ON THE GALTON-WATSON BRANCHING PROCESS WITH MEAN
LESS THAN ONE!

By A. JorrFE

Unaversité de Monltréal
0. Introduction. Let Z, denote a Galton-Watson branching process with
Zo = 1, generating function
f(s) = 20 PlZi = KIS, j(1) =1, 0=s=1.
The generating function of Z, is given by the iterate
fa(8) = f(faa(8)) = 20 PlZa = kls',  fols) = s fi(s) = f(s).
It is assumed that the mean m of Z; is less than 1:
0<m=f1) = 2. kPZ = K.

The purpose of this note is to give very elementary proofs of results on the
asymptotic behaviour of f, and related quantities for large n. Most of the re-
sults are not new, but they hold under more general hypothesis than are to be
found in the literature; for instance Yaglom’s theorem (see Harris p. 18) will
be proved without the existence of second moment.

It is a pleasure to acknowledge the numerous conversations with Professor F.
Spitzer who stimulated this work.

1. Two Lemmas. We will use the following limited expansion of the function

f(s):

(1) f(8) =1 —m(1 —s) + (1 — s)e(s)
or
(2) (1 —£(8))/(1 —s) =m — e(s).

LeMMA 1. The function e(s) defined by (1) ¢s monotone decreasing, tends to
zero when s goes to one and s bounded above by m.

Proor. The monotonicity of e(s) is a consequence of the convexity of f. The
right hand side of (2) is positive and converges to f (1) = m when s goes to one.

Replacing s by fi—1(s) in (2) we obtain

(3) (1 = fi(8))/(1 = fia(s)) ='mll — e(fea(s))/m].
Taking the product on both sides of (3) fork = 1, 2, - -- n we obtain
(4) (1 —fa(8))/(1 = s) = m" [[i5 11 — e(fi(s))/m).
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Clearly the sequence (1 — f,(s))/(m"(1 — s)) is monotone decreasing in n
and thus converges to a nondecreasing function ¢(s). Letting s = 0 we obtain

(5) ¢(0) = lim,,, P[Z, > 0]/m" = 0.

ReMARK. From (4) it follows that ¢(0) > 0 if and only if the series
> k=0 €(fx(0)) converges. In the following lemma we give sufficient conditions
describing the behaviour of this series.

LemMmaA 2. If e(s) goes to zero in such a way that the series I e(1 — m*) con-
verges then ¢(0) > 0. This will happen for instance if there is an o > 0 and a
constant C' such that e(s) < C(1 — s)°%, which is the case if EZ,'** < . On the
other hand if for 1 > s > s there is a constant C such that e(s) > C/—log (1 —s)
then ¢(0) = 0.

Proor. The first part follows from Lemma 1. We have f(s) =2 1 — m(1 — s),
therefore fi(s) = 1 — m*(1 — ). Since e is monotone, e(fi(s)) <
e(1 — m*(1 — s)) and the proof is an easy consequence of the above remark.

The second part follows from the following observation: f(s) being a convex
function one sees easily that for any m < m there is an s, < 1 such
that f(s) <1 —m'(1 — s) for s = s . Therefore there is a k such that
f(0) > so and it follows that

e(farr(0)) 2 (1 — m™(1 — £(0))) = C[—nlogm — log(1 — fi(0))I"
which is the general term of a divergent series.

2. Yaglom’s theorem.

THEOREM. Let bjn = PlZ, = j|Z, > 0],5 = 1,2, --- , then as n — « the
bn converge to quantities b; such that im1b; = 1. Morewer D 1" nb, =
1/¢(0) = .

Proor. Let g.(s) be the generating function of the b;, . It is easy to see that
(6) gn(s) = (fa(s) — £2(0))/(1 — f2(0)) =1 — (1 — fa(s))/(1 — £2(0)).

From (4) we obtain
(7) ga(s) =1 — (1 — &) JIiZ (1 — em™(fx()))/(1 — em™}(£(0))).

Since fi(s) = fx(0) and by Lemma 1, e(fx(s)) = (fx(0)) we have that the gen-
eral term in the product of (7) is larger than 1. It follows that the sequence g,
is monotone decreasing and has a limit g(s). Following a suggestion of Professor
Spitzer we show that ¢ is a generating function.

Let Sk = fk(O),

g(s)

i

liMase (1 = (1 = fa3x(0))/(1 = £2(0)))
= lim,.; (1 — (1 — fi(s))/(1 — 8)) =1 — m".

It follows that g(sx) — 1 as k — . Since ¢ is monotone this shows that ¢ is
continuous and using the continuity theorem for generating function the theo-
rem follows. The remark concerning Z nb, follows from the above computation
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since

2 nba = ¢’ (1) = limgaw m*/(1 — £(0)) = 1/0(0).

3. Another theorem. Let us now consider the Markov process whose n-step
transition matrix is given by

(8) Q(m(i: .7) = hmk"wP[Zﬂ = jIZ"-H‘ > 0: ZO = 1/]7 1/;.7 = 1: 2 - .
It is easy to see that
Q™ (3, 7)
From Yaglom’s theorem we obtain
TueoREM. The Q process is positive recurrent if and only if ¢(0) > 0. The Q
process is recurrent if and only if 2 1" (1 — f»(0))/m" diverges.
Proor. Since P[Z, = j|Z, = 1 = PlZ, > 0|Z, = 14|-P{Z, =
il Z, >0, Z, = 1] we obtain .
Q™ (1,5) = [(1 = £a(0))/m"bj.nj.
Therefore from Yaglom’s theorem
limp,e Q(n)(l:j) = ¢(0)jb; = =; (say),

with D w; = 1. This proves the first part of the theorem. The second part
follows from the fact that b;, — b;. The series 2 _n=0 Q™ (1, ) converges if
and only if D (1 — f.(0))/m" converges. Proceeding as in the second part of
Lemma 2 one can give examples where the last series diverges.

PlZ, = 7| Zy = 1j/im".
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