r(0) + m(¢(1) — ¢(0)).

Thus P(X > m) = ép™ for some 8, p. It follows that 0 < §;0 < p < 1; that is,
the right hand tail of the distribution of X is geometric. Similarly, the right
hand tail of the distribution of Y is geometric; and the same argument used in
Theorem 2 suffices to complete Theorem 3. |
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[4], as well as many helpful comments.
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