DISTRIBUTION-FREE TESTS OF INDEPENDENCE'

By C. B. Bert? anp K. A. Doksum®

Institut de Statistique de I’Université de Paris

1. Introduction and summary. The object of this article is to characterize the
family of all distribution-free (DF) tests of independence, and those subfamilies
which are optimal for specified alternative classes. It is found (Theorem 3.2)
that each DF statistic is a function of a Pitman (or permutation) statistic; and
(Theorem 3.4) that the rank statistics are those whose distributions depend ap-
propriately on the maximal invariant [Lehmann (1959), p. 227]. For parametric
alternatives the MP (most powerful) [Lehmann and Stein (1949)] and the lo-
cally MP tests are found to be Pitman tests based on the likelihood function
(Lemma 4.1 and Theorem 4.1); while the corresponding optimal rank tests are
analogous (Lemmas 4.2, 4.3) to those in the 2-sample case [e.g. Capon (1961)],
and are closely related to those of Bhuchongkul (1964). In Section 5 randomized
statistics similar to those of [4] are shown (Corollary 5.2) to be asymptotically
equivalent to the optimal nonrandomized statistic for specified parametric
alternatives. For one reasonable nonparametric class of alternatives one proves
(Theorem 6.1) that the normal scores test is minimax; while for the other class
an unexpected statistic (Theorem 6.2) is minimax. Finally, in Section 7 the ideas
of monotone tests developed by Chapman (1958) and others are extended, and
analogous results (Theorem 7.1) are obtained for minimum power.

2. Terminology, notation and preliminaries. The study of DF tests for the in-
dependence hypothesis is essentially the study of similar sets and similar test
functions. The basic ideas of Pitman (1937 a, b); (1938); Scheffé (1943); Lehmann
and Stein (1949); and Bell and Bellot (1965) are generalized to construct the
desired sets and functions in terms of permutation groups and related functions.
For the rank tests, which occupy a central position both in theory and in prac-
tice, one needs a group of transformations which (among other things) generates
the null hypothesis class. To this end one needs the following notation:

(A) Sample. The generic data point is (21, ¥1), «+ -, (Z», ¥»). However, for
the sequel it will be more convenient to represent this point of R, as

z=(x,y) =(x1y""xn;yl""’yﬂ) = (zly""z%)‘

(B) Hypothestis Classes. © will denote the generic class of probability measures
on some R ; more specifically one has: Qx(R}), the class of continuous distribu-
tions on Ry ; and Q(H,), the null hypothesis class = {F™-Q™: F, G ¢ Q(R1)}
where
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430 C. B. BELL AND K. A. DOKSUM

(F™.G™)(2) = T11 F(x) T1T G(wi);
and Q(Hou Hi) = {H™: H e %(R,)},

where H™(2) = [1r H(: , y:).

DeEriniTION 2 .1. Q is called NS-complete if, whenever v is NS (Definition 2.3)
and [vdH = Oforall HinQ, P{v = 0 | H} = O for all H in Q.

It will be seen (Lemma 3.2) that Q(H,) has this property.

(C) Groups. 8, = {w}, the symmetric group of the n! permutations of
{1, -+ ,n};8 =8, X8 = {y = (m,7):m, 7 &8}, the direct product of 8, with
itself; 8(z) = {v(2): v €8} will denote the z-orbit.

For the generic point on an orbit it will be convenient to write

7(2) = [W(x)) 7l',(y)] = [7!'(1?1), T W(xn); 7l',(yl)a e T,(yn)]'

It is easily seen that for the orbits:
(2.1) each element of Q(H,) is invariant over each 8(z); and
(2.2) 8(z) contains (n!)® elements for a.a. [Q(H,)] 2.
G: = {g}, the group of 1-1 strictly increasing transformations of R; onto R; .
G = Gn) x G(n) = {(¢™, f™): g, feQ)}, where (4™, f™)(2) =
[g(xl)a ,g(xn),f(yl), ;f(yn)]
One shows easily that
(2.3) G is a group of 1-1 transformations of R, onto R, ; and
(2.4) g generates Q(H,) in the sense that for each H™ in

Q(Ho), Q(Ho) = {H™ (g™, f™): g, f G}

(D) Functions. As usual ¢ is a test function if it is measurable and 0 < ¢ < 1.

DEeriniTION 2.2. A test function ¢ is

(i) stmalar of size a wrt Q(H,) if f¢ dH = o for all H € Q(H,);

(ii) an a-Lehmann-Stein function if D o(v(2)) = (n!)’a for a.a. [Q(H,)]
2, where the summation is over v in §; and

(iii) a classical test function if ¢ is the indicator function I, of some set A
(called the critical region).

In order to construct the sets corresponding to the functions above and to
emphasize the NS (nonsequential) character of the tests, one introduces the
following definitions:

DeriniTION 2.3. A measurable function v is

(i) a B-Pitman function if P{v(z) = v(v(z)) | H} = 0 for all H in Q(H,)
and all v other than the identity;

(ii) an NS function if v(z, y) = v(7(z), 7(y)) for a.a. (z, y) and all =;

(iii) a BNS-Pitman function if » is NS and

Plo(z, y) = v(x(z), 7'(y)) |H} =0

for all H in Q(H,) whenever = # = ; and
(iv) a ranking function if it is constant on each B-rank set. (See Defini-

tion 2.5.)
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(E) Sets. It will be seen that the important sets are also related to the orbits.
To this end one defines
DeriniTION 2.4. A measurable set A is
(i) similar of size o wrt Q(H,) if P{A | H} = afor all H in Q(H,);
(ii) an a-Scheffé setif A contains exactly (n!)’« points of a.a. orbit;
(iii) NSifforallwin$,and (x, y) in 4, A contains [r(z), 7(y)];
(iv) almost tnvariant wrt G and Q(H, u H,) if
P{(A —g(4))u(9(4) — A)|H} =0
for all g e G and all H in Q(H,u H,);
(v) SDF (strongly distribution free) wrt G and Q(Ho u H,) if P{A |H} =
P{g(A) | H} for all g in G and H in Q(H,u H,).
The rank sets are now defined as follows:
DerINITION 2.5.
B(ﬂ', 7I',) = {(CB, y) 71"(:81) < e < W(xﬂ); W,(yl) < e < W,(yn)}y
the B-rank set generated by = and «’; and B(8) = u B(m, 78), where (for fixed
§in 8,) the union is over 7 in 8, , the BNS-rank set generated by 6.
It is immediate that
(2.5) There are (n!)? B-rank sets each similar of size (n!)™*; and (n!)
BNS-rank sets each similar of size (n!)™ wrt Q(H,). Further,
each of these sets is invariant under G; almost invariant wrt G and
Q(Hyu H,); and SDF wrt G and Q(Hou Hy).
More generally:

(2.6) Each almost invariant set in SDF; and each SDF set is DF.

For the other two types of sets one needs the concept of Pitman statistics
T(T*) defined in (F) below. The idea here is simply to use the B(NS)-Pitman
function to select the (n!)’a points for an a-Scheffé set.

DerInITION 2.6. {T*(v*) = r} is a B-Pitman set forr = 1,2, - -+, (n!)® and
{T(v) = r}isa BNS-Pitman setforr = 1,2, --- , (n!) if »* and v are respectively,
B-Pitman and BNS-Pitman functions and T and T* are as defined below.

It can be proved that
(2.7) each B(BNS)-Pitman set is an a-Scheffé set for « = (n) ()7,
and that
(2.8) there exist B(BNS)-Pitman sets which are not B(NS)-rank sets and

which are not invariant, SDF or almost invariant.

One can now introduce the statistics to be used.

(F) Statistics. A (nonrandomized) statistic here is as usual a real-valued
measurable function W on Rs, .

DEFINITION 2.7. A statistic W is

(i) DF wrt Q(H,) if there exists a single distribution M (W; -) with the prop-
erty that P{W(X, Y) < t|H} = M(W;t) for all H in Q(H,) and all ¢; and

(ii) SDF wrt G and Q(H, u H,) if for all ¢ and H in Q(Hou Hy),

P(W(X,Y) st|H} = P(W(X,Y) = t|H}
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whenever there exist g in G such that Hg = H, i.e. whenever H and H are ele-
ments of the same equivalence class of Q(H,u H;) under G. [Note: For (ii) it is
equivalent to say that the distribution of W is a function only of the maximal
invariant in Q(H, u H,) under G.]

One can readily demonstrate that
(2.9) W is DF(SDF) iff for each Borel set B in R; , W(B) is DF(SDF).

For rank statistics one now defines

DeriniTION 2.8. W is a

(1) (NS) rank statistic if W is constant over the B(BNS)-rank sets;

(ii) B(BNS)-rank statistic if it is a (NS)-rank statistic and assumes (n!)*[(n!)]
distinet values.

It follows then that .
(2.10) Each rank statistic W is DF, SDF; invariant under G; and that

for each Borel set B, W'(B) is almost invariant.

Finally one has the Pitman (or permutation) statistics

DrrIniTION 2.9. (i) T*(™¥) is the B-Pitman statistic induced by B-Pitman func-
tion v™, if for all 2, T*(v*(2)) = 2. efv™(2) — v*(v(2))}, where the summation is
over v in 8 and e is the function defined by e(w) = 1 or 0 according as w = 0
orw < 0;

(ii) T(v) is the BNS-Pitman statistic induced by BNS-Pitman function v,
ifforallz = (z,y), T(v(z,y)) = 2 efv(z,y) — v(x, w(y))}, where the summa-
tion is over 7 in §, ;

(iii) W*[W] is a (NS)-Pitman statistic if it is a real-valued function of a
B(NS)-Pitman statistic.

It is clear that

(2.11) T**)[T(v)] assumes only the values r = 1, - -+, (n!)’[(n!)].

One should note here that in a NS-procedure it seems reasonable to use only
NS statistics, but that there are other DF statistics available, e.g. the B-rank
and B-Pitman statistics.

Finally, in this section one wishes to introduce a generalization of the ideas in
[4] and (5) and several other authors.

(G) Randomized statistics. Randomized statistics L as defined below will not
be statistics in the sense. above. However, it will be seen in the sequel that test
functions based on such statistics are DF statistics.

Let

(a) £ = (&1, -+, &) andy = (m, ---,n) be independent random samples
both independent of the original data sample Z = (X, Y);

(b) & and 7; have distributions F and @ in Q.(R;), respectively;

(¢) M a desired distribution and f a statistic such that P{f(¢, n) =< t|H}
= M(t) for all ¢;

(d) v* a desired B-Pitman function; and

(€) 7(+, ) = 7(+, - |v*, 2) such that T*(v™(7(£, 7)) = T*(* (2, v)), ie.
< is a function of both v* and the data point z = (z, y), and as such is a random
permutation.
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DerinrTIoN 2.10. The randomized statistic induced by f, F, G and v* is defined
so that

L(z, y; & n; v™) = f(7(§ ).

One notes here that the sets {T*(»*) = r} constitute a partition of the sample
space, and that the random permutation v preserves the “partition information,”
i.e. the value of v*, the function inducing the partition.

One now begins to construct the DF statistics, sets and tests.

3. Structure and invariance. In this section it will be shown that the similar
test functions and sets, are respectively, the a-Lehmann-Stein functions and
a-Scheffé sets; and that these can always be expressed in terms of B-Pitman func-
tions. Further, the rank sets will be shown to be exactly those which are SDF
and almost invariant.

TueoreM 3.1. (Similar test functions) (i) ¢ is a size o test function similar
wrt Q(H,) iff ¢ is an a-Lehmann-Stein function.

(i1) The following three conditions are equivalent:

(a) A is a set similar wrt Q(H,) and P(A) = a;
(b) ¢ = I(A) is a classical test of size a; and
(¢) A is an a-Scheffé set.

Proor. (i) is a slight modification of a lemma of Lehmann (1959), p. 184.
(ii) follows from (i) if one requires that ¢ be an indicator function.

For rank and Pitman sets one has

Lemma 3.1. (i) Each B-rank set and each B-Pitman set is similar wrt Q(H,)
and has probability (n!) ™. (i) Each BNS-rank set and each BNS-Pitman set is
similar wrt Q(H,) and has probability (n!)".

Proor. (i) Each B-Pitman and each B-rank set contains exactly one point of
a.a. orbits. Consequently, they are a-Scheffé sets for & = (n!)™ (ii) The BNS-
rank sets and BNS-Pitman sets contain exactly (n!) points of a.a. orbits, and,
hence, are a-Scheffé sets for a = (n!)™".

From this lemma one gets the major structure theorem.

TuEOREM 3.2. (Nonrandomized similar statistics) (1) Each (nonrandomized) DF
statistic has a discrete distribution with probabilities which are integral multiples of
(n)) 72 If, further, the statistic is NS, then the probabilities are multiples of (n!)™".

(ii) W™ (nonrandomized) is DF wrt Q(Ho), iff W* is equivalent to a function of
a B-Pitman statistic, i.e. iff there exists a B-Pitman function v* and a measurable
function U™ such that W* = U*[T*(v*)].

(iii) W(nonrandomized) is NS and DF wrt Q(H,) ¢ff W is equivalent to a BNS-
Pitman statistic, i.e. iff there exists a BNS-Pitman function v and a measurable
Sunction U such that W = U[T(v)].

(iv) For any preassigned discrete distribution F, with probabilities which are
integer multiples of (n!)™>, there exists a DF statistic with distribution F.

Proor. (i) F(a) = P(W < a) can assume only values r(n!)~* for r = 0, 1,
-+, (n!)? since each set (W < a) is similar. If, further, W is BNS, then F(a)
can only assume the values r(n!) ™ forr = 0,1, - ,nl.
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(ii) If »* is a B-Pitman function, each set {T* (v ) = r} is similar; and each
set {U*[T*(v*)] = r} is also similar. Therefore W* is DF. Conversely, if W* is
DF wrt Q(H,), then W*has a discrete distribution; thus there exists 1 < 1 < (n!)’,
numbers a; < @2 < --- < a;, and integers 0 = 70(0) <kQ)< - <kQ) = (n)?
such that P(W* < a|Hy) = 0and P(W* < a;| Ho) = P(W* < aua | Ho)
= k(z‘)(n') Consequently, for a.a. 2, there exists an ordering {z;, -+, 2 ;
s = (n') } of the points of .S(z) such that W*(z;) = a;for k(¢ — 1) < j < k(3).
Define »*(z;) = j. Then T*v*(2;)] = j. Next define U*(j) = a;for k(i — 1) <
] < k(z) Clearly »* is a B-Pitman function (and a ranking function) and

= UMT*(v™)].

(iii) The proof here is analogous to that of (ii).

(iv) If F assigns probabilities p(1), -- -, p(s) to the points a(1), --- , a(s),
where Zp(z) 1, then there exist integers 0 = lc(O) < k(1) < - < k(s)

= (n!)? such that Zl p(2) = k(j)(n)7? for all j. Let v * be an arbltrary B-Pit-
man function, and define W = a(7) on each of the sets {T*(v*) = r} for k(s — 1)
<r = k(7). Then W* is a DF statistic with distribution F.

One has more distribution flexibility with randomized statistics.

TrEOREM 3.3. (Randomized similar statistics) (1) If ¢ is a test function based
on a randomized statistic L(i.e. o = 1 or 0 according as L ¢ A or not for appropriate
A) then ¢ is an a-Lehmann-Stein function and is, hence, similar wrt Q(H,).

(ii) For each preassigned distribution F, there exists a randomized statistic with
F as its null hypothesis distribution.

Proor. (i) One recalls that L(z, y, £ n; v™) = fl¥(¢, n)], where v(-, -) =
F(-, « | % 2) is such that T*p*(2)] = T*(v*(7(% n))). Therefore, if & =
P{f(&, n) e A}, one has for a.a. orbits:

Z,.-QO(W(Z)) = Z Re.]eCt Hol’ll'(Z) = Z {L(T(Z), ‘E’ 7; 1)*) & A}
= 2. Pifli(s, m)] e Alx(2)} = 25, Piflv(g, )] ¢ A}
= 2, Plf(¢,n) e A} = (n))’e.

(ii) Let the & sample have common distribution H which is strictly increasing
and continuous; and let L = F7H(¥(%)), where 7 is the transformation in the
definition of a randomized statistic; L, then, has the desired distribution F.

For the rank set result one needs the following two lemmas.

LemMma 3.2. Q(Hou Hi) is NS complete.

Proor. Q(Hyu H,) is the n-fold power class of Q:(R;). From the main theorem
of Bell, Blackwell and Breiman (1960) it is known that Qz(Rz) is symmetrically
complete, i.e. if ﬁ(zl , ***, 2y) is invariant under 8, and f hdH™ = 0 for all H
in Q,(R.), then P{h 0 | H("’ = 0 forall H in Qx(R,). If one writes z; = (2, y:)
and (21, Z”) = (xly &Y, ’yn)’a’ndh(xly s Ta Y, “‘,Z/n)
= h(z1, -+, 2a), One sees immediately that & is NS iff / is symmetric. Conse-
quently, Q(Hou H;) is NS complete.

Lemma 3.3. If a NS simzlar set A is SDF wrt Q(Ho u Hy) and G, then A s
almost invariant wrt G and Q(Ho u Hy).

Proor. If f, ge @, and A is a NS similar set, then P = P{A|H} =
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P{A|H(S, )™} = P{(f, 9)™(A) | H} for all H in Q(Hou H;), and all f, g & G,.
Therefore, [ {I(A) — I[(f, 9)™(4)]} dH = 0 for all H in Q(H,u H,). But since
Q(Hou Hy) is NS complete, P{4 A (f, )™ (4)|H} = 0 for all H in Q(H,u H,),
and all f, g £ G, where A A B = (A — B)-u (B — A). Therefore, the conclusion
follows.

The characterization result for rank statistics is now:

TueoreM 3.4. (Rank Statistics) (1) W* is a rank statistic iff it is equivolent to
a function of the Pitman statistic of some ranking function, i.e. iff there exists measur-
able U™ and a ranking function v* such that W* = U*[T*(v™)].

(ii) The following conditions are equivalent:

(a) W is a NS rank statistic,

(b) W s NS and SDF wrt Q(H,u H;) and G, and,

(¢) W 1s equivalent to a NS-Pitman statistic of some NS ranking function,
i.e. there exists measurable U and a NS-ranking function v such that W = U[T(v)].

Proor. (i) From Theorem 3.2 it follows that each rank statistic is equivalent
to some Pitman statistic, since a rank statistic is a DF statistic. Each rank sta-
tistic W can be represented as a function U of a rank statistic W1* which assumes
different values on each of the (n!)® B-rank sets. This latter statistic is DF and,
hence, can be written Wy* = U,*[T*(»™)], and in this case, v* is necessarily a
ranking function. Consequently, W = U[U,*[T*(v*)]]. Conversely, if v* is a
ranking function, each function of 7*(v*) is constant over the B-rank sets, and
is, therefore, a rank statistic.

(i1) The proof of the equivalence of (a) and (c¢) parallels the proof of (i)
above.

Since the B-rank sets B(, x') are invariant under G, it follows that the BNS-
rank sets are also invariant and, hence, are SDF wrt Q(Ho u H;) and G. Hence
any NS rank statistic is SDF wrt Q(Hou H1) and G, i.e. (a) implies (b). To show
that (b) smplies (a), it is sufficient to prove that if A is NS and is SDF, its inter-
section with an arbitrary B-rank (B(m, ') set is equivalent either to the null
set or to the B-rank set.

B(w, #’), being an invariant set, is almost invariant wrt G and Q(H, u Hy).
By Lemma 3.3, A is almost invariant. But the class of almost invariant sets is
closed under intersections, and is a sub-family of the sets similar wrt Q(H,).
A n B(m, ©') is, therefore, similar wrt Q(H,) and, since, also it is a subset of
B(w, '), it is an a-Scheffé-set with & = (n!) ™ or 0. In the first case, it is equiva-
lent to B(w, =) and in the second case it is equivalent to the empty set.

Now that the families of DF statistics are known one wishes to select those
which are optimal in some sense.

4. Optimality for parametric alternatives. From [21] and [20], p. 185, one has:
LemMmA 4.1. (Lehmann and Stein). In the class of all DF tests, the MP (most
powerful) level o test of Ho against Hy is of the form:

=1 if Th(z)] >k
N i Thiz)] =k

0 otherwise

I

(4.1)

Il
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where v is the density of Z under H; and T[v(2)] = D, e{o(z, y) — v(w(z),y)}.
[Note: Although v is NS, » need not be a BNS-Pitman function (Example 4.1);
however, there exists a BNS-Pitman function " which generates the same test.]
ExampLE 4.1. Consider the model (Konijn (1956)) in which X and Y can
be written X = U + ¢V and ¥ = 0U + V, where 0 < § < 1, U and V are in-
dependent with continuous distributions Fy and Gy respectively. The MP level
a DF test of & = 0 vs. § > 0 rejects for large values of T[v(z)] with

v(z) = 22 [Info( (X: — 6y) /(1 — 6°)) + Ingo( (v — 62:) /(1 — 6%))]

when F and (o have the positive densities fo and go respectively. If fo(z) = go(z)
= exp (—x) when x = 0, = 0 otherwise (i.e. both are standard exponential),
then v(2) of the MP test can be written v(z) = e[min; (z; — 6y.)]e[min; (y; — 6z4)].
If fo and go are normal densities, then v(z) = D_ z.y. .

[Note: In the exponential case above v assumes only the two values 0 and 1.
This is the worst possible case under random sampling since v can only be con-
stant under the null hypothesis. One sees that [[{ F(z,,y.) = [[F F(z:, 8(ys))
forall §in 8, and all z; and y; iff F(z;,y:) = F(x;, © )F(®,y,) forall z;and y; .
This means that the MP DF test for any given parametric alternative has power
greater than «.]

The MP tests in the above example typically depend on 6 and on Fo and G, .
In order to obtain tests that do not depend on 6 and still are optimal in some sense,
one introduces the concept of locally MP tests (e.g. [25] and [20]).

To this end one needs the following notation:

(a) A, an interval containing 0;

(b) {Q(8; -, -): 6 A}, a class of absolutely continuous bivariate distribu-
tions with

(1) Q(0; 2, y) = Qu(2)Qe(y) for all z and y; and
(ii) regularity conditions given below in terms of the power function g, ;

(e) h(b;2) = H,- q(8; z:, y:), where ¢ is the density of Q;

(d) B,(8), the power of the test ¢ against alternative Fj ; and

(e) B8,", the rth derivative wrt 6 of 8,(6).

It is also worthwhile to mention that the DF property refers to Q(H,), i.e.,
the distribution of the test statistic is invariant over Q(H,). In the sequel, one
seeks an additional property—that the DF test be “good” against the entire
family {Q(6; -, -): 8¢ A} of alternatives.

DErinITION 4.1. A level o test oo is locally MP for testing 6 = 0 vs. § > 0 if,
given any other level « test ¢; there exists A(¢;) such that

(4.2) Boo(6) = B,(0) for all § with 0 < 6 < A(py).

THEOREM 4.1. If there exist @ > 0 such that for all 6 ¢ (—a, a), all z & Ry, ,
and all level o DF tests ¢

(i) h7(8;2) = (87/867)h(8; 2) exists and is continuous, and

(ii) B,7(8) = (8/867)B,(0) exists; is continuous, and can be obtained by dif-
ferentiating inside the integral sign in (4.5); and if
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(iii) 7 = 14s the smallest integer for which k™ (0; z) is not invariant wrt 8, X S, ;
then the locally MP DF level o test of § = 0 against § > 0 s of the form (4.1) with

(4.3) v(2) = B7(0;2).

Proovr. It is known (e.g. [21] and [20, p. 342]) that it is sufficient to maximize
8,7(0) subject to

(44) 2relv(2)] = (n)a
Following Lehmann (1959), p. 185, one writes

(45)  Bo(6) = [ 122, elv(DIR(O; ¥(1))/ 22, k(65 v())] dPT(1),

where T is the order statistic vector (X(1), ---, X(n); Y(1), ---, Y(n)).
Hence, in order to maximize 8, (0) subject to (4.4), it is sufficient to maximize
the rth derivative of the integrand in (4.5) subject to (4.4). Upon computing
this derivative and applying the Neyman-Pearson lemma, the result follows.

“r”” of Theorem 4.1 is equal to one or two for most models, and »(2) in (4.3)
can be written in the equivalent form
(4.6) v(z) = 2, (8/867) In q(0; x:,y:) |6 =0
when the logarithms used are finite.

ExampLe 4.2. For the model of Example 4.1, r = 1 and the locally MP DF
test rejects for large values of T[v(z)] with v(z) = — > {[fo (z:)yi/fo(z:)] +
[90 (y:)zs/g0(y:)]}. If Fo(z) = Go(z) = 1/[1 + exp (—z)] (i.e. both are logistic),
then v(z) of the locally MP test may be written Do Fo(z)ys + Foly)zd.

ExampLE 4.3. Consider the model (Bhuchongkul (1964)) in which X =
1—-—0U+WandY = (1 —60)V + 6W where0 =6 =1, U, Vand W are
independent with continuous distributions Fy, Gy and F; respectively. For this
model, 7 = 2, and v(z) of Theorem 4.1 is equivalent to > fo'(z:)go (y:)/
Sfo(x:)go(ys). If Fo and Gy are normal, this becomes E z4;, and if Foand G, are
logistic, it can be written Y Fo(z:)Fo(ys).

ExamrLe 4.4. For the model of Jogdeo (1964), Y = 6X + oW, where 6 = 0
and X and W are independent and have the continuous distributions F and F;
respectively. When F; has the positive density fi , the MP DF test is of the form
(4.1) with v(z) = X, In ful(y: — 6z:)/0]. When f; is exponential, then v(2) =
e[min; (y; — 6x;)], and when f; is normal, v(z) = Y zg:. The locally MP DF
test is of the form (4.1) with v(z) = — 2 fi'(y:)z:/fi(y:) which becomes
>~ Fy(y:)z; when F; is logistic.

The MP rank (SDF) test for Hy vs. Hy can be derived by the usual (e.g.
[20], p. 237) arguments and it is found that if 7;(s;) denotes the rank of z:(y.)
in the z(y) sample, £(2) (9(7)) is the 7th order statistic in a random sample of
size n from a population with density h.(h,), and the £, 5, and z samples are
mutually independent, then

LEmmaA 4.2. If hyhy, is positive whenever q is, then the MP rank test of Ho vs. Hy
is of the form (4.1) with

(4.7) o(2) = B{ ]I qlé(rs), n(s))/halb(r) Iy n(s)1}
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Locally MP rank tests have been given by Bhuchongkul for certain models.
Using standard (e.g. [10], [5]), arguments, one can show that

LemMma 4.3. If the condition of Lemma 4.2 holds and if the conditions of Theorem
4.1 hold with (4.5) replaced by (4.7), then the locally MP rank test of § = 0 vs.
6 > 0 7s of the form (4.1) with

(4.8) v(z) = B{(9"/36") ] ]i=1 ql6; &(74), n(s:)lo=o}-
Note that hh, = ¢(0; -, -) and that (4.8) can be written
(4.9) v(z) = E{2 7= (87/007) In q[8; £(r:), n(s:)lo=o}

when the logarithms involved are finite.

Because of the paralellism between (4.9) and (4.6), the locally MP rank sta-
tistics for the Konijn, Bhuchongkul and Jogdeo models can be obtained from
Examples 4.2, 4.3 and 4.4.

5. Randomized statistics. Although randomized statistics can be defined from
arbitrary Pitman (DF) statistics, they are more practical when defined from
rank (SDF) statistics. The expectations that appear in the MP rank statistic
(4.7) and locally MP rank statistic (4.9) are often not available, and one
may want to approximate them by what is left when the expectation signs are
removed. This leads to randomized statistics of the form

(5.1) nK, = D i E(rom(s:),
(5.2) nK, = 2 (8(r) — m)(n(s:) — ma),
(5.3) nRa = 20 (E(rs) — E)(n(s:) — 1)

where £(7)(n(7)) is the 7th order statistic in a random sample of size n form a
continuous distribution F(@); the £ and 5 samples are independent and independ-
ent of the (X, Y) sample; u1(uz) is the mean of F(@); and £(7) is the sample mean

of the £(n) sample.
One advantage of the first two statistics above is that they are the sums of

independent identically distributed random variables and their distributions are
therefore easily obtainable (see [4]). Randomized statistics similar to the above
have been considered by Ehrenberg (1951) and Durbin (1961). Some of their

properties are developed in [4]. .
The purpose of this section is to show that K, and K, are in some sense

asymptotically equivalent to the locally MP rank statistic,
(5.4) nTw = 2 ¢ ElE(r:)]Eln(ss)],

while K, and T, are asymptotically equivalent iff 3 = p2 = 0.
TueoreM 5.1. (i) If F and G have first moments py and ps , then

E(K,|Hou Hy) = E(T. | Hou Hy) = E(K, | Hou Hi) — pps
= E(Kn | Hyu Hl) — MiMe2 .
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(ii) If F and G have variances o1* and o2’, then E(n(K, — Ty + wue)’ | Ho)
and E(n(K, — Tn + wps)® | Ho) tend to zero as n — o, while n%(K,, — T
tends in law to a normal variable with mean zero and variance uy’ os> + po’or’.

Proor. Define z;; = 1 if there exist 1 < k < n such that (v, sx) = (2, 7),
z;; = 0 otherwise, then

(55) Kn=n"2 0800l —n7'l = Ku — 81 = K/ — (E— m)(@ — w),
Tw = 0" 20 BE)]EM()i — n7'] + paps.

By definition, the £’s and #’s are independent of the 2’s, thus KR, = EK, =
EK, — wmus = ET, — wpue, and (1) follows.

Next one shows that E(D,’ | Hy) — 0 where D,’ = n(K, — Ty + ) and
E(D.’ | Ho) = n7' 2 siam Cov [£(0)0(5), £(k)n(m)] Cov (24, 2um)-

From the elementary inequality |Cov (X, V)| £ 0.0, £ (0.’ + o,°) and the
fact that (n — 1)™ Var (zy5) = —Cov (24, 2im) = —Cov (24, 21;) =
(n — 1) Cov (24, zem) = n > when ¢ # k and j # m, one obtains E(D,’ | Hy)
< (2.5) 07t 4 Var [£(4)n(4)]. Since

2o Var [E(0)n(5)] = 25 E(2 i 8D)E(2int) — 2o [BEG) 22, [En(h)T
= n’EEEy — D B 2 En(i)T,

it now follows from the results of Hoeffding (1953) that E(D,’ | H,) tends to zero.
The remainder of (ii) follows from (5.5) and the equation

Kn - Tn = (Kn, - Tn + #1#2) + Pvl(ﬁ - ”’2) + #2(% - ”1)'

Theorem 5.1 implies that T, — ue and K, have the same asymptotic null-
distribution. Since K, is a sum of independent identically distributed random
variables, one has the following result for the nonrandomized rank statistics 7', .

CoROLLARY 5.1. If F and G have second moments then n’}‘[Tn —  wipe) /o102 has
asymptotically a standard normal distribution under H, .

Applying the theory of contiguity developed by Le Cam (1960) and H3jek
(1962), one may use Theorem 5.1 to show that 7, and K,  are asymptotically
equivalent also under local alternatives. Let H,"™ denote an alternative
Q(6, ; z, y) (6, — 0) for which the contiguity conditions are satisfied (see [16],
[17] and [19]), then

CoROLLARY 5.2. P(n|K," — Thn + ] = €| Hi™) — 0 as n — o for all
e = 0 provided F and G have second moments. In particular, K, and T, have
asymptotic relative (Pitman) efficiency one for Q(0, ; z, y).

Note that (5.5) implies that #}(K,” — K,) tends to zero for any alternative
provided that F and G have second moments.

6. Asymptotically minimax tests. In Section 4, locally optimal DF statistics
which do not depend on the parameter 6 are obtained. However, these statistics
depend on the underlying distributions (e.g. Fo and Gy in Example 4.3). The
purpose of this section is to use the ideas of [13] to obtain optimal statistics which
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do not have this dependence. This is achieved by asymptotically maximizing the
minimum power over classes of distributions, i.e. by obtaining asymptotic
minimax solutions.

Let (o) denote the class of univariate distributions F with a twice differen-
tiable density f and with a variance ¢°(F) < ¢, let F, be the class of all continuous
distributions with a finite variance, and let 8,(Fo, Go, F1 ; 8) denote the power
of each test ¢ for the Bhuchongkul model of Example 4.3, then the results of
Chernoff and Savage (1958), Bhuchongkul (1964), and [13] easily yield

TuEOREM 6.1. The level o normal scores test o1 is asymptotically minimazx in the
sense that

(6.1) inf [lim inf, 8, (Fo, Go F1,60,)] = sup, {inf [lim sup, B(Fo, Go, F1 ;0,)]}

where the infima are over Fq, Gy in F(¢) and Fy in Fo, the supremum is over the
class @ of all level o tests; and the equality holds for all sequences 6, which satisfy
lim 6,0t = cfor some 0 = ¢ = .

Proor. Note that the results of Chernoff and Savage (1958), Bhuchongkul
(1964), and Fatou’s lemma imply that

(6.2) inf [lim inf, B, (Fo, Go, F1; 6,)] = lim, B, (®, &, B ; 0a)

where &, denotes the normal distribution with mean zero and variance b°, ® = &
(without loss of generality, one sets ¢° = 1), and the right hand side is independ-
ent of b. It is moreover known (e.g. [7]) that when (Fo, Go, F1) = (®, ®, Bs),
then ¢; has the same asymptotic power as the test ¢, that rejects for large values
of Z z4: . One can easily show that for this model with b= (2 — 0)/9, o
is locally MP and asymptotically efficient for testing 6 = 0 vs. 8 > 0. From these
last two statements, one has

(63) infb>0 [hm Supn 690(@) Q) Qb ; 0")] é hmn 6401(@) Q) Qb ) 0")

for all tests that have asymptotically level & when (Fo, Gy, F1) = ($, ®, $s).
Since ® is in F(1) and &, is in F,, then

(6.4) inf [lim sup, Bo(Fo , Go , F1 ;60,)] < lim supn B(®, D, Bs ;6x)

for all b > 0. Now (6.2), (6.3) and (6.4) yield (6.1).

@ does not include the classical correlation coefficient. However, (6.3) above
shows that the result holds for the class @’ of all tests that have asymptotically
levels @ when X and Y are normally distributed with zero means and identical
variances. @ includes the correlation coefficient and contains @.

CoRrOLLARY 6.1. Theorem 6.1 holds if G s replaced by a'.

Furthermore, from (6.2) one can easily compute the following result in which
® denotes the standard normal distribution and k, = ®7'(a).

COROLLARY 6.2. The quantities (6.1) of Theorem 6.1 equal ®(ka + ¢*/a°).

Next one considers maximizing the minimum power over the class of alterna-
tives Q(a; d) defined below. This class is a natural extension of the Birnbaum
alternatives [6], [8], [9], [11] in the one and two-sample cases to the bivariate
independence case.
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For convenience one introduces the following notation:

(a) Y(z), the random variable with the conditional distribution of ¥ given
X = z;

(b) F(y | X =z) = P(Y(z) < y);

(¢) 8(Z, W) = sup |Fz(t) — Fw(t)|, where the supremum is taken over all
real ¢ and F'; and Fy are the distributions of Z and W, respectively, the Kolmo-
gorov distance between random variables Z and W.

DeriniTION 6.1. For 0 < a,d < 1,Q(a; d) is the class of continuous bivariate
alternatives H with the following properties:

(i) the distributions of the Y(zx)’s are stochastically non-decreasing in z,
ie. F(y| X =z) 2 F(y| X = 2) for all y whenever z < z; and

(ii) 8(Y(x), Y (b)) = dforallz > b = Fx '(a).

3 will denote the class of Bhuchongkul statistics of the form T(J,, L.) =
7 D0 Ja(ri/(n + 1)) Lu(s/(n + 1)), where (i) J, and L, converges to the
functions J and L on (0, 1); and (ii) J, L, J, and L, satisfies the regularity con-
ditions of Theorem 1 of Bhuchongkul (1964).

DEFINITION 6.2. 3 (the closure of 3) is the union of 3 with the class of statistics
that are of the form T'(J, L) = n™* ). J(r:/(n + 1))L(s;/(n + 1)) and for
which there exists a sequence {T'(J*, L*)} in 3 such that J* and L* converges
pointwise on [0, 1] to J and L as k — 0.

Br(H) will denote the power of the level « test with rejection region of the
form (T > ¢). The asymptotic minimum power of T at a is

(6.5) Br(AM; a) = lim, (inf [8-(H): H £ Q(a; d,)])

whenever this limit exists; when it does not exist (or is not known to exist), one
uses

(6.6) Br(AM; a) = lim sup, (inf [8+(H): H £ Q(s; dn)]).
From considerations of symmetry, it is reasonable to restrict attention to the
case where a = % and J, is symmetric in the sense that J,(u) = —J.(1 —u) + ¢,

for some constant ¢, . One sets Br(AM) = Br(AM; %) and lets 3(S)(3(S))
denote the class of T'(J, , Ly,) in 3(3) for which J, is symmetric.

Let 81, -+, s, denote the y-ranks after the original samples have been per-
muted to make the x’s ordered.

If W = 207'(n + 1) D fy1 8 — % when n is even and W =
207 (n + 1) D Fans — 3S1n+1) — 3 when n is odd; then the following
result is proved in Section 7.

THEOREM 6.2. (1) W isin 3(8); (ii) Bw(AM) exists and equals ®(ka + 3ic’/2)
iff lim, (n} dn) = cfor some0 < ¢ £ o (i) whenever lim, (n* d,) = c for some
0 =< ¢ = »; then W is asymptotically minimax over 3(S) and Q(3; d,) in the sense
that

(6.7) Bw(AM) = sup [Br(AM): T £ 3(S)];

(iv) i V is in 3(S) and lim, (n*d,) = ¢ for some 0 < ¢ £ o, then
Bw(AM) = Bv(AM).
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Let Wy = D }.118: when n is even and W, = 2 Fan 8i when 7 is odd. Then
there are constants a, and b, such that n*(W — a,W; — b,) > 0asn — =, i.e.
W, is asymptotically equivalent to W. The advantage of W is given in the follow-
ing observation.

LemMA 6.1. When n s even (odd), the null-distribution of Wi is the same as the
null-distribution of the two-sample Wilcoxon statistic based on samples of size 3n
and in[i(n 4+ 1) and 3(n + 1) — 1].

7. Monotone tests and minimum power. Lower bounds for the power of dis-
tribution-free tests have been found by Birnbaum (1953), Chapman (1958),
Birnbaum and Tang (1964), Bell, Moser and Thompson (1966), and others for
the one-sample and two-sample problem. This section gives analogous lower
bounds for the power of rank tests of independence.

Q(a;d) is as in Section 6; the univariate distribution Bi(r, d; ) is the Birnbaum
(1953) alternative which coincides with the standard uniform distribution for ¢
outside the interval (r, 7 + d), and equals » fortin (7,7 + d). Bi(r,d, e;t) (e > 0)
is a continuous distribution on [0, 1] such that for each 0 < e; < ey, Bi(r,d, €3 ;1)
< Bl(r, d, e ;t) < Bi(r,d;t) and Bi(r, d, e;t) converges to Bi(r, d;t) as e tends
to 0.

B(r, d, e; x, y) is the bivariate distribution for which (i) Y (z) is standard uni-
form for z < a; (il) Y (z) has the distribution Bi(r, d, e; t) for > a; and (iii)the
x-marginal is uniform. Note that B(r, d, ¢; -, - ) isin Q(a; d).

Only non-sequential tests will be considered, thus one may assume that the
data have been permuted so that X; < X, < ++- < X,

DEFINITION 7.1. A monotone test function ¢ is such that o(z;y) < o(2z;y’) for
all y, ¢ such that y." < y;/ whenever ¢ < jand y; < y; .

Lehmann (1966) has shown that monotone NS tests are unbiased for alterna-
tives such that Y(x) is stochastically increasing. The following two lemmas are
modifications of his arguments.

Lemma 7.1. If H 1s in Q(a; d) and ¢ is a non-sequential monotone rank test, then
there exists 0 < r <1 — d and e > 0 such that B,(B(r, d, e; -, -)) =< B,(H).

Proor. Let Fx, Fy, K, and K, be the distributions of X;, ¥, Y(z) and Y(b),
respectively; H(-, ) = H(Fx (), Ky '()); Ui = Fx(X:), Vi = Ky(Y); and
V(u) be analogous to Y (z). Then, since ¢ is a rank test,

Bo(H) = Elo(X; Y)| H™]
= Ele[Fx(X1), -+, Fx(Xa); Ko( Y1), -+, Ko( V)l H™)
= Ele(U; V)| H™).

Further, it is clear that the transformation of (X, Y,) into (U, V.) preserves
the Kolmogorov distance § in the sense that 8( Y (z), Y (b)) = 8(V(w), V(a))
for b = Fx '(a). To see this, note that the distribution of V(u) equals K.K, ™"
for £ = Fx “(u). Also note that V(a) has a standard uniform distribution.

It is now convenient to let U(r, d, e) denote a random variable whose distribu-
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tion is By(r, d, e; -), then the following stochastic inequalities hold for some
0sr=1—de>0,V(wm) £+ 2 V(wm) £U; £U(r,d,e) £ V(up1)
£ -+ £ V(un) where k = Z e(a — u,) is the number of u’s not greater than
a, and U, is a standard uniform variable. This follows by considering the dis-
tribution of V(u) as given above and the results of [6] and [11]. From Lehmann
(1959), p. 73, one finds the existence of non-decreasing functions f; and g such
that (i) fi(t) = -+ S fu(?) St = 9(t) = fen(t) S -+ = fa(2); (i1) the dis-
tribution of f:( U,) equals the distribution of V(u;)(Z¢ = 1, --- ,n);and (iii) the
distribution of g(U,) equals the distribution of U(r, d, e). Suppose that ¢ satisfies

(71) (o(u; Wi,y -, Wk, g(wk+1)7 ] g(w")) ﬂo(u fl(wl), Tt fn(wn>>

for all w such that 0 < u; < ue < + -+ < u, < 1, all wsuch that 0 < w; < 1, and
eachk =0, --- , n; then

(7.2) (U Wy, - Wi, g(Wip), - ,9(Wa)) = @(Us i(W1), -+, fa(Wa))

where W = (Wy, --- ,W,)and U = (U, ---, U,) are samples (U is ordered)
from the standard uniform distribution. Upon writing B,(H) = Epp =
>t o En(e |k = 7). Pa(k = 7) and taking expectations with respect to W and
U in (7.2), one finds

(73) B?(B(Tr d’ € ) = BlP(H)

It has now been shown that (7.3) holds for all tests satisfying (7.1). The fact
that it holds for all monotone tests is immediate from the following result.

LemMma 7.2. The class of all tests satisfying (7.1) contains the class of monotone
tests.

Proor. Let ¢ be a monotone test, then o(u; y) < ¢(u;y’) forall (y, y') such
that ¥ < y, whenever ¢ < j and y; < y; . However, w; < w; implies fi(w.) <
fi(w;) = fi(w;) whens < j < k;we < g(w,) implies fu(we) = wi < g(w;) = fi(wy)
when 7 > k; and g(w;) < g(w;) implies w; < w; which yields fo(w:) < fi(w;) =
filw;) when k < 7 < j < n, thus in particular, ¢ satisfies (7.1).

From Lemma 7.1, one obtains

THEOREM 7.1. If ¢ is a non-sequential monotone rank test, then

inf [B,(H): H e Q(a;d)] = inf [8,(B(r,d,e; -, -)):0=r=<1—4d,e>0]
= inf [lime.o+ B,(B(r, d, €; -, -)):0 = r =1 —d].

One can now compute the asymptotic minimum power 8z(AM ; a) (see (6.5))
of the level a rank correlation coefficient test which rejects for large values of
R=n"(n+1)" 2 risi:.Let ke = ®*(a), where ® is the standard normal dis-
tribution function, then

THEOREM 7.2. For each 0 < ¢ £ o, Be(AM; a) = ®(k. + 3ca(l — a)) iff
lim, (n*d,) = c.

Proor. It is easy to see that the test based on R is monotone (e.g. [29]
and [28], p. 480). Thus Theorem 7.1 shows that one needs to compute
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lim,, inf [Br(B(r, dn,€;,-));0 <7 <1 — d, e > 0]. Theorem 1 of Bhuchongkul
(1964) on uniform convergence to normality yields

linfBR(B(r’ dn ) €5 %y )) — inf ¢(kat + [E(T, dn; 6) - EO]/O'O)I

—0 as n— »,

where E(r, dn, e) = [5 [t2Fv(y) dB(r, d, , €; z, y), Bo = % and oo = 1/12n%.
Upon computing Fy(y) = ay + (1 — a)Bi(r, d. , €;y) and lim,.o+ E(r, d, , €) =
1 4+ a1 — a) d,’]/4, the result follows.

Let o*(J) = [6J%(u)du — ([3J(u)du)’ and A(a; J) = [a [oJ(u) du
- fﬁ J(u) du]/o(J); then the following holds for the class 3 of Bhuchongkul
statistics defined in Section 6.

LeEmMa 7.3. Foreach T = T(J,, L,) in 3 and each 0 < ¢ < o, one has

(i) of the test based on T is monotone and L(zx) = lim, L.(x) 7s of the form
cx + ¢, then Br(AM; a) = ®(ka + 3P4 (a; 1)) iff lim, (nd,) = ¢;

(i1) #f L(x) s not of the form cix + c; , then Br(AM; a) < ®(kq + 3%c2A(a;J))
whenever lim,, (n} dy,) = ¢;

(iii) 4n all cases, Br(AM;a) < (ko + 3%c2A(a;J)) whenever lim, (ntd,) = e.

Proor. (i) follows from the arguments of Theorem 7.2. Since B(r, d, e; -, +)
isin Q(a;d), then (ii) will follow if one can show that there exists 0 < r < 1 and
e > 0 such that lim, B+(B(r, dn, e; -, -)) < ®(ka + 3'cA(a, J)). Let
B(r, d, e;-,-) be the alternative for which By (r, d, e; t) equals By(r, d; t) for ¢
outside (v + d, w 4+ d + e) and equals the line [(d/e) + 1]t — d[1 + (u +
d)/e] inside this interval. Then lengthy computations yield

lim,o+ lim, {E[T(J, L)| B(r, d, e; -, -)]
— E[T(T(J, L))| Hol} /o|T(J, L)| Hi| = A(a; J)L'(r)/20(L)
where o*(L) = [§ L*(u) du — ([§ L(u) du)®.

In the proof of Lemma 2.2 of [13] it is shown that there exists 0 < r < 1 such
that L'(r)/o(L) < 2-3%.

(ii) now follows from Theorem 1 of Bhuchongkul (1964). (iii) follows by the
same argument.

Let A(J) denote A(%; J), then

LemmaA 7.4. sup A(J) = %, where the sup is over the class of symmetrical J for
which 0 < [3J%(u) du < .

Proor. Without loss of generality, assume that f sJ(u) du = 0; then one can
write 44*(J) = ([} J(u)2 du)’/[} J*(u)2 du. From this and the elementary ine-
quality EX* = (EX)*, one immediately obtains 44*(J) <1 and thus A(J) < &.

To see that the upper bound is attained, define Jo(u) = 1 for u in (3, 1];
Jo(%) = 0;and Jo(u) = —1 foru in [0, £). Jo does not satisfy the conditions of
[7], but there exists a sequence {J*} satisfying these conditions whose limit is Jo
and for which lim; A(J*) = A(J,).

From the above proof, it is easily seen that there does not exist J such that
(i) A(J) = %; and (ii) T(J, L) is in 3(S) (of Section 6); hence Lemma 7.3
(iii) and Lemma 7.4 yield
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CoROLLARY 7.1. If T is in 3(S), then Br(AM) < ®(k. + 3'¢/2).

Let W =n""(n 4+ 1) 2 Jo(ri/(n +1))s:, then

LemMA 7.5. If Ex(W) = [[ Jo(z)y dH(=, y), B denotes B(r, dn , ¢; -, ) and
lim, d, = 0, then lim, P((120) W — Ex(W)] < t|B) = &(t) uniformly with
respect to t, r and e.

Proor. Let T(J*) = n”'(n 4+ 1)™ 2. J*(r;/(n + 1))s; be such that (i) J*
equals J, outside the interval (3 — k™, § + k'); (ii) JE5u) = —=J*(1 — ) for
eachwin (0, 1); and (iii) T(J*) is in 3(S). Thus T(J*) is a sequence of statistics
in 3(8) converging to W = T(J,). From the uniformity arguments of Chernoff
and Savage (1958) and Bhuchongkul (1964), it follows that

P(n'D, T (J*) — Ex(T(J*))] < t|B)
tends to ®(t) uniformly in ¢, 7, e and k = 4 provided d, tends to zero; where
Dy, = o(J*)/(12)} and Ex(T(J*)) = [[ J*(2)y dB(z, y). One finds that D;
tends to 1 and Ex(T(J*)) tends to Ex(T(Jo)) = Es(W) as k tends to infinity.
Thus, upon taking limits as & tends to infinity, the result follows.

COROLLARY 7.2. Bw(AM) = ®(ky + 3'/2).

Proor. When n is even and the data have been permuted to make the z’s
ordered, then W is equivalent to Z;‘,M s; and thus Y e(y: — ¥;), where the
summationisover: = in 41, --- ,nandj = 1, - - - , §n. It follows that the test
based on W is monotone. A similar argument holds when n is odd. Using Lemma
7.5 and the arguments of Theorem 7.2 and Lemma 7.3, the result follows.
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