ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTI-
DIMENSIONAL GALTON-WATSON PROCESSES!

By H. Kesten AnD B. P. Stigum
Cornell University

1. Introduction. In this paper we consider an indecomposable, non-singular,
vector-valued Galton-Watson process. Specifically we consider a temporally
homogeneous, k-vector-valued Markov chain, {Z, ;n = 0, 1, - - -}, with among
others the following properties, assumed throughout this paper.

(1) Z, is taken to be one of the vectors,

e¢=(65,1,---,6¢,k), 1§i§k;
(2) If P denotes the probability measure of the process, if Z, =
(Za', -+ ,Z"),n =0,1, - -+, and if for each n

Fij(z) = P{Zy1 < 2| Zn = e}, 1=54j=kz=20,
then Z,’, 1 £j <k, 0 £ n < «, takes on only non-negative integer values and
P{Zn+1§xiZ0,“'7 }_F 2?*.'.* k’?(x)’

where the right hand side is the convolution of Z,° times F; for i = , k;
(8) If E denotes the expectation functional, if m;; = E{Z,’ | Z, = et}, § 1,
Jj = k, and if M denotes the matrix, (m;,;), then

(1.1) mij = [t zdFijz) < ©, 1=4,jsEk,
and for each pair, 7, j, there exists an integer ¢ = (7,7) = 1 such that
(1.2) (MCP)i5 > 0.
(4) If p denotes the largest positive characteristic root associated of M, then

(1.3) p> 1.

We call a branching process satisfying (1.2) indecomposable. Whenever the
integer ¢ in (1.2) is independent of the pair 7, 7, then both M and the Z-process
are called positively regular. We will extend the results obtained in [4] to
processes that are indecomposable but not positively regular. We will also for in-
decomposable processes present several limit theorems of a type that has received
little attention so far (see, however, the acknowledgement at the end of the
paper). In a forthcoming paper [5] we shall show how to extend many of the
results obtained here to the case of decomposable Galton-Watson processes, i.e.
to processes that do not satisfy (1.2), but otherwise satisfy conditions (1)—(4).

Since M is non-negative and finite, it follows from the Perron-Frobenius
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1464 H. KESTEN AND B. P. STIGUM

theorem (see [2], v. 2, p. 53) that (1.2) implies that M has a positive eigenvalue p
such that no other eigenvalue of M exceeds p in absolute value. Hence assumption
4 makes sense. It also follows from the Perron-Frobenius theorem that p is simple
and that there exist right and left eigenvectors of M, denoted % and v, such that

(1.4) oM = pv, v; > 0, 172k,
(1.5) Mu' =pu, u;>0, 1=<i=k and
(1.6) v = Dk uws =1,

where %’ denotes the transpose of u. Finally we note that if the integer ¢ in (1.2)
does not depend on (7, 7), then p is larger than the absolute value of any other
eigenvalue of M. These properties of M will be used repeatedly in the remaining
parts of the paper.

In our previous paper [4] we proved Theorem 1.1. which is stated below for the
convenience of the reader. In the statement of the theorem,

(1.7) ¢: = P{Z, = 0 eventually | Z, = e}, 172k

This agrees with (2.29) of [4] because of Theorem I1.7.1 of [3].
TrarEOREM 1.1. If the integer t in (1.2) is independent of <, j, then there exists a
random vector W and a one-dimensional random variable w such that’

(1.8) My, Zn/p" =W  wpl

and

(1.9) W = w-wv wp 1.

If

(1.10) B{Zilog Zy | Zy = e} < o forall 14,5 <k,
then

(1.11) EW|Zy=e} =uw;, 1=iZk

and if (1.10) fails to hold for some pair 1, j, then

(1.12) w=0 wpl

Finally, if Zo = ei,, 1 < % < k, if (1.10) holds, and if there is at least one jo such
that

(1.13) > k1 Z"um can take at least two values with positive

probability, given Z, = e;, ,

then the distribution of w has a jump of magnitude q:, < 1 at the origin and a con-
tinuous denstty function on the set of positive real numbers. If (1.13) fails to hold for
all jo, 1 < jo = k, then the distribution of w is concentrated at one point.

2 ¢yp 17’ stands for ‘““with probability one’’.
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If follows immediately from this theorem that if a is a vector such that
(1.14) va' 0,
and if the Z,’s satisfy the conditions of the theorem, then
limpae P{p "(Zaa') £ z} = P{w(va’) = z}.

Thus if the integer ¢ in (1.2) does not depend on ¢, j, then for any vector satisfy-
ing condition, (1.14), the limit distribution of p™(Z,a’) is “known.” In Part 2
of this paper we will study limit distributions associated with the random
variables Z,a', when a is a real vector that satisfies the condition

(1.15) va' =0, az0.

Of course this can arise only if £ = 2. In this case the sequence of normalizing
constants and the form of the limit laws will depend, not only on p, u, and », but
on the full spectral representation of . In fact, as we will show, under the ad-
ditional assumption that the Z;”’s all have finite second moments there exists an
eigenvalue p, of M and an exponent 6, both depending on a, such that if |ps]” < p,
then the limit distribution of [n %0 "/*(Z,a)] is a mixture of normal distributions,
and if |ps|* > p and B denotes the number of distinct eigenvalues of M with
absolute value equal to |ps|, then there exist real numbers ¢s and random variables
X;,1 = 6 < B, such that for some v

litnsw {Z20"/0" |oo]" — D -1 exp (ings)-Xs} =0  wp L.

An example is given at the end of the section.

In Part 3 of this paper we extend Theorem 1.1 to cover the case when the
integer ¢ in (1.2) does depend on ¢, j. It is a simple consequence of the definition
of M that in this case the components of Z can be divided into equivalence classes,
{Da}, 1 = a = h, and reordered in such a way that a particle of type ¢ D, only
has descendants of types in D41 (i.e.in Dy if @ = h). We will show that if Z, = e;
for some ¢ ¢ D, and if b = a + m (mod &), then the subprocess, { Znnim ;J € Ds},
n = 0,1, ---, behaves like a positively regular process. In particular,

liMpaw p ™™ Z%hsm exists wp 1 for all je D,

and analogues of (1.9), (1.11), and (1.12) hold. We will also briefly indicate how
the results obtained in Part 2 can be extended to cover the case when the Z-process
is indecomposable but not positively regular.

2. Limit theorems for positively regular branching processes. In this part we
will study the limit distributions of random variables of the form Z,a', where the
vector o’ satisfies condition (1.15), as stated above. We assume throughout that
there exists an integer t independent of %, §, such that (M*);; > 0. Thus p is simple
and, as pointed out above, the absolute value of any other eigenvalue of M is
smaller than p. We will also assume that

(21)  B{(Z)|Zo=e} = [02°dFii(z) < ©, 1=Z14,j =k
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This is a minimal assumption for Theorems 2.2 and 2.3 below. It could be slightly

relaxed for Theorem 2.1. but we shall not insist on that.
The basic representation to be used for M in this part is the Jordan normal

form,
E, 0
E,
(22) M =B - lIB",
.

where B is a non-singular (complex) matrix and the E;’s denote square matrices
of size d; X d; and form

ps 1 0
pi 1
B = ;
-1
0 1 pi

pi is an eigenvalue of M. Thus if I; and F; are the matrices obtained by replacing
E;in (2.2) by 0 for j # ¢ and by the matrices

1 - - - 0 0O 1 - - 0
.1 . .0 1
. - | and | - -+ | respectively
. . . -1
o - - - 1 O - - - 0
for j = 4, then
(2.3) M = D> % B(pdi + Fi)B\.
Moreover standard computations show that
(2.4) FF;,=IF;=FI,=IL1; =0, i=jI'=1I,

IF;=Fl,=F;,, F¥'%0, and F* =0.
Consequently, if d = max; d;, then
(25) M"= 2% pi*BI.B™*
+ (1) Xrapm ' BFB™ + oo + (&) 2t pPBFSTBT

Without loss of generality we assume the eigenvalues of M so numbered that
p=prand p1 > |po| = -+ = |pm|. It is easy to show that in this case B can be
chosen 5o as to satisfy the conditions (B™")1,; = v;and B, = u;foralll £j < k.
Thus, since F; = 0 as a consequence of the simplicity of p and of (2.4), the highest
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order term in (2.5) becomes p,"BI1B™" = p™u'v. It follows from this fact that
(2.6) M" = p"u'v + 0O(n®™" |po™).

More generally, if |pa_s| > |pal = |pass] = -++ = |ogl > |pssa|, and if we let
ps = |ps| exp (%ps), @ < 8 = B, we can combine terms of order n” |pa|""(n — »)
in (2.5) and observe that M" can be written as a sum of expressions of the form,

(27)  (Dleel"" {exp(i(n — v)¢a) - BF'B™
+ o+ 4 exp (i(n — v)es) BFs"B7'}.

Here, and in the rest of this section we interpret F,’ as I, . If the resulting ex-
pansion of M" is broken off after the term (2.7), then the error is O(n"™ |oa|™).
We also note that since M™ is real, all sums of the form (2.7) must be real. In
particular if « = B, i.e. if |pa| 0ccurs only once, then ¢, = 0 or =.

Let a be a fixed vector that satisfies condition (1.15). It follows from (2.6)
that the highest order term in the expansion of M" annihilates a. Clearly, there
may be many terms in the expansion of M" that have this property. Let (2.7)
define the term of highest order which for infinitly many » does not annihilate a,
provided such a term exists. Then

(2.8) M"a' = (3)|pal"" {exp (i(n — ¥)¢a) - BF.'B™"a/
4+ -+ exp (i(n — v)es)-BFs"B '’} + O(n"™" |oa|").

If all terms annihilate a for all large n, then for some no M"a’ = 0 forn = ne . In
particular M must have zero as an eigenvalue and we take ¥ = 0 and |p,| = 0 in
this case. This again will make (2.8) valid.

To simplify our notation below we let

(2.9) a'(8) = BFy'B™%/, a =<5
With this notation
(210) M'd = (3)|oal”" 2heaexp (i(n — ¥)es)-a'(8) + O |pa|™)

and (since the second member of (2.11) below is a telescoping series)

I\

B.

(Zn — ZoMn)a, = :‘=—01 (Zrp1 — ZrM)M"_r_la,
(2'11) = :;()1 (Zr+1 - ZrM)(n_’;_l)lpaln_r_’y_l
 haexp (i(n = 1 = 1= v)en)-a'(8) + T35 (Zows = 2T (n, ),

" asn — r— . Also

where C(n, ) is a vector of order (n — )" |pa
(212) ZM"a' = (3)lpal™" Liea exp (3(n — ¥)es)-Zoa’(8) + O(n" |pa").

We will use these expansions repeatedly below.
Before stating our results we remark that it is possible that

(Zr+1 - ZrM)(n-Ty_l)lpa‘n_r_‘y_l Zg=a exp (7'(" —r—1-— 7)9"5)
d'(8) =0 wp 1
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forallm — r — v — 1 = 0. This can be true even if the main term in (2.8) is not
zero. If this phenomenon occurs, then Z,a' — ZoM"a’ will in general have a
smaller normalization constant than Z,a'. We will return to this problem in
Remark 2.2, '

The study of the limit laws associated with the random variables Z,a', in a
natural way can be broken into three separate parts according as |pe|* > »p,
loal” = p, T |pal” < p. We remind the reader that p > 1 is always assumed.

TaEOREM 2.1. If (2.1) and (2.8) hold, if the integer t in (1.2) does not depend on
1,7, and if |oa|* > p, then there exist random variables Xo , Xay1, -+ , Xp such that
for Zy = e;,

(2.13)  liMpaw [Zaa' /07 [pa]” — D_s) X3l —aexp p(ing= 0  wp 1.

REmARK 2.1. The simplest case is of course the case when o = 3, and ¢, = 0.
Our result then reduces to the statement that the random variables
27 |pal ™" (Zaa") converge with probability one to a random variable.

Proor. By (2.12)

(2.14)  liMnsw {ZM"a' /1" |pal”
— [1/7! |pal"] 2o5a €xp (ings) exp (—ives)Zoa(8)]} = 0
and by (2.11)°
(2.15)  (Znd’ = ZM"d') /0" |pal" = O(n™ 2750 [(Zesa — Z:M)/lpa ™)
4 Dbea exp (3ns) - [pa 7 2075 nT("F) exp (—i(r + 1+ ¥)es)
N(Zes = Z.M)/ |pa "] ().
Thus to prove the theorem we need only show that
(2.16) 20 |(Zra = ZM) /|pa ™| < . wp1
since then (2.14) and (2.15) imply that
Y [Z00 /07 [pa]™ = D= XD (ings)
AZo + 270 [(Zen — ZM)/|pa| ™| exp (—i(r + 1) 0s)}

-exp (—i7¢s)-a'(8)/7!pall =0  wp L.
To prove (2.16) we observe that

B{|Zes — Z:M|| Zo = &} < [E{|Zrs1 — ZM[*| Zo = &i}]!
= [B{E{|Zrs — ZM|Zo = ei, Z:}| Zo = e}
= O([B{Z| | Zo = ed]) = O(s™)
(compare (2.13) of [4]). Thus for |pa| > o
20 B{[(Zrss — Z:M)/lpal ™| | Zo = e} < .

(2.16) is an immediate consequence. Q.E.D.

3 For a k-vector we define |¢| = (O _s_1]cs|?)12.



MULTIDIMENSIONAL GALTON-WATSON PROCESSES 1469

Before stating the next theorem we note that with the possible exception ofa
set of P-measure zero lim,., Z, = 0 on the set {w = 0}. In fact

{lim,.e Z, = 0} C {w = 0}
and by (2.29) and (2.30) of [4] and Theorem II.7.1 of [3]
q: = P{lim,._,wZ,, = 0|Zo = ei} = P{w = OlZo = ei}.
Then to study the joint distribution of Z,a" and w for large n we need only con-
sider the behavior of these random variables on the set {w > 0}. The following
theorems, therefore, determine completely the joint limiting distribution of Z,a’
and w. The reader should also note that since w has a continuous distribution
function on (0, =), the results stated in Theorems 2.2 and 2.3 hold for all

0 < 21 < 22 and all y > 0. In both these theorems we make the convention that
if 6> = 0, then

(2r) YT e g =1 if y >0, and
=0 if y<O.

(See also Remark 2.2)
TrEOREM 2.2. If (2.1) and (2.8) hold and the integer t in (1.2) s independent of
5,7, lpal” = p,and if I = [y, 2], 0 < 21 < T2, then forally # 0and 1 £ i £ k

(2.17) limg.o P{lwel, Znal/nyﬂ "<y | Zo = o3
f dP{w £ x| Zy = 6,}(21r)_% f{(z.ﬂ) b i,

where o” is as defined in (2.31) and (2.32).
Proor. Since n" ™ = n"™ |p,|", it follows from (2.12) that

(2.18) limpe ZoM™a' /0" 0™ = 0.

We also note that the last term on the right-hand side of (2.11), after division by
n "™ becomes

(2.19) w2300 (Ze = Z,M) /0™IC (ny 1) /n7 ™ [oal" ™.

Since the vectors, [n"™" |pa|” "] C(n, r) are bounded and since the random
vectors Z,11 — Z.M satisfy the relation

E{Zypn — ZM | Zy, -+, %,} =0,
B{n™ 22050 [(Zenr — Z,M)/0™IC" (n, 1) /0" lpal" 1" | Zo = e}
= 0(n™* 2050 0 "B{E{|Zrias — Z.M|* | Zo = i, Z:}| Zo =ed})
= O(n™" 2050 6 "B{|Z| | Zo = ei}) = O(n™").

Consequently, the random variables in (2.19) tend to zero wp 1 asn —> «. Thus,
if we use the abbreviation

(220) d(n,7) = 252 a(8)("7)(1/lpa n") exp (i(n — 1 — 1 = ¥)es,
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then, by (2.11) and (2.18),
(2.21)  limy.e [Zaa' /0" ™2
— 07 203 (Zea — Z:M) /6" d (n,7)] = 0 wp L.

Clearly, (2.21) remains valid if we replace Y= by > r=s for any fixed R. To
prove the theorem it will also be convenient to replace Z,+1 — Z.M in (2.21) by
another random variable which we shall now define. Let Z%7; denote the number
of particles of type j in the (r + 1)st generation, which are descendants of
particles of type ¢ in the rth generation. If X,"’(r) denotes the number of de-
scendants of type j of the tth particle of type ¢ in the rth generation, then

M= XXM,
Let X,"(r) for t > Z,’ be additional random variables, such that each vector
Xi(r) = (XN(r), -, XEM(r))

has the same distribution as Z; , given Z, = e¢; . We think of X,’(r) for¢ > Z,’ as
counting the descendants of fictitious partlcles of type ¢. In particular, we want
the family {X/(r):¢=1,2, -+ ,r =0,1, - ,i = 1, , k} of random vectors
to be completely mdependent (this is true for the subfamily of descendants of
honest particles, i.e. with ¢t < Z,°).

For some fixed R and » = R we now let

—r .
r+1 = Z(ZRM' )i X;"(T).

If (ZeM™™); £ Z}, then Vi, is obtained from Z}, by killing off descendants
of a number of particles, whereas for (ZzM fTR )i > Z," descendants of fictitious
particles are added. At any rate |VEy — ZH,| is the sum of |Z,' — (ZpgM™%),|
variables X’ ’(r) and

(2:22) B{Viy — (ZeM")imi; — Ziy

+Z,im¢,j|Z1: "',ZT,VR-H[, ...’VT} =0

and thus

BV — (ZeM™)miy — ZHy + Z'ma |
(2.23) Zyy 2y Ve, o0, Vil

=12, — (ZeM®) |- (X5 (r)) S 127 — (ZaM'R)| 7 2° dF: ().
Flnally, if we define the random vector V,py = (Viy, -+, Via) by Viy =

k2 Vi, and take into account that d(n, r) in (2.20) is bounded in » and 7,
we find from (2.22) and (2.23) that

B{| 2% 0" (Zea — Z.M) d'(n, 1)
(2.24) — 0 (Ve — ZeM™*) d'(n, 1) | Zo = &)
= 02w 20 0 B2 — (ZeM7)i| | Zo = o5).
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On the other hand
E{Z — (ZeM™™)| | Zo, -+ , Za} = [B{|Z. — (ZeM"™ )| Zo, ---, Za}]
(0" %|Zel*) (by formula I1.9.2 in [3])
and
B{|Za'| Zo = &} = O(o™").

Thus, the right hand side of (2.24) is O( >_r=s o %) = O(np™ ™). Together with
(2.21) this implies that

(2.25)  Znd' /n ot — 0D T (Ve — ZeMTEY d'(my ) — 0

in probability, if n — « and R tends to infinity with » sufficiently slowly.

The remaining parts of the proof of the theorem can now be obtained relatively
easy. Indeed, since (see (1.8) and (1.9)) limu.e Za/p" = wv, one has for each
e>0

(2.26) limpoe P{|Zz/p" — wv| = ¢} =0
and thus for some sequence 8z which decreases to zero sufficiently slowly,
liMnaw P{w e I, Zoa' /0" ™ £ y | Zo = e}
= 1iMg e liMpse P{infae |Zz/p" — M| < 8z,
(2.27) Y P T (Vs — ZeM™) d'(my r) £ y | Zo = e}
= liMpow [aa.m P{Ze/p" € d | Zo = e}
it P07 2050 07 (Ve = ZeM™) d (1) Sy Za/o" = £},
where the integral is over the k dimensional region,
A(I, R) = {&:infy; |E — M| < 8z}.
Of course, for the first equality in (2.27) we use not just (2.26) but also (2.25).
Now

Vi — (ZeM™™); = Y5 ST (X () ~ ma )

and by construction, all the variables X;"’(r) are independent for fixed j.
Moreover when Zy is known, (ZzM "), is fixed. Thus, conditionally on the
value of Zz , the Vi,y’s are independent. Also, for a given Z ,

(Vesr — ZeM™*Nd'(n, r) = Dok DEP0(X(r) — may) din, 1)
has zero mean and
A((Ver — ZeM ™) d'(n, 1)) = i (ZaMF)w0i(n, 1),
where
(2.28) oi(n, 1) = (i (X(r) — maiy) di(m, 7))
= o*(Zod' (n, ) | Zo = ;).
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Since all the X*(r)’s (for 7 fixed) have the same distribution we conclude from

the central limit theorem, that

(2.29) iMoo P 30050 0 "X (Vi — ZeM ™) d'(m, 1) S y | Za/p" = 8
= (2r)7 [V e At = ®(yr ),

where
7 = LMt Do 0 D im1 (ZeMF) 0 (m, 1)
(2.30) = liMpo W D rn Dot b ZR"Us D i1 Vig (M, T)

Zs=l Esu321—1 V¢ hmn-»oo n IZr—R a; (n7 7‘)

(the second equality is based on (2.6)). We point out, that in view of (2.20)
and (2.28) one has

= liMpo ' D rin oi(n, 7)
(2.31) = (7)) pal "7 limpo w2050 (8/0)"7

[ 2 8-a Z10'(8) exp (i(s — V)@) | Zo = eil.
We can, therefore, write ° = fu's” where
(2.32) o = il

If (2.29)-(2.32) are substituted in (2.27) one obtains, in view of (2.26) and the
fact that ou' = 1,

liMpsw Plw e I, Zua' /0" Ho™? < y | Zo = e}
= liMgw [aa.m P{Ze/o" € d | Zo = e ®(y/o(tu')?)
= [2dPlw < x| Zy = e} ®(y/oa’).

This is precisely the statement of the theorem. Q.E.D.

Finally we turn to the last case of our trichotomy.

TuaeoreM 2.3. If (2.1) and (2.8) hold, if the integer t in (1.2) is independent
of 3,7, f pa* < p, and if I = [1,72],0 < 21 < X5, then forally = 0and 1 £ 7 < k,

limp,w P{w eI, Zpa'/p"? < y | Zo = e}
= [2@,P{w < x| Z = e (2r) 7 [LeT 2 gy
where o* is defined in (2.34)—(2.36). > = 0 occurs if and only if for all n = 0
(2.33) Z.d = ZoM"a = O(n"|pe|”)  wp 1.
Proor. Almost exactly as in the proof of Theorem 2.2 one shows that
limnow P{lw e I, Zaa'/p™ < y | Zo = €} = limpow [ac.my P{Zz/p" € dE| Zo = e}
imasw P{ 205 [(Ver — ZeM™) /0PI (n — 1) < y| Ze/R = 8,

where V.31 and A(I, R) have the same meaning as in Theorem 22. In the place of
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d(n, 1)/ n} we have put the vector,
(2.34) fn — 1) = M*g/ /R,

With this definition the argument leading from (2.19) to (2.21) becomes un-
necessary because we do not (and can not) ignore the last term of (2.11). Ac-
tually the f’s are better behaved than the d’s, for they are not only bounded but
(by (2.8)) 2_e=1]f(s)| < . This is used to go from the analogue of (2.24) to
the following replacement of (2.25),

Zwa /o™ — 205 (Ve — ZeM™™/0™f(n — 1) = 0

in probability if n — « and R — « with n sufficiently slowly. If d(n, r)/n} is
replaced by f(n — r) in (2.29) and if one defines

(235) oi(n — 1) = (25 (X (r) — maifi(n — 1))
= o (Zif (n — 1) | Zo = e}
and
7= i) e p " D is (ZeM )0 l(n — 1)
=t/ D2 i vi ) al(s),
then the theorem follows as before with
(2.36) o 10D 1 0(8).

Finally, ¢ in (2.36) vanishes if and only if o.(s + 1) = 0 for all s = 0 and
1 <4 < k. By (2.34)—(2.36), 0’(s + 1) = 0 means that for Z, = e;

(2.37) ZiM'a’ = E{ZM' | Zy = e} = D i (M™™)isa;  wp L.

But since
ZeM'a’ = D5 > % X ()M
and since X (r)M’a’ has the same distribution as Z:M’a’ given Z, = e, it
follows from (2.37) that
ZeuMa = DA ZY 5 (M0 = ZMY wp L.

By induction this implies (2.33). On the other hand (2.33) clearly implies ¢* = 0.
REMARK 2.2. We briefly investigate when ¢ = 0 in Theorem 2.2. First note,
that if for some fixed %

(2.38) (28— Z10'(8) exp (i(s — V)gs) | Zo = ;) > 0

when s = s, then (2.38) will hold for all s in a subsequence of positive density.
This is an immediate consequence of the fact that for each e > 0

D alexpi(s — so)gs — 1] < ¢

on a sequence 0 < s < s < --- of integers of positive density. In fact, by
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Theorem 2, p. 421 of [6] one can choose ;11 — 8; = L for some fixed L. Thus, as
soon as (2.38) holds for some 7 and s, o” in (2.32) is strictly positive. Therefore
" = 0in (2.32) if and only if forallsand 1 < ¢ < k
(2.39) X (2.8-cZ1a'(8) exp i(s — ¥)es | Zo = ei}
= B 202 (X)) — mi)ai(s) exp i(s — Vel = 0.
Of course (2.39) implies
(Zoss — ZM)D 3a(expi(n — 7 — 1 — v)es)a'(8) =0  wpl
because ) ) -
Zig — (Z,M); = 25 2 00 (X4(r) — may).

Hence, if ¢° = 0 in (2.32), then the main term in (2.11) will be zero wp 1 for all
n = 0. This observation suggests that we redefine «, 8, v such that the main term
in the right hand side of (2.11) is the highest order term in the expansion of
(Zn — ZoM™)a’' which does not vanish wp 1 for all n = 0. If no such a, 8, v
exist, i.e., if all terms in the expansion of (Z, — ZM")a' are zero wp 1, then
(Zn — ZoM™)a' = 0 wp 1. Let us disregard this case. Then with this new def-
inition of a, 8, ¥ we can still prove Theorems 2.1-2.3 provided we replace Z,a'
by (Z, — ZoM™)a’. We shall now be sure that ¢* 0 though. More precisely we
have

THEOREM 2.4. Let (2.11) hold and assume that the main term of the right hand
side of (2.11) does not vanish wp 1 for all n = 0. Assume also that (2.1) holds and
that the integer t in (1.2) s independent of 1, j.

If |pa|* > p, then there exist random variables X , -+ - , Xp such that for Zy = e;
1275k,

liMnow [(Zn — ZoM™)a /0 |pa™ — D o—a exp (in03)Xs] = 0 wp 1.
If lpa> = p, I = [21, 2], 0 < 1 < 2, then for all y
liMpow Plw e I, (Zo — ZM™)a /0™ < y | Zo = e
= [2 dPlw £ v | Zy = e ®(y(o®)7H),
where o* is given by (2.31), (2.32) and o > 0.
If |pal” < p, I = [1, 23], 0 < 71 < 2, then for all y
liMpow P{w e I, (Zn — ZoM™)a'/p"* < y | Zo = e}
= [2d.Plw = x| Z = e®(y(as")7H),

where o° is given by (2.34)—(2.36). ¢ > 0 unless (2.33) holds for all n = 0.
(One can show that o > 01is already implied by the fact that the main term in
(2.11) does not vanish wp 1 for all n = 0, even without using (2.33).)
This theorem is proved precisely as Theorems 2.1-2.3. In fact, except for
arguments concerning the term Z,M"a’, everything in those proofs rests on (2.11)
only.
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ExampLE. Consider a 3-dimensional Galton-Watson process with

1 1 0\/m 0 3
M=[1 -1 1 P2 1 1
1 o -=1/\o . R 1

1 p1 -+ 2pg pL — p2 p1 — p2
=<§) pr— 202+ ps p1+ p2ps  prtpe— 2p;
p1 — p3 pL— p3 P+ 2ps

ool

col Colbd eoj=
|
bt
|

and p1 > | p2| > | ps|, ;1 = 3] p2].

Herev = (%7 %7 %); u = (17 17 1)’

N1t
BI, B! = (_> 1 1 1},
3/\1 1 1
nf2 -1 -1
BIgB_1=(§> -2 1 1.
0 0 0

Leta = (a1, a2, —(a1 + a2)), a1 ¥ 0. Then BI,B™'a’ = 0 and (BI,B™%')’
(a1, —a1,0) # 0. Thus the highest order non-zero term in (2.7) is p,"(BI.B")a’
corresponding to @ = 8 = 2, ¥ = 0. One has a(2) = (a1, —a;, 0) and the
proper normalization constant for Z,a' is ps ™ if |ps” > p1, 7 %|po| ™ = n o "2 if
lool> = p1, and pr ™ if |ps|* < p1. However, as explained in Remark 2.2 the
proper normalization constant for (Z, — ZoM")a’ may be smaller. In fact (2.39)
witha = 8 = 2 will hold if foreach 1 = ¢ £ 3and Z = e¢;, Z' — Z" = msy —
m;,2 wp 1. This will be the case for instance if the probability distribution of Z, ,
given Z, = e; puts all its mass on points of the form (m.1 + z, mis + 2, m.3).
Assume that this is the case. To find the highest term which makes the main
term of (2.11) non-zero we compute

(BI3B_1(1’), = (0,81 + a2, —a1 — a2)

and observe that (2.38) with a« = 8 = 3 will hold if Z,* — Z,® is not a constant
wp 1 for all Z, = e;, 1 < ¢ = 3. The proper normalization constant for (Z, —
ZoM™)a’ now becomes [os| ™ if [os° > o1, ool = 07 if |psf® = p1, and

pl—-n/2 if |P3|2 <op.

3. “Periodic” branching processes. In this part we shall extend Theorem 1.1
to cover the case when Z,, n = 0, is an indecomposable but not a positively
regular branching process. We call such a process periodic since one can find
cycles in the behavior over time of the components of Z in just the same way as
one can find cycles in the states of a periodic Markov chain. Indeed, one can
practically copy the argument on pp. 176-178 of [1] with P replaced by M to

conclude the following facts:

and
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There exists an integer d = 1 such that the components of Z can be divided into
mutually disjoint classes, {D.}1<a<a, and renumbered in such a way that
(31)m;; = 0 wunless 7eD, and jeDy,y (ie. in Dy if a = d)

for some a, 1=5a=d

Moreover, if the components of Z have been renumbered in this way and < ¢ D, ,
(3.2) (M"™);; =0 wunless jeD, with b — a = n(mod d)
and for sufficiently large ¢
(3.3) (M™%, ;>0 forall jeD,.

We assume throughout this part that the components of Z have been renum-
bered so that (3.1) holds. Thus M has the form,

0 M(1,2) 0 0
0 0 M(2,3) --- 0
(34) M = : 0 : ,
0 0 0 M(d—1,d)
M(d,1) 0 0 0

where M(a, a + 1) denotes the matrix, (m.,;)ien,,jcp,,, - Fasy computations
now show that

N™(1) 0 0

0 N™(2) 0
(3.5) M= . . . .,

0 0 ... N™(d)

where (N(a))s; = (M?%):; = B{Zd| Zy = e,} for ¢,j € D, . It follows from (3.3)
that

(3.6) (N'a))s; > 0 for all 4, jeD, if t is sufficiently large.
Thus, if Z, = e; for some ¢ € D, , then the process
Zu(a) = {Zis:jeDd, n =0,

is a positively regular branching process with moment matrix N(a) and largest
positive eigenvalue p°. This fact will be used in the proof of Theorem 3.1 below.

To simplify the statement of the next theorem we will now define several new
vectors. Let v and v be respectively a right and left eigenvector of M satisfying
(1.4) and (1.5). Then evidently

(3.7) M%) = o™/,

and
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(3.8) oM? = ph.

Thus % and v are also rightj’and left eigenvectors of M? corresponding to p°.
For all 1 < a £ d we now define*

(3.9) u(a) = {u; :1¢D,},

(3.10) v(a) = {v; : 7€ Da},

(3.11) w(a) = (0, --+,0,u(a),0, ---,0),

(3.12) #(a) = (0, -+-,0,0(a), 0, --+,0).

Then it is easily shown from (1.4) (resp. (1.5)) and (3.1) that foralll < a £ d,
(3.13) #a+1) = p 5(a)M,

and

(3.14) @'(a — 1) = p7'Mid'(a),

where we interpret d + 1 as 1 and 0 as d. Moreover if we choose # and v so that
(3.15) w(Dp(1)] =1,

then forall1 = a = d,
(3.16) #(a)@'(a) = p (1M Y@V (1) = s(1)a'(1),

and, since 3(a)@’(a) = v(a)u'(a),

(3.17) va)u'(a) =1 forall 1<a=d
Also (3.7) and (3.8) imply

(3.18) N(@)u(a) = pu(a)’, 1= a =d,
and

(3.19) vw(a)N(a) = p(a), 1=a =d.

In the remaining parts of the paper we will assume that 4 and v have been chosen
so that (3.15) is satisfied.

TuareoreM 3.1. If (1.2) and (1.3) hold and if D, , u(a) and v(a),1 = a £ d,
are as defined above, then there exists a (one-dvmensional) random variable w such
that for Zy = e;, 1 € D, , and for any j € Dy

(3.20) 1iMpsee Zharoa/p™ 0 = w-v;(b)  wp L.
If

¢ For simplicity we number the components, u:(a), by letting 7 run through D, rather than
by letting 7 run through the values, 1, 2, - - - . Similarly for the entries of N(a). In this way
(3.18) and (3.19) have an obvious meaning. Also, the notation of (3.11) means that %;(a) = 0
for 7 2 D, and 4;(a) = wui(a) for ¢ € D, . Similarly for (3.12).
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(3.21) E{Z" log Z\ | Zo = e} < o forall deD, and joe Dot
andall 1 =s=d,
then
(3.22) E{w|Zy = e} = ui(a).
If in addition to (3.21) there exists an f and an 4, € Dy such that
(3.23) D iy Z1°ui(f + 1) can take at least two values with positive
probability, given Z, = e, ,

then for Zy = e;, 1 = © = k, the distribution of w has a jump of magnitude ¢;
at the origin and a continuous density function on the set of positive real numbers.
If (3.23) does not hold for any pair,i1,f,1 <4 =k, 1 = f = d, then the distribu-
tion of w is concentrated at one point. Finally of (3.21) fails to hold for some pazr,
io y jo y then

(3.24) w=0 wpl

Proor. If b = a,j € D, , then (3.20) follows immediately by applying Theorem
1.1 to the process Z.(a). To obtain (3.20) for general j we use the following
lemma which is formulated in greater generality than needed at this moment
because of its application in our forthcoming paper [5].

Lemma 3.1. If X;(m),m = 1,2, -+ ;5 = 1,2, -+ | are independent random
variables all with the same distribution G( ), which has a finite first moment, then
foran> 1,k = 0,and 4 > 0,

(3.25)  liMpew (MW" 22 Xi(m) = A [2dG(z)  wp L.
Proor. Let
Yim) = X;(m) i |[X;(m)| £ m"\"
=0 if | X;(m)| > m"\™
Then
P{IAmA™ X (m) = > 4™ ¥,(m) infinitely often} = 0
because
Saa PN Xy(m) # 24T Y i(m)
< Y om AW [ g smiam dG(2) S A [ dG(2) D miam <jzg MN™
= 0([ |z| dG(z)) < .
Moreover,
limmaw B{Y;(m)} = E{X;(m)} = [2dG(z) uniformly in j.

The lemma, therefore, follows by standard estimates from
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2 " ("N A" Y i(m))
= AT () TV (m)) S ATt (0N [ ) zmirm 2 dG()
= A4 [ 2 dG(z) Xwiamzio (WA = O([ |o] dG(z)) < w. Q.E.D.
CoroLLarY. If Xj(m) = 0 wp 1 and if {Ta}nz1 s a sequence of non-negative
random variables, independent of all the X;(m)’s, such that
(3.26) limmee To/m*\™ = B exists wp 1,
then
(327)  limp.w (M) X2 0m Xi(m) = B s 2dG(z)  wp L.
More generally, even without (3.26)
(3.28) 1im SUPmaw (MA™) I Tm X i(m)
< lim SUPmacwe To/mN™ [3 2 dG(z) wp 1.
Proor. (3.25) holds for all rational A simultaneously and since X i(m) =0,
one has on the set {lim supm... m *N"T,, < A}
im supm.e (mN") 7 205m Xi(m)
< limpew (WA 7250 Xi(m) = A [ 2dG(z),

which proves (3.28). (3.27) follows from (3.28) and a similar inequality for
lim inf. Q.E.D.

We can now return to the proof of (3.20) for general j. Let h ¢ D, and jeDy.
For b = a let Vi o denote the number of particles of type j in the (nd +
b — a)th generation which descend from a particle of type A in the (nd)th
generation. (If b < a, the same definition holds provided b — a is replaced by
d 4+ b — a). Then

Vida = 204 Xo(n),

where the Xy(n)’s are independent random variables that all have the same
distribution as Zi_, given Z, = e, . Hence E{Xy(n)} = (M"™),, and since we
already know that p™*Z%h; — w-vi(a) whenever Z, = e; for some 7 eD,, it
follows from (3.27) with A = p%, k = 0, and T, = Z", that for this random vari-
able w and for all h ¢ D, and j ¢ Dy, simultaneously

litpsw, Viiito-a/p™ = liMnsw (Zna/p™)(M*)h; = won(a)(M* ), wp 1.
Consequently by (3.13)
liMsee Zhaso-a/0™ "™ = litae 5O D hen, Vidtoa/ o™
= W hen, (@) (57 M) s = wev(b)  wp L
This proves (3.20). If (3.21) holds, one easily sees that
(3.29) E{Z" log 22 | Zy = e} <
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for all 42, j2 ¢ D, . Conversely, if
B{Zy" log Z1° | Zy = i} = »

for some % ¢ Dy and (necessarily) jo € Dy1, then (3.29) must fail for at least
one pair 4 , j2 € Da . One merely has to choose 7z , j; in such a way that

P{Zi% > 0]Zo = ey} >0
and
Pf Zi-(b+1) > 0|Zy =jo} > 0.

Such a choice is possible by (1.2). (Again Zy_s has to be replaced by Zis—a if
1 £ b < a = d and similarly for Z,_¢41)). In view of these observations (3.22)
follows from Theorem 1.1 applied to the process Z.(a), and similarly (3.24)
follows if (3.21) is not satisfied. Finally the statements about the distribution of
w, if (3.23) holds, are reduced to an application of Theorem 1.1 by observing
that

P—n Z=l ZisDa Zﬂjui(a); n = O’ 17 ttty

is a martingale. This makes it obvious that (3.23) is a necessary and sufficient
condition for the existence of some % & D, such that

Y iene Zaui(a) = Xien, Zr'(@)uj(a)

can take at least two values with positive probability when Z, = e, . (See also
arguments following (2.32) and (2.36) in [4].) Thus, the conclusions about the
distribution of w are contained in Theorem 1.1 and Theorem 3.1 is completely
proved. Q.E.D.

ReMARK 3.1. Since the processes Z.(a) are positively regular, we know that
every non-zero state is transient for the Z,(a)-process provided it is non-singular
(i.e. if not every particle in the Z,(a)-process has exactly one descendant wp 1)
(see [3] Theorem I1.6.1). Since Z, = r infinitely often if and only if for each a
and j e D, , Z, = r; infinitely often, we easily conclude that all non-zero states
are transient for a non-singular Z,-process satisfying (1.2).

We also know ([3], Theorem I1.7.1) that for Zo = e;, i & Da, Za(a) will die
out eventually with probability one if and only if o' £ 1 and Z,(a) is non-
singular. Since the Z,-process dies out if and only if all Z,(b), 1 = b = d, die
out, we conclude, again under (1.2), that the probability of extinction for the
Z,-process is 1 if and only if it is nonsingular and p = 1.

We shall end this paper by a brief discussion of the analogues of Theorems
2.1-2.4 in the periodic case. First of all, for any vector c(a) = {c;j(a): j & Da}
satisfying v(a)c’(a) = 0 and Z, = e;, 7 ¢ Do , we can immediately find the limit
distribution of

Za(a)c'(a) = Djen, Znaci(a)
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since Section 2 applies to the positively regular process Z,(a). Also of course
D iens Za'ci(a) = O unlessn = 0(mod ). In the more general case, where one is
interested in ) _;.p, Za'c;(b) for some vector c(b) = {ci(b):je Dy} and Zy =ce;,
i ¢ D, , one has

D ieny Za'ci(b) =0 unless n=0b—a (mod d),
whereas for
(3.30) 2 ieny Zhars—aci(b)

one can use the arguments of Section 2. In fact, if one defines ¢ = (0, --- , 0,
¢(b),0, -+ - ,0), then almost all of Section 2 applies to Z,&'. Only when one comes
to (2.26) does the periodicity of M play a role and this difficulty is easily over-
come by restricting B to multiples of d in the proofs of Theorems 2.2 and 2.3.
However the computation of ¢” becomes somewhat messy. Still, for v(b)c'(b) = 0
we do obtain a trichotomy as in Section 2 and the limit laws have the same shape
as those in Section 2. We shall not give further details here.

Acknowledgment. Shortly after completion of this paper, the authors were in-
formed that the analogues of the results of Section 2 for continuous time multi-
dimensional Markov branching processes had already been obtained by B.
Krishnamoorthi in his Stanford Ph.D. thesis. Krishnamoorthi’s methods are
slightly different from ours and his result will appear in the near future.
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