CHARACTERIZATION OF GEOMETRIC AND EXPONENTIAL DISTRIBUTIONS

By Gordon B. Crawford

Boeing Scientific Research Laboratories, Seattle, Washington

1. Introduction. Consider the following property of two independent random variables X and Y:

$$W = \min(X, Y)$$
 independent of $X - Y$.

In [2] Thomas S. Ferguson proves that if X or Y have a discrete part, then this property implies that for suitable constants a, b, b(X - a) and b(Y - a) have (possibly different) geometric distributions; i.e.,:

$$P[b(X - a) = n] = (1 - p)p^{n}, \quad n \ge 0,$$

$$= 0 \quad \text{otherwise.}$$

In [3], by the same author, it is shown that if X and Y are absolutely continuous, then for suitable a, (X - a) and (Y - a) have possibly different exponential distributions, i.e.:

$$P(X - a \ge c) = e^{-c/\lambda}, \qquad c \ge 0,$$

= 1 otherwise.

In [1] A. P. Basu gets the same results as [3] under slightly different conditions. It is assumed that X and Y are identically distributed with absolutely continuous distribution $F(\cdot)$; F(0) = 0; and the seemingly weaker independence condition:

W, the first order statistic, is independent of the difference |X - Y| of the order statistics.

Basu's result may be obtained from a paper [4] by G. S. Rogers by taking the logarithms of the random variables considered in [4]. Rogers' paper is interesting in that the proof requires only that the regression of $e^{-|x-y|}$ on W is constant.

In the concluding remarks of [3] Ferguson points out the unsettled problem that arises if X or Y has a singular part. We intend to resolve this problem, assuming that W is independent of X - Y.

The main result here is that if the independent random variables X and Y have the property that W is independent of X - Y, then X and Y are both geometric random variables or they are both exponential random variables.

We attempt to avoid some measure-theoretic difficulties by working with the distribution functions instead of the densities. The method is different from those mentioned above; all of the results of Ferguson are achieved at little additional expense. Lemmas 1 and 2 are consequences of the asserted independence of W and X-Y. Theorem 1 gives a condition which is equivalent to discreteness,

Received 9 August 1965; revised 25 May 1966.

and Theorem 2 shows that if this condition is not satisfied, then X - a and Y - a are exponential. Theorem 3 gives Ferguson's result of [2]; if X and Y are discrete, then b(X - a) and b(Y - a) are geometric. Throughout we assume that X and Y are non-degenerate.

2. Theorems and proofs, condition C. Hereafter we assume that X and Y are non-degenerate independent random variables with underlying probability measure P, and with the property that X - Y is independent of the order statistic $W = \min(X, Y)$.

In the sequel these conditions will be abbreviated by saying that X and Y satisfy condition C.

Note that if X and Y satisfy condition C, then |X - Y| and W are independent. Let $P_W(\cdot)$ denote the probability measure on the real line induced by W.

LEMMA 1. Under condition C:

$$P(X > Y) > 0$$
, $P(Y > X) > 0$, $P(W > 0) > 0$.

PROOF. Suppose P(Y > X) = 0. Then W is a.s. equal to X, in this case X and -Y are independent and X is independent of X - Y, hence the characteristic functions satisfy

$$\Phi_{-Y}(t) = \Phi_{(X-Y)}(t)\Phi_{-X}(t) = \Phi_{-Y}(t)\Phi_{X}(t)\Phi_{-X}(t)$$

We know that $|\Phi_X(t)| \leq 1$, it follows from the above that in a neighborhood of the origin $|\Phi_X(t)| = 1$, hence X is degenerate, which is a contradiction to condition C.

Similarly we may show P(X > Y) > 0.

Assume P(W > 0) = 0.

Then at least one of the random variables X and Y is a.s. non-positive. We will assume that the right hand end point of the range of X is non-positive and is no greater than the right hand end point of the range of Y.

Let $\delta > 0$ be such that $P(X - Y > \delta) > 0$. Let $-\eta$, $(\eta > 0)$, be the right hand end point of the range of X (and consequently the right hand end point of the range of W). Then for $0 < \epsilon < \delta$

$$P(-\eta \ge W > -\eta - \epsilon) > 0,$$

$$P(X - Y > \epsilon) > 0,$$

but $\{(x,y): -\eta \ge \min(x,y) > -\eta - \epsilon, x-y > \epsilon\} = \emptyset$, hence W and X-Y cannot be independent.

If X and Y are independent and X - Y is independent of W, then the same is true for the random variables $\tilde{X} = (X - a)$ and $\tilde{Y} = (Y - a)$. Thus we have

COROLLARY TO LEMMA 1. Under condition C the ranges of the random variables X, Y, and W are unbounded to the right.

LEMMA 2. If X and Y satisfy condition C, then

$$P(X > Y)[P(X > \theta + c)/P(X > \theta)] + P(Y > X)[P(Y > \theta + c)/P(Y > \theta)] = P(|X - Y| > c)$$

for all $c \ge 0$ except on a θ set of P_w measure 0. (The exceptional set not depending on c.)

PROOF. First we prove the assertion for fixed c. The assertion follows immediately on a countably dense set, and hence for all c, since the probabilities involved, when considered as functions of c, are right continuous. Now, for fixed $c \ge 0$:

$$P(|X - Y| > c | W = \theta) = h(c) = P(|X - Y| > c)$$

where h(c) is independent of θ almost surely $P_{w}(\theta)$.

$$\begin{split} h(c) &=_{\text{a.s.}} P(X - Y > c \mid W = \theta, X > Y) P(X > Y \mid W = \theta) \\ &+ P(Y - X > c \mid W = \theta, Y > X) P(Y > X \mid W = \theta) \\ &+ P(Y - X > c \mid W = \theta, Y = X) P(Y = X \mid W = \theta) \\ &+ P(X - Y > c \mid Y = \theta, X > Y) P(X > Y) \\ &+ P(X - X > c \mid X = \theta, Y > X) P(Y > X) \\ &=_{\text{a.s.}} P(X > \theta + c \mid Y = \theta, X > \theta) P(X > Y) \\ &+ P(Y > \theta + c \mid X = \theta, Y > \theta) P(Y > X) \\ &=_{\text{a.s.}} P(X > \theta + c \mid X > \theta) P(X > Y) \\ &+ P(Y > \theta + c \mid Y > \theta) P(Y > X) \\ h(c) &=_{\text{a.s.}} P(X > Y) [P(X > \theta + c) / P(X > \theta)] \\ &+ P(Y > X) [P(Y > \theta + c) / P(Y > \theta)]. \end{split}$$

Hereafter we will abbreviate the identity of Lemma 2:

(i)
$$p[f(\theta+c)/f(\theta)] + q[g(\theta+c)/g(\theta)] = h(c),$$

letting f(a) = P(X > a), g(a) = P(Y > a), and denote by Θ the collection of θ points whereon (i) holds for all $c \ge 0$. Note then that if θ_n is a decreasing sequence in Θ converging to θ , then θ is in Θ , since $f(\cdot)$ and $g(\cdot)$ are right continuous. Therefore Θ contains all of its left hand end points.

THEOREM 1. Let X and Y satisfy condition C, if, in the above notation, there exists $\theta_0 \in \Theta$ such that $(\theta_0, \theta_0 + \epsilon) \cap \Theta = \emptyset$ some $\epsilon > 0$, then X and Y are discrete.

PROOF. Since $P_w(\Theta) = 1$, it follows that $P_w(\theta: \theta_0 < \theta < \theta_0 + \epsilon) = 0$, and by the corollary, $P_x(\theta: \theta_0 < \theta < \theta_0 + \epsilon) = 0 = P_y(\theta: \theta_0 < \theta < \theta_0 + \epsilon)$. Using (i):

$$h(c) = p[f(\theta_0 + c)/f(\theta_0)] + q[g(\theta_0 + c)/g(\theta_0)],$$

hence h(c) is constant over the interval $0 < c < \epsilon$. It follows from (i) that for any $\theta \in \Theta$, $f(\cdot)$ and $g(\cdot)$ are constant over the interval $(\theta, \theta + \epsilon)$.

Thus there can be at most countably many points of decrease for $f(\cdot)$ and $g(\cdot)$. Theorem 2. Let X and Y satisfy condition C; if the hypotheses of Theorem 1 are not satisfied, that is, if for every $\theta \in \Theta$, $\epsilon > 0$, $(\theta, \theta + \epsilon) \cap \Theta \neq \emptyset$, then for some constant a, (X - a) and (Y - a) have (possibly different) exponential distribution functions.

PROOF. It follows from Theorem 1 and the preceding remarks that Θ is of the form $[a, +\infty)$ or $(-\infty, +\infty)$. In the former case we may adjust the right hand end point by adding a constant to X and Y; hence we may assume that $[0, +\infty) \subset \Theta$.

Now, f and g are monotone functions; hence they have right derivatives $f^+(\cdot)$ and $g^+(\cdot)$ almost everywhere. For some fixed θ , $f^+(\theta)$ and $g^+(\theta)$ are both finite, hence

(ii)
$$p[f^{+}(\theta)/f(\theta)] + q[g^{+}(\theta)/g(\theta)] = h^{+}(0)$$
, finite.

Since (ii) holds for all non-negative θ , it follows that $pf^+(\theta)$ and $qg^+(\theta)$ are finite for all non-negative θ , therefore the singular and discrete parts of the corresponding cumulative distribution functions must vanish; hence $pf(\cdot)$ and $qg(\cdot)$ are equal to the integral of these derivatives.

Integrating with respect to θ , $0 \leq \theta$,

$$q \ln g(\theta) = -p \ln f(\theta) - k_2 \theta + k_3, \qquad k_2 \ge 0.$$

Hence

$$g(\theta) = f(\theta)^{-k_1} \cdot \exp[-k_2\theta + k_3], \qquad 0 \le \theta < r, k_1 \ge 0, k_2 \ge 0.$$

Going back to equation (i) we now have:

(iii)
$$h(c) = p[f(\theta + c)/f(\theta)] + q \exp(-k_2 c) (f(\theta + c)/f(\theta))^{-k_1}$$
$$= p[f(c)/f(0)] + q \exp(-k_2 c) (f(c)/f(0))^{-k_1}.$$

The equation

$$pX + q \exp(-k_2c)X^{-k_1} - p[f(c)/f(0)] - q \exp(-k_2c)(f(c)/f(0))^{-k_1} = 0$$

in X has at most two roots, (since the derivative of the curve changes sign at most once).

Therefore, if the identity (iii) in the continuous function $(f(\theta + c)/f(\theta))$ holds for all θ , then the ratio $f(\theta + c)/f(\theta)$ must be identically equal to the root x = f(c)/f(0).

Hence, we have a form of Cauchy's equation:

$$f(c + \theta) = f(\theta)l(c),$$
 $\theta \ge 0, c \ge 0,$

and therefore $f(a) = k_2 \exp(-k_3 a)$, k_2 , $k_3 \ge 0$, for $0 \le a$.

We have proved that the right hand tails of the distribution functions of X

and Y are exponential; we must show that they are exponential over their entire range. Suppose otherwise, that over the interval (-a, -b), the function $f(\cdot)$ is not exponential, and f(-a) < 1. Then since f(-a) < 1,

$$P(W \le -a) > 0.$$

But this implies that the closed support of P_w contains a neighborhood of a point to the left of -a, hence f can be shown to be exponential on $[-a, +\infty)$.

Similarly it is clearly that f(-a) < 1 implies g(-a) < 1; hence X and Y have the same range, proving Theorem 2.

THEOREM 3. If X and Y are discrete random variables satisfying condition C, then b(X - a) and b(Y - a) have (possibly different) geometric distributions for suitable constants a and b.

PROOF. It follows from Theorems 1 and 2 that there exists θ_0 such that $\theta_0 + \epsilon \not\in \Theta$ for all small ϵ , hence there exists a smallest c_0 such that $\theta_0 + c_0$ is a point of decrease for $f(\cdot)$ or $g(\cdot)$. Now

$$p[f(\theta_0 + c)/f(\theta_0)] + q[g(\theta_0 + c)/g(\theta_0)] = h(c).$$

Thus c_0 is the smallest positive point of decrease for $h(\cdot)$. Hence, it follows from (i) that for any $\theta \in \Theta$, $\theta' = \theta + c_0$ is the next point of decrease for $f(\cdot)$ or $g(\cdot)$, and $\theta'' = \theta' + c_0$ is the next, and so on. Thus the support of P_W is a right-unbounded collection of lattice points. If necessary, we make an affine transformation and assume they are a subset of the integers containing the non-negative integers.

Using condition C we may write

$$P(X - Y > m)P(W = n) = P(X - Y > m, W = n)$$

= $P(X - Y > m, X > Y = n) = P(X > m + n)P(Y = n).$

Let $r(m) = \lg P(X > m)$. Then $r(\cdot)$ satisfies an equation of the form

$$r(m+n) = s(m) + t(n)$$

$$r(m+1) - r(m) = t(1) - t(0)$$

$$r(m) = r(0) + m(t(1) - t(0)).$$

Thus $P(X > m) = \delta p^m$ for some δ , p. It follows that $0 < \delta$; 0 ; that is, the right hand tail of the distribution of <math>X is geometric. Similarly, the right hand tail of the distribution of Y is geometric; and the same argument used in Theorem 2 suffices to complete Theorem 3.

3. Acknowledgment. The author is indebted to the referee for the reference [4], as well as many helpful comments.

REFERENCES

 Basu, A. P., (1965). On characterizing the exponential distribution by order statistics. *Ann. Inst. Statist. Math.* 17 93-96.

- [2] Ferguson, T.S., (1965). A characterization of the geometric distribution. Amer. Math. Monthly 72 256-260.
- [3] Ferguson, T. S., (1964). A characterization of the exponential distribution. Ann. Math. Statist. 35 1199-1207.
- [4] Rogers, G. S., (1963). On alternate proof of the characterization of the density Ax^{B} . Amer. Math. Monthly 70 857-858.