ASYMPTOTIC EFFICIENCY OF CERTAIN RANK TESTS
FOR COMPARATIVE EXPERIMENTS
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1. Introduction and summary. For comparative experiments with two or more
treatments, rank methods possess, in their insensitivity to gross errors and ex-
treme observations, a distinct advantage over the classical normal theory pro-
cedures (see [10]) (beside providing exact significance level when the form of the
underlying distribution is unknown). First of the rank tests developed was the
Wilcoxon-two-sample test, subsequently generalized to the K-sample problem
by Kruskal and Wallis (see [12]). Both these tests have been shown to possess
asymptotic (Pitman) efficiency equal to 3/7 (against normal shift) relative to
the classical ¢- and F-tests respectively (see Andrews [1]). However, in many
comparative experiments, it is desirable in the interest of increased precision to
stratify the population or divide the experimental subjects into homogeneous
(randomized) blocks. For such experimental designs, the first attempt at pro-
viding a rank test was made as far back as 1937 by Friedman [5] (for the one ob-
servation per cell case), who proposed a test based on independent rankings of
observations within each block. This procedure, which we shall refer to in the
sequel as the separate-ranking procedure, was extended subsequently to more
general designs by Durbin [4] and Benard and van Elteren [2]. Van Elteren and
Noether [22] computed the asymptotic efficiency of the separate-ranking pro-
cedure and showed (for the one observation per cell case) that relative to the
normal theory F-statistic its efficiency (against normal shift) is 3K/x(K + 1)
(which takes the value 2/7 for K = 2 and increases to 3/r as K — « ).

In 1962, however, Hodges and Lehmann [9] pointed out that the rather low
efficiency of the separate-ranking procedure was due, presumably, to the absence
of interblock comparisons and proposed a conditional test based on a combined
ranking of all the observations after ‘“alignment’’ (defined below) within each
block (see also Mehra [17]). Subsequently, Lehmann in a series of papers [13],
[14], [15] laid the foundations of an entirely new and remarkable approach to
nonparametric inference parallel to the classical normal theory (parametric)
analysis of variance. However the question of asymptotic efficiency of the test
proposed in [9] was left essentially unanswered.

It is the purpose of the present paper to study the asymptotic efficiency of the
conditional test proposed in [9]. In Section 2, the asymptotic version of this test
is discussed. In Section 3, limit distributions under translation alternatives are
obtained. Section 4 contains a discussion of the asymptotic efficiency and Section
5 consists of certain concluding remarks.

2. The conditional test. Consider K treatments in an experimental design,
with n blocks and m,, (=1) observations in the (¢, j)thcell (¢ = 1,2, --- , n;
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i=12 --- K). Let X;u (I = 1,2, ---, mg;) be the Ith observation in the
cell (7, 5), and assume that these m.;; (independent) observations have a common
continuous cumulative distribution function (cdf) F;;(z) satisfying the condition

(2.1) Q:Fii(z) = Fi(z + &)

where £; are unknown constants (block-effects). The hypothesis of interest,
namely, that there is no difference among the treatment effects can be expressed
asHy:Fy = Fy = - .- = Fg . It may be observed that the model (2.1) corresponds
to the usual assumption of additivity of block effects in the linear analysis of
variance model.

The conditional test proposed by Hodges and Lehmann [9], based on the joint-
ranking of all the observations after “alignment,” is on the premise that the in-
terblock comparisons introduced through joint-ranking would improve the rela-
tive efficiency. We shall show below that this is indeed true. By “alignment” is
essentially meant removing the block effects £ (¢ = 1, - - - , n) from the observa-
tions by subtracting from each observation in a block, say the 7th, some reasona-
ble function u of the observations in the block which satisfy the condition

(2.2) p(Xm+a -, Xamy + 0, , Xim+ a, -+, Xigmx + @)
= N(Xill, ,Xilm“, ,Xxil, ;Xixmgx) + a.

The object of alignment is obvious. For, on account of possibly unequal (and
unknown) block effects, no worthwhile information would be contained in the
ranks based on joint-ranking before alignment. However, if the block-effects &;
are removed before ranking, it is clear (at least when the marginal distributions
of all the aligned observations, under Hy , are identical) that the ranks do con-
tain relevant information. Also, it is desirable (although not necessary) that,
under Hy , the aligned observations in each block have a symmetric joint distribu-
tion. Both these properties would hold if u satisfies (2.2) and is a symmetric
function of its arguments, (cf. condition B of [9]) as is evident from the follow-
ing:

Lemma 2.1. Let X, , X, - -+, X. be independent identically distributed random
variables and let p = p(Xy, Xz, -+, X.) be some symmetric function of these
variables. Then the random variables Z;,j = 1,2, --- | ¢, where Z; = X; —
w( Xy, -+, X.) have a symmetric joint distribution.

Proor. The proof is immediate, since on account of symmetry of u(X;, Xs,
co L XL

F(tZ’tl)"')tc) =P[Z1§t?;ZZStI;"';Zcétc]

= PX; — p(X1, Xz, -+, Xe) £ 1o,
Xz—ll(Xl,Xz,"‘,Xc) étl"'Zcétc]
= PX; — p(Xy, Xy, -+, Xe) St
Xy —w(Xe, Xy o, X)) S Zo S U

N
|

=PlZ: 2,212,

=F(t1)t27"':t0)'
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Description of the test. The conditional test procedure for small sample sizes,
along with the asymptotic theory for K = 2 is fully discussed in [9]. We will
discuss here only the asymptotic version of the test for general K. Let the aligned
observations be denoted by Z;;; (I = 1,2, -+ ,my;;1=1,2, --- ;n;j = 1,
2, ---, K) and let r;;; be the rank of Z;;; in a combined ranking of all the
N = > > ;im;; aligned observations. Consider now the conditional situation
given the set of ranks for each block. Each conditional situation (an event in the
original sample space) is referred to as a configuration in [9]. Given a configura-
tion, the only randomness that remains is due to independent assignment of
ranks to.the treatments in each block. Clearly complete random assignment of
the ranks to the treatments would be justifiable, under Hy , if the vector of aligned
observations for each block has a symmetric joint distribution. For the discus-
sion below we will assume (i) that the same method of alignment is used in each
block and (ii) that the conditions A and B of [9] are satisfied where

(A) after alignment each block contains at least one positive and one negative
observation;

(B) within each block, complete randomization is employed.

The condition (A) above is satisfied and the condition (B) is justifiable under
all reasonable methods of alignment, such as on the mean, Winsorized or cen-
sored mean, or the median. Let N; = D ;mi;, Rij = er,,z, R;j= >4 Rij =
D i D171 = sum of the ranks for the jth treatment and let £(-), Var(-) and
Cov(-, -) stand for the conditional expectation, variance and covariance respec-
tively, under Hy , given a configuration. Then

E(R)) = 2 taamy; 7
(2.3) of = ojj= Var(R;) = D i1 (Ni —mij) maj [/ (N: — 1)];
oii = Cov(R;, Ry) = — 2 teamiymiplr/(Ns — 1)];

where 7} = Z,’ Zz (rsj1 — f.')z/N.' and 7; = Zj ZH’",‘;/N,' . er will first
write down the test statistic for the case when the m;; do not vary with the
blocks, viz.,

(24) my; = myj= +++ = my; = m; foreach j=12, ... K.

This is the more meaningful case, since then the vectors of aligned observations,
as well as the vectors (R, Riz, +++ , Rix), %2 = 1,2, -+ | n, of rank sums R;;
for individual treatments in block ¢, have identical distributions under H,.
Also, in this case, the conditional test-statistic takes a convenient form. Under
(2.4), the expressions (2.3) reduce to

E(R;) = mm(nN' + 1)/2;
(2.5) of = aji = Var(R;) = [(N' — my)m;/(N' — 1)] (20 1'-'2);
oiy = Cov(Ry, Ry) = —lmjmyp/(N' — D] (i r)
where N' = D% m; . The proposed conditional test statistic of [9], then, takes
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the form
(26) Wo=[(N —1)/N'(XCi175)] 2icam; {R; — mm(nN" + 1)/2}?

with the test consisting in rejecting H, at level «, if W, exceeds a predetermined
number W, . such that the conditional probability Ps,[W, > W,.a = a. The
large sample approximation of W, . is provided by the following:

TuarorEM 2.1 Lel the hypothesis Hy be true and the method of alignment be such
that (A) and (B) hold. Then (1) the conditional statistic W, , given a configuration,
converges in distribution as n — o, to the x*-variable with K — 1 degrees of free-
dom; and (i1) the convegrence is uniform in the configuration.

The proof of the theorem will be accomplished in a number of steps by extend-
ing the method of proof of [9].

Consider an arbltrary linear combination U; = D 5=t ¢; Rijof Rij,j = 1, 2,

-, K — 1. Let b and 8; denote the conditional (given a configuration) vari-
ance and the conditional third absolute moment about the mean of U; and let

Z,_l b?. Assume further that

(2.7) N:<n forall 1.

Lemma 2.2 below is proved for arbitrary m;; not necessarily satisfying the
assumption (2.4), and consequently can also be used to prove a more general
version of Theorem 2.1 viz., Theorem 2.1 A.

Lemma 2.2. Under assumptions (2.7), (A) and (B), (i) the conditional (given
a configuration) distribution of Sora (U — E(U))/ 8w converges, asn — =, to the
standard normal distribution; and (ii) the convergence is uniform in the configura-
tion.

Proor. First note that by arguments of Lemma 1 of [9] it follows that there
exists a constant 0 < a; < «, independent of the configuration, such that

(2.8) S8 = 2 el (K — 1) Xk |R; — ERyfP
é ay n

We now obtain for S, = D7 b a lower bound which is independent of the
configuration: We assume first that at least two of the ¢’s (out of ¢1, ¢z, ---,
cx-1) are different from zero and not all non-zero ¢’s are equal. For otherwise the
desired lower bound is provided by the inequality (2.9) itself (cf. Lemma 2 of
[9]). Now note that from (2.3)

8aF = 2t bd = 2[5 A (Ni — myj)my;
— 2 X iy ciepmimiplr/(Ni — 1)
(2.82) 2 > [0 of(miy/N)
— (254 ¢i(mii/N*))IIN#/(Ns — D)7
b2t

1%
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where N* = N; — mirand 0 < b < o is a constant independent of the con-
figuration. The last inequality follows using (2.7), m;; = 1 and the fact that the
expression

i1 ef(mii/NF) — {205 ¢i(mii/N*)P?

is the variance of some non-degenerate random variable and is consequently
bounded below by a positive constant independent of 7 and the configuration.

We shall now prove the existence of a positive constant b, independent of the
configuration, such that'

(2.9) ?—1 1','2 z bl ns.

For convenience we suppress the index j representing the treatment and denote
by Za,Zn, -, Zin;,1=1,2, -+, n, the observations after alignment. Let
r;; denote the rank of Z,; in the total set and
4 . n

r; = m; r;;, r; = Inax; r;j.
Then on the account of the assumption (A), min; Z;; < 0 < max; Z;;, so that
(2.10) max; 7'," < min,- 7','”.
Now using (2.7),

78 = N7 Dissasw; (1 — ra)’
N~—2 (r.ll _ ”‘-,)2

g 7 (”"-” _ Ti')2

1%

and hence
Z?=1 izt Z?—l (r" — r)2

Leta,’ < ay < -+ <a, anda,” < @” < --- < a,” denote the ordered values
’ ’ ’ n l4 n . . .
TL, T2, <+ ,Tn and ry, 7y, -+, 7, respectively. By a well-known inequality

(cf. [8] Theorem 368)

Z;;l Til 7'1'” = =1 ail ai”,
which implies
-1 (Ti” - Ti')2 = Z?=1 (ai” - ai’)2,
and hence
(2.11) Z?=1 iz Z?=1 (a" — al)>

Now from (2.10) wehave sy’ < @) < -+ < @, < &" < @)’ < -+ < a,”, 50

1 The above proof of the inequality (2.9) is due to Professor Wassily Hoeffding and pro-
vides a correct proof of Lemma, 2 of [9].
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that

(2.12) o’ —a’ zn for i =1,2 --- n.
From (2.11) and (2.12), the inequality (2.9) follows with b, = >

From (2.8a) and (2.9), it follows that there exists positive a constant a, in-
dependent of the configuration such that

(2.12a) S = ayn’.

The rest of the proof follows from (2.8a) and (2.12a) by using the Berry-Esseen
theorem as in [9]; and the proof is complete.

For the proof of Theorem 2.1, we need the following lemmas:

Lemma 2.3. Let VI = (V™ ... V) n =1,2,3, ---, be a sequence of
random vectors with cdf. Fo'™(v) (in c-space R®) depending on a parameter 6,
and let Go'™ (u) denote the cdf of an arbitrary linear function U™ = f(V™) =
S 1c; Vi (f:R® — R™) of the components, such that, as n — o

(i) Fo'™(v) converges to Fo(v) for each 0 (and v), where Fo(v) is the cdf o arv
v,
(ii) for every linear f, Go'™ () converges to Go(u) uniformly in 6 (and ), where
Gy(u) s the cdf of the xv f(V),
then Fo'™ (v) also converges to Fo(v) uniformly in 6 (and v).

Proor. One can easily verify that the statement (ii) is equivalent to the state-
ment: for every linear function f and every Borel set B ¢ ® (Borel field in
R™), 4" (B) = PIf(V'™) ¢ B] — P[f(V) & B] converges to zero, as n — o,
uniformly in 8 and B. Now since 4™ (B) = P[V"™” e f(B)] — P[V ¢ f }(B)],
and since the minimal o-field containing the class of all sets in R which are in-
verse images, under the family of linear functions f :R© — R“), of Borel sets in
®™ coincides with the Borel field 8 in R, it follows that A*™(B*) =
PV ¢ B*] — P[V & B*] converges to zero, for every B* ¢ &, uniformly in
B* and 6; and the proof is complete.

LemMa 2.4. Let the sequences {V™} and {Fy'™(v)},n = 1,2,3, --- , be as de-
fined in Lemma 2.3 and suppose that the conclusion of Lemma 2.3 holds. Let
F:R® — R™ be a measurable function, with the set of discontinuity points of measure
zero, then (i) the distribution G (z) of F(V™ () of F(V™) converges to the dis-
tribution Gy(z) of f(V') and (iii) the convergence is uniform in 0 (and z).

Proor. Part (i) is proved in Mann and Wald [16] and part (ii) can be proved
by arguments similar to those of Lemma 2.3.

Proor oF THEOREM 2.1. From part (i) of Lemma 2.2 it follows by arguments
similar to those of Wald and Wolfowitz ([20], Section 7) that, under (2.4), the
random variables (V;/d*),j = 1,2, --- , K, where

Vi=[R; — E(R))/ms}, d={N/N —1)} Xiar’

are conditionally, given a configuration, distributed in the limit as n — o, as
multivariate normal distribution with zero means and covariance matrix
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657 — (m;/N "“Ym;/N ')*||. We now make an orthogonal transformation
Vo' = 25 (mp/ND (Vi /db);
VJ'* = Z;z'-l Qg (Vi’/d})a 7 = 1) 2) ctty K — 11

where a’s are chosen to make the transformation orthogonal. Part (1) of the
theorem now follows from part (i) of Lemma 2.4 and the fact that V;* (j = 1,
2, ---, K — 1) are independent normal variates in the limit and V,* is degener-
ate at zero, and that W, = D 1 (V/d) = D 52, Vi’ . Part (ii) of the theorem
follows from Lemma 2.3 and parts (ii) of Lemmas 2.2 and 2.4.

For the case where the sample sizes m;; do not satisfy the condition (2.4), one
can base the test on the statistic

(2.13) vV ATY,

where V.= (Vy, Vs, «++, Via, Vi, --+, V)" and A denotes the exact co-
variance matrix ||o;;|| of V given by (2.3). It is easily verified that the quadratic
form (2.13) does not depend on the choice of the omitted variable V ;. Benard
and van Elteren [2] have given a convenient representation of the quadratic form
(2.13). The following theorem extends Theorem 2.1 to the case when (2.4) is not
satisfied; its proof can be accomplished by using Lemmas 2.2-2.4 and arguments
similar to those of Theorem 2.1.

TrereorEM 2.1A. Let the hypothesis Hy be true and the conditions (A), (B) and
(2.7) hold. Then (i) conditionally, given a configuration, the statistic (2.13) s
distributed in the limit, as n — o, as a x*-variable with (K — 1) degrees of free-
dom; and (ii) the convergence is uniform in the configuration.

3. Asymptotic distributions under translation alternatives. The results of the
preceding section were proved under any method of alignment, provided (2.2)
and the conditions (A) and (B) were satisfied. As pointed out in Section 2, most
reasonable methods of alignment satisfy these conditions. We will, however, con-
fine our attention henceforth to alignment on the mean only, and obtain in this
section the (unconditional) limiting distribution of the statistic W, , defined by
(2.4) and (2.6), under a suitable sequence of translation alternatives approaching
H, . This will enable us in the next section to compare the asymptotic efficiency
of this test relative to other competing test procedures, namely, the classical
F-test, the Friedman-Benard-van Elteren separate ranking procedure, as well
as the new test procedure proposed by Lehmann in [15].

Consider for each 7, the alternative hypothesis

(8.1) K,:Fj(z) = F(z + ojn—*) for j=1,2,---,K (notall6;equal).

Let X;(1=1,2,---,m;;5=1,2,---,K) be N = D %, m; independent
random variables distributed identically with cdf F(x). Further let G(u) denote
the cdf of Zy = (Xu — X), where X = D 1= D14 X;/N' and let H(u, v)
denote the joint cdf of (Zu , Za). For our experimental design, then, G(u) and
H(u, v) represent the marginal and joint c¢df’s of aligned observations Zy;; and
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Zyn under Hy. Let x,°(A) denote the non-central chi-square variable with r
degrees of freedom and the noncentrality parameter A. We now state

TarEOREM 3.1. Assume for each m, the truth of the hypothesis K, and suppose, for
any real number n, that lim, .. [ 2HG(z + nnt) — Q(x)} dG(z) exists and is
Jinite. Then the statistic W, , defined by (2.4) and (2.6), converges in distribution as
n— o, to xk1(Aw) with Ag = [3/N*(1 — 3N\)] D5 (ui/m;), where

(32) ;= limpemy D Fmamy [2anXG(z + (0, — 0;)/0") — G(a)} dG(x),
AN F) = [2, [20 G(u) G(v) dH (u, v).

A

The proof of the theorem will be based on the following lemma, for which we
set out some notation: Let T, and u stand for the vectors (Th,1, Tna2, **,
Tox) and (p1, p2, -+ ,ux) respectively where pj (j = 1, --- , K) is defined
by (3.2) and
(3.3) To;=3"{R; —nm;(nN' +1)/2}/m# N (1 — 3\)*n}

(.7 = 1) 2) e )K)’
and A stand for the covariance matrix ||6;; — (m,-/N')’(m,v/N')*H.

LemMma 3.1. Under the assumptions of Theorem 3.1, the random vector T, con-
verges in distribution, as n — o , to a mullivariate normal vector N (u, A).

Proor. The proof of this lemma depends on the results of Hoeffding [9] on
U-statistics and runs parallel to that of Andrews [1]:

For convenience, we first give a proof for the case m; = 1 foreachj = 1, 2,
-+, K, from which, then, by a linear transformation the general result will fol-
low. Define 5(y;, y») = 1if y; > yj and 8(y;, yj+) = O otherwise and h’(y; ,
Yo+, Yx) = D318y, yir). Let Z; = (Zu, -+, Zix) denote the vector
of aligned observations for the 7th block (¢ = 1,2, --- ,n) and set

(384) U7 = o™ Zha Zhar o Dl b (Zin, Ziga, -+ 5 Zigx).
Then right hand side of (3.4) is easily verified to be
(3.4a) =n7 ) Fa Z?,:x E?jml 8(Zisj, Zsjgr)
= (R; — n)/7".
Define now
o2, -+ Zx) = K Rigyenio Mgy, -+, Zxix)

with (51, -+, jx) extending over all permutations of the set of integers {1, 2,
-, K}, and (forn = K)

U= 2 i @ (Zey, -+, Zig)/ ()

with (41, -+, k) extending over all sets such that 1 < 41,7, --- ,ix = n and
no two ¢’s equal. Then U’ is the average of only those 4’ terms for which argu-
ments of a given j are each elements of a different vector, whereas U’’ is the aver-
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age of all possible A’ terms (U’ | = , K, are U-statistics as defined in
Hoeffding [11]). Further let Y/ = (K/n*) E,_l ¥y’ (Z;), where

(3.5) W(Z) = E{¢'(Zy, -+ ,Zx) |2} — E{¢*(Z1, -+, Zx)).

Then, since the vectors Z; (¢ = 1, 2, - - - , n) are identically distributed, Theorem
7.1 of Hoefiding [11] applies. This, coupled with the arguments on page 727 of
Andrews [1] (concerning U’ and U’?), proves that the vectors { 22U — EU"? ),
j=1)""K},’{n;(Uj_EUj);j=1)2""7K}/and{ J’] 1 "7K}

are all identically distributed in the limit, as n — «. Consequently, using (3.4),
it follows that n™* (R; — ER;),j = 1, - -+ , K, have in the limit a multivariate
normal distribution with mean vector zero and covariance matrix lim,,. K’
E(w,Ww,) whereW; = (¥, .-+, ¥,") is defined by (3.5). To find this covari-
ance matrix, let G;(u) denote under (3.1) the cdf of Z;;;, an aligned observa-
tion corresponding to the jth treatment, then one observes that

E(e" | Z:) = K7 2 inrimy 261 B(8(Zaiy , Zwoiy,) | B4
=K' 20alGu(Za) + 1 — Gu(Za) + [Z0 Gr(u) dGr(u)}
so that from (3.5),
VH(Z) = K D2 5 {Gu(Za) — [Z0 Gu(u) dGi(u)
— G Zw) + [Z0 Gi(u) dGi(w)}.

Using the fact that, as n — o, the hypothesis K, — H, and the Lebesgue domi-
nated convergence theorem, it follows that

E(¥’- %) > K B [(K — 1)X(Zy;)
— 2i A Za) (K — 1)G(Ziy) — Diwir G(Za)]}

= —(1-3)\)/3K if j=j
= (K —1)1 —=3\)/3K if j=7j.

Consequently,

(3.6) limg.e K’E(W¥) = || {8;5 — K} {K*(1 — 3\)/3} |.

Further, from (3.4a), it easily follows that

(3.7) limpewn HE(R;) — $n(nK + 1)}

=l 251 [Zan{G(z + (65 — 0))/n) — G(2)} dG(z).

From (3.6) and (3.7), the result follows immediately for the case: m; = 1 for
allj =1,2, .-+, K.

For the case when not all m; are equal to 1, the proof immediately follows
from the above result by considering vectors Z; (i = 1,2, ---, n) with N’ =
> %1 m; components each, (the first m; corresponding to the first treatment, the
next m, corresponding to the second and so on) and using an appropriate linear
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transformation of the T, ;s and part (i) of Lemma 2.4, In this case, however,
(38) limp.on H{E(R;) — dmjn(nN’ + 1)} = y; G=1,--,K)

where u; is defined by (3.2). The proof is complete.
Lemma 3.2. Under the assumptions of Theorem 3.1,

n Yt E§=1 E'ln=jl (riji — ’7‘1‘)2 = N'n" Z:Ll e
= (N"/3)(N" — 1)(1 — 3\) + o0,(1)

as n — o, where \ is given by (3.2).
Proor. Clearly it suffices to prove the result for the case m; = 1forallj = 1,
.-+, K. Thus, if we prove that

(39) liMpwn B[ 7m1 D F1 (ry; — 7)Y = 3K* (K — 1)(1 — 3\)
and
(3.10) liMpe Var [n7° D00 Do (ri — 72)'] = 0,

the result would follow on account Chebyshev’s inequality. To prove (3.9), note
that

w7 Dt 2 (riy — i)’
= nK(nK + 1)(2nK + 1)/6n° — Kn™° 3.1 7
= [K(nK +1)(2nK + 1)/60°)(1 — K1) — (/’K)™ 2im (Zsyr 13 1iz).
Taking expectation and then limit, as » — o, on both sides
(8.11) liMpaen * Bl ty Doy (i — )]
= KK — 1)/3 — K liMpaw {07 2 i B(ry; )}

But
E(ring) = Dt Db D1 D s E{8(Z1j, Za) 8(Z1y, Zow)}
(3.12) + O(n)
= Dt Dots Do Do B{8(Zvj, Zi) 8(Zrjr, Zis)}
+ 0(n)

and, if 1, 7 and 4’ are all different,
E{6(Z;,Z:) (Zajr , Zirs)} = PlZi < Zhj, Zire < Zij]
JZe JZa Glu + (6, — 05)n7)
G(v+ (8, — 6;)n~Y) dH (u, »)
X+ o(1)
asn — o, Using (3.12) and (3.13) in (3.11), we get (3.9). To prove (3.10), we

(3.13)

Il

]
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note from above that
Var [n7° 3 0 D5 (i — 7]
(3.14) = (K'n®)™ Var { 201 D s 14 T}
= (K*n"){n Var (X juy nijny) + n(n — 1)
200V (D seir 115 Tajr , D iy Toj Tap )}

One observes that Var (r1;, r17) and Cov (r1j rij , ruriv) where j = ;' and
1% 1" are O(n*) and in the expansion of

Cov (r1; 1y, T Tor)
E’[ T 2 8(Zas, Ze} { i1 2o 8(Zayr , Zuo))
Pt 2201 8(Zoy Zow N { 2t 201 8(Zav , Zurwr)}]
_ E[ 1 201 8(Z1g, Zi)} { i1 251 8(Zayr  Zn)}]
EBUD 0 D o6e18(Zar, Zow)} { D nma o1 8(Z1s, Zurw)}]
+ 0(n?),

one finds that the terms corresponding to pairs of subscripts (4,4) and (7', u')
with no element common cancel out and the remaining terms are of order n®.
Using these results in (3.14) one finds that the right hand side of (3.14) isO(n™");
this completes the proof of the lemma.

Proor oF THEOREM 3.1. From Lemma 3.1, it follows that the vector T,* =
(Tpa, -+, Tuxa) is distributed in the limit, as n — o, as a multivariate
normal vector N(u*,A*), where u* = (u1, -+, ux_1) and A* is the correspond-
ing submatrix of A. Observing that ) .— m,* T,.; = 0 and that A* is non-singu-
lar, it follows easily that the statistic

(3.15) [8/N*(1 — 3\ ] Zjam; " {R; — jnmi(nN' + )’ = 354 Th,;

is equivalent to the statistic T,* A*™ T,*, which is distributed in the limit, as
n— o, as a xx—1 (Aw) using part (i) of Lemma 2.4, and a thoerem of Rao [19]
p. 57). If we now replace (1 — 3\) in (3.15) by its consistent estimate

3 2 i rl/N-(N' — )i

given by Lemma 3.2, we obtain the statistic W, . The proof of the theorem is
complete in view of a well-known theorem (see Cramér [3], p. 254).

Lemma 3.5 below gives sufficient conditions for interchanging the limit and in-
tegration in (3.2). Its proof in turn is based on Lemmas 3.3 and 3.4%: Let u
denote the Lebesgue-measure on the real line.

Lemma 3.3. Let F1(z) be an absolutely continuous distribution function with a

? Lemma 3.4 provides an improvement on Lemma 3(a) of Hodges and Lehmann’s “Com-
parison of the normal-scores and Wilcoxon tests,”” Proc. Fourth Berkeley Symp. Math.
Statist. Prob. 1 307-317.
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square p-integrable derivative f(x) = Fy'(z) (a.e. u) and let F = F,  F, denote
the convolution of Fy with any distribution function Fy . Then F(z) is also absolutely
continuous with a square-integrable derivative given by f(z) = [Z2e iz — y) dFy(y)
(a.e. u).

Proor. It is well-known that the absolute continuity of Fi(z) implies that of
F(x) with derivative f(x) (a.e. 1) as given above. To see that f 2o () dz < =,
observe that by Schwarz’s inequality

|f(1'7)|2 = { ffwfl(x ), dFe(y)}2
< [Zofi(x — y) dF(y)  (ae. p),
so that
(3.15a) JZafi(z) de = [Zu{ [Z0 Sz — y) dFy(y)} do

= f:wff(x) dz.

Since [Z,f,’(z) dz < «, the proof is complete.
Lemuma 3.4. If the distribution function G(x) possesses a square-integrable
density (ie., [0 {G'(2)}2 dz < ©), then

limsse [20 [G(z + ) — G(2)]/h dG(z) = [24 {G(2)}* da.

Proor. The proof follows immediately by using Lemma 4.3 of H4jek [71.
To see this, note that by Schwarz’s inequality again

|[2 [G(z + k) — G(2)]/hdG(z) — [Zo (G ()} daf*
[[Za{lG(z + h) — G(2)I/h — G'(2)}G () daf*
(JZa (G (@)} do) [Za{[G(z + h) — G())/h — @' (z)}2 d

— 0,

Il

lIA

as b — 0, on account of Lemma 4.3 of [7] and the square-integrability of G’ (z);
the proof is complete.

Lemma 3.5. If the distribution function F(x) possesses a square-integrable
density, then (i) the (marginal) distribution function G(u) of the aligned observa-
tions also possess a square-integrable densily and (ii) the non-centrality parameter
Ay of the Theorem 3.1 takes the form

(316) Ay = [B/(1 — 3N)I([Zu (G (w)}* du)® X5y mi(0; — )
where § = Y 5. ymi9;/N’.
Proor. Since G(u) is the (marginal) distribution of the aligned observations,
i.e., of a random variable
m=Xu—X=WN —1DNXy —N"Xp -+ — N Xgm,,

where X’s are independently and identically distributed according to the distri-
bution F(z), it is a convolution and a repeated application of Lemma 3.3 proves
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part (i). Part (ii) then follows immediately on account of Lemma 3.4 and part
(i); the proof is complete.
Consider now the separate-rankings statistic W,* under (2.4), namely

W.* = [12/N' (N + 1)n] 21 mi (R — mjn(N' + 1)/2}’,

where R;* = sum of the ranks for the jth treatment based on independent rank-
ings of X-observations in each block.

THEOREM 3.2. Assume for each n the truth of K, and that the conditions of
Lemma 3.5 are satisfied. Then, the statistic W,* converges in distribution, asn — «,
to xzx_l(Awt), where

(3.17) Aws = [12N'/(N' + 1)] (20 F'(z) dF(z))* D 51 m;(0; — 8)*.

Proor. The proof of this theorem can be accomplished using the central
limit theorem for random vectors. (For the case m; = 1 for all j see van Elteren
and Noether [22]).

For the case where the sample sizes m;; satisfy (2.4), the classical F-statistic
is also distributed in the limit, as 7 — «, as a x*x_1(Az) where

(3.18) Ag = 2 5amy(0; — 8)"/d"

provided for the distribution F(z) the variance o° exists. (See Scheffé [21], p. 119.
Case of proportional frequencies.)

We will use the results of this section to obtain the asymptotic (Pitman)
efficiency of the statistic W, relative to the statistics W,* and .

4. Asymptotic efficiency. The asymptotic efficiency es,ss = es,s+ (@, 8, K,) of
a test S relative to a test S*, for the alternatives K, , is defined to be the limit-
ing inverse ratio of the sample sizes needed to attain the same power 8 at the
same level of significance a. The concept originally due to Pitman is discussed by
Noether [18]. For the statistics under consideration it is given by the ratio of
their respective noncentrality parameters. (see [1], [6]). Thus, from (3.16) to
(3.18),

(4.1) eww = (N + 1)/4N'(1 — 3N)[[Ze{G (2)}* da/ [Z {F'(2)}’ da]*
and
(4.2) ews = [367/(1 — 3\)[[2 {G (2)}* da]’

where A = N(N’, F) is given by (3.2).

Although the conditions of Lemma 3.5 are satisfied for a large class of distribu-
tions—including normal, logistic, uniform, (double) exponential, Cauchy etc.,—
the explicit evaluation of the efficiency expressions (4.1) and (4.2) is rather
difficult in most cases, except for the normal distribution for which case it is
given below.

Efficiency when F(z) is N(a, o). It is easily seen that for this case,
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2o {F'(z)} dx = (20 7)™ and [Z, {G'(2)}?dz = [N'}/2s }(N' — 1)} and
A= [Z [0 G(2)G(y) dH (2, y)
=P[U>0, V>0

where U, V have a bivariate normal distribution with zero means, common
variance {2¢°(N' — 1)/N’} and covariance { —o*/N'}. From [3], p. 290, we have

N =13+ (2m)"aresin [(1 + p)/(1 — o)}, with p = —[2(N' — 1)]
= 7 'arctan [(2N' — 3)/(2N’ — D)]%.
Thus, (4.1) and (4.2) give
ew,we(normal) = [(N' + 1)/4(N’ — 1)]-
(4.3) {1 — (8/w) arc tan [(2N" — 3)/(2N’ — )]},
ew s(normal) = [3N'/4x(N' — 1)]-
{1 — (3/m) arc tan [(2N" — 3)/(2N’ — )]}
For the case of one-observation-per-cell, i.e., m; = 1 for all 5, (4.3) reduces to
ew,wr(normal) = [(K + 1)/4(K — 1)]
(4.4) {1 — (3/x) arc tan [(2K — 3)/(2K — 1)]}7;
ewg(normal) = [BK/4x(K — 1)]
{1 — (8/x) arctan [(2K — 3)/(2K — 1)]}.

One can easily verify that ey, ws«(normal), given by (4.4) takes value 2 for
K = 2, and decreases monotonically to 1, as K — <. It means that the efficiency-
advantage of the joint-ranking procedure over the separate-ranking procedure
decreases steadily with increase in the number of treatments. The corresponding
efficiency expression ew,s(normal) takes the value 3/x for K = 2, attains a
maximum at K = 3 (considering only the integral values of K = 2, 3,4, --.)
and then decreases monotonically to 3/x, as K — «. Consequently,

ewg(normal) = 3/x forall K.

The following table gives some values of efficiency expressions (4.4):

K
2 3 4 5 0
ew,w* (normal 1.5 1.355 1.263 1.210 1
ew,5 (normal) 3/x = .9549 .9662 .9647 .9632 3/n

The above remarks apply verbatim, with K replaced by N’, to the efficiency
expressions (4.3). (This includes the case when K is fixed and sample sizes m; ,
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j=1,---, K, increase to ). Our results, thus, provide a verification of the
statement by Hodges and Lehmann ([9], p. 495) that the gain in efficiency, in
using the joint-ranking procedure in place of the separate-ranking one, tends to
zero if “instead of a large number of small blocks we are dealing with a small
number of large blocks.”’

Efficiency for large K. In view of the last remark, it seems interesting to see
what happens to the general efficiency expressions (4.1) and (4.2), as the block-
size N increases to o (this includes the case when K — o). The result that
ew, we(normal) converges to 1, as N’ — o, in fact, remains true for any distribu-
tion F(z) which has a finite first moment.

TuroreM 4.1 If the distribution F(x) possesses a square-iniegrable density and

la| = |[Zez dF(z)| < w, then the eficiency expression (4.1) satisfies
limN'.,w ew_wt(F) =1,
Proor. Let X;; (¢ =1,2,3,---;5=1,2,--- , N') be independent rv’s with

the same distribution F(z) and let X; = Y ar;-1 X:;/N’. Since
la| = |[20z dF(2)| < e,
the strong law of large numbers applies, so that from (3.2)
limpraw MN', F) = limyrsw P[(Xu — X1) > (Xu — Xu),
(4.5) (X — X1) > (Xa — X3)]

= PXy > Xo, Xp> Xal =4%.
We shall now prove

(4.6) limyrae [20 {Grr(2)} de = [Z0 {F'(2)}* da,

where we have written Gy (z) in place of @' (z) to indicate dependence of G(z)
on N’. Let fy(z) denote the density of { (N’ — 1)Xy/N’}, then

fw(z) = {N'/(N' — L}F'(N'z/(N' — 1))
and by argument similar to those used for deriving (3.15a) we have
J20 (G (2)} dz < [2ufi(z) da

= (N/(N' = 1)} [2{F'(z)}" de
which gives

(4.7) 1im SUpyraw [ (Gar(2)}2dz S [0 {F'(2)}? da.
Further, since F(z) is continuous, '
limyraw Gy (2) = limyrae P{ Xy — Xy £ 2] = F(z + a),
so that
limy v G (2) = lityra iino [Ga (2 + h) — G (2))/h
(4.8) = liMjpae [F(x + b + a) — F(z + a)l/h
= F'(z + a) a.e. (u).
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From (4.7) and (4.8) it follows by Fatou’s lemma that

[2{F ()} dz = [ lim infys {Gy(2)}* do
lim infy [Ze {Gw (2)}? d2
< lim supy % {Gw(2)}* dz
< [Zo{F (2))" da,

so that (4.6) is proved. From (4.5) and (4.6) the desired result follows forth-
with; the proof is complete.

The Cauchy distribution provides a typical example for which the conclusion
of Theorem 4.1 does not hold. For the Cauchy distribution, it is easily seen that,
as N' — o, [[20 {G' ()} dz/ [Z0 {F'(2)}" d2] > 3 and N > P[X > U, X > V],
where X, U, V are independent Cauchy variables with scale parameters 1, 3, 3
respectively (and the same arbitrary location parameter). The last probability is

14 7° [2, {(arc tan z/3)*/(1 + 2%)} dx
and consequently from (4.1),
(4.9) limpr.w ew,w+(Cauchy) =
{41 — (12/7") [Z {(arc tan z/3)"/(1 + o")} de]} 7,

which is approximately equal to .458. One also observes that for the case N =9,
i.e., two treatments with one observation per cell, the asymptotic efficiency (4.1)
reduces to

I

I\

ew, e = [3 [2{G (2)} dz/{G'(0)}7),

which is the asymptotic efficiency of the Wilcoxon signed-rank test relative to
the sign test (cf. [10]). This expression takes the value .75 for the Cauchy distri-
bution. Thus for the Cauchy distribution the efficiency expression (4.1) de-
creases from .75 when N’ = 2 to .458 as N’ — o. This makes the joint ranking
procedure with alignment on the mean further less desirable in this case.

It is, however, important to observe that the above decrease in efficiency for
the Cauchy distribution, as N’ — o, is due (presumably) not to the joint-rank-
ing procedure but to the method of alignment, namely, the alignment on the
mean. Clearly one would reasonably expect the conclusion of Theorem 4.1 to
hold in case of Cauchy distribution also, if instead the alignment is done on the
median, or for that matter, on any other consistent estimate of location. But we
shall not enter into the investigation of this question here.

6. Concluding remarks. A comparison of the results of the preceding section
with those of Lehmann [14] and [15] shows that, for the case of the normal distri-
bution, the conditional test based on the joint-ranking statistic W is less efficient
than the test procedure, say L, of [15] and is more efficient than the procedure,
say L', of [14].} On the other hand, one may find other interesting distributions

3 Lehmann has shown in [15] that the asymptotic efficiency ez,5(F) is uniformly higher
than the efficiency er- g (F) for all distributions ¥ and all K.
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F for which the W-test is more efficient than the test procedure L or L'. It would,
therefore, be further illuminating to evaluate the efficiency expressions ew g(F)
or ew,w+(F) for the uniform, logistic, (double) exponential and other distribu-
tions F. The results of the preceding section, particularly the remarks of the last
paragraph, also point out the need for investigating the efficiency of the joint-
ranking procedure for other methods of alignment, especially for the alignment
on the median.

It is worth pointing out that the conditional test W discussed in this paper
provides exact significance level for all sample sizes and is consequently truly distri-
bution-free, a property which is not possessed by L or L' (see [14], p. 1495). The
question of robustness of its power, however, (particularly against distributions
with heavy tails) needs investigation. It may be possible to find for the efficiency
ewg(F) a lower bound comparable to the one obtained in [10] for the efficiency
of the Wilcoxon (Kruskal-Wallis) test relative to the t-test (F-test). The authors
hope to discuss these points in a subsequent paper.

Major part of this work is due to the first author; for extensions of these re-
sults to the case of balanced and partially-balanced incomplete block designs see
[20].

Acknowledgment. The authors are indebted to Professor E. L. Lehmann for
many helpful comments and to Professor Wassily Hoeffding for supplying a
correct proof of the statement (2.9).
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