ON THE PROBABILITY OF LARGE DEVIATIONS OF FUNCTIONS
OF SEVERAL EMPIRICAL CDF’S*

By A. Bruce HoapLEY?
Unaversity of California, Berkeley

1. Summary. In [14], Sanov proved that if Fy is the empirical cumulative dis-
tribution function (edf) of a sample drawn from a population whose true cdf is F
and Q is a set of cdf’s which satisfies certain regularity conditions and does not
contain Fy, then P{Fy ¢ @} is roughly exp { —N infr.e f In (dF/dF,) dF}. This
theory is extended to the c-sample case and to the case where the set of cdf’s
in question depends on N. These extensions are used to estimate the probability
of a large deviation of those statistics which are, or can be approximated by,
uniformly continuous functions of the empirical cdf’s. As an example, the main
result is applied to the Wilcoxon statistic, and the resulting formula is used to
compute the exact Bahadur efficiency of the Wilcoxon test relative to the ¢-test.

2. Introduction. If {T4}y=1 is a sequence of statistics, defined on some prob-
ability space (&, S, P), for which Tx —p 8 as N — «, then we shall say that the
event {Tx = 0 + ey} is a large deviation of Ty if limy.w N " In P{Ty = 0 + ex}
= —J with 0 < I < . To facilitate discussion, I will be called the index of
the large deviation.

In recent years, several definitions of asymptotic relative efficiency between
two tests of some hypothesis (see [2], [4], and [10]) have been proposed which
require the computation of indices of large deviations for their application. Until
recently, the computation of indices had been studied extensively only in the
case of sums of independent random variables. The theory of large deviations
has now been extended by Sanov [14], Sethuraman [15], [16], Abrahamson [1],
and others, to include statistics which are not sums of independent random vari-
ables.

The approach taken by Sethuraman and Abrahamson was to extend the result
for the sample mean to statistics that can be written as supsg N D 1f(X;),
where X;, - -+, X» are independent identically distributed random variables in
a metric space X, and F is some well-behaved class of real valued functions on <.
In [1], Abrahamson used the above approach to compute the exact Bahadur
efficiency for a large number of classical statistics including the F-statistic,
studentized range, between-sample sum of squares, and 1 and 2 sample Kol-
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mogorov-Smirnov statistics. Also, Klotz [12] utilized a theorem of Feller [7] on
the large deviation of sums of independent, non-identically distributed random
variables to compute the exact Bahadur efficiency of the one-sample Wilcoxon
and normal scores tests.

In [14], Sanov shows that if Fx is the empirical cumulative distribution func-
tion (cdf) of a sample drawn from a population with cdf Fo, and Q is a certain
well-behaved set of cdf’s, not containing Fo, then limy,, N In P{Fy ¢}
= —infrq [ In (dF/dF,) dF. In this paper Sanov’s approach to large deviation
theory is amended and extended to yield theorems which give the indices for
large deviations of statistics which are functions of several empirical cdf’s.

Fundamental to Sanov’s approach to large deviation theory is the concept of
information, which is discussed in [13]. Let D denote the set of c¢df’s on (— 0,
+ o). For F and G in D, let F and G be absolutely continuous with respect to u
(e.g, u=(F+ @)/2). Let f = dF/du and g = dG/du, and let

fIn(f/g) =0 if f=0
= 4w if f>0 and g=0
= itself if f>0 and ¢ > 0.
Then
(2.1) I(F, @) = [ fIn (f/g) du

is well defined and has the following well-known properties (see [13]): (i)
02 I(F,@ £ . (ii) of I(F, G) < o, then F L Gand I(F, G) =
[ In (dF/dG) dF. (iii) I(F, G) = 0 if and only if F = G. In [13], I(F; @) is
called the mean information for discrimination between F and G per observation

from F.
Let D° denote the cartesian product of D with itself c-times; then for any

Q= (F, - ,F)and R = (G, ---,G)inD and p = (p1, +--, p.)We
define

(2.2) I5(Q R) = 25 nl(F;, G).

If 2 C D and @ C D°, we introduce the special notation

(2.3) I(S, Fo) = infees I(F, Fo),

IPc(Qa QO) = ian«Eﬂ Ipc(Q) QO)

The p and ¢ will be dropped from I,” whenever it is clear from the context what is
meant.

We will consider the c-sample set-up, which can be described as follows: Let
X1, oy Xjm;,J =1, -+, ¢, denote ¢ independent samples, where X, ,
-+, X;u; is a sample drawn from a population with continuous cdf ¥, . Let
N = D %.in;, and, for the asymptotic theory, let N — o« in such a way that
[n;/N — pj| = O(In N/N) as N — »,and p; > 0,forj =1, ---, c. Let Qo =
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(Fro, -»+, Feo) and Sy = (Fin,, -+, F.n,), where F; . is the empirical cdf
of the jth sample; i.e. Fa,(z) = n; '[no. of X;/s < z].

Since we shall be dealing with functions of several empirical cdf’s, it is useful
to introduce a metric space on which these functions can be defined. Let E denote
the normed linear space of functions of bounded variation on (— o, 4 ),
with ||k|| = sup. |h(x)| for h e E. Let E° be the cartesian product of E with
itself c-times, and for H = (hy, -+, ho) € E°, define |H||. = maxi<;<. {||1j]]}-
| |lc is a norm on E°; hence we can consider E° as a metric space with the metric
induced by this norm.

Suppose T is a real valued function with domain D°, then let

(24) 2 ={QeD: T(Q) = 7},
I(r) = I(Q, Qo);

and let {£y} v-1 be a sequence of numbers for which limy.. &y = O.
TareoreM 1. If T s uniformly continuous, then for every r > T(Qo) at which
I(r) s continuous,

limy.o N7 In P{T(Sy) = r + &} = —I(2, Qo).

Theorem 1 is applicable to estimating the probability of large deviations of
many statistics which arise in the theory of testing. For example, in the one-
sample case, it handles the Kolmogorov-Smirnov one- and two-sided tests of
fit, and the Cramér-Von Mises test of fit, because they are uniformly continuous
functions of the empirical cdf. In the two sample case, it applies to the Chernoff-
Savage statistics, (see [5]), when the kernal function J is bounded; for example
in the Wilcoxon case. However, the sample mean, which can be written T(Fx)
= f x dFy , where Fy is the empirical c¢df of the sample, is not a uniformly con-
tinuous function of the empirical cdf, so Theorem 1 is not applicable. But
T®(Fy) = [|sjs82dFy is uniformly continuous and approximates [ z dFy .
This idea is explored to yield a more general theorem which gives the index of a
large deviation of any statistic 7% which can be suitably approximated by a
sequence of uniformly continuous functions of the empirical cdf’s.

For each positive integer B, let T be a uniformly continuous real valued
function with domain D® for which o = lims.. T (Qo) exists. Let

(2.5) 2,® ={QeD: T®(Q) = y},
I®(y) = 1(2,°, Qo).

If X~ denotes the c-samples of observations, we consider statistics of the form
Ty = Tx(Xx), where Ty is Borel measurable. Define
(2.6) dN(B) = T(B)(SN) -_ TN .

TaEOREM 2. Suppose r and r1 are numbers with ro < r < 11 for which condi-
tions (1), (I1), and (III) hold (see Section 4.); then

liMyaw N2 In P{Ty = 7 + &y} = —limp.o I®(r).
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Conditions (I) and (II) are conditions involving the continuity of the two
functions I®(y) and I(y) = lima..I®(y). Condition (III) states: for each
sequence By — o, there exists a sequence 8y | 0 such that if Py denotes the
conditional distribution of dy‘®® given {Tx = y} and Qy denotes the conditional
distribution of dy®¥ given {T*¥(Sy) = y + x}, then f ’i‘}’N dPy and fb_‘}’” dQx
do not tend to zero exponentially or faster with N.

This theorem gives an alternative approach to finding the index of a large
deviation of the sample mean, a problem which has been solved by Cramér
[6], Chernoff [4], Bahadur and Rao [3], and others. In the two sample case, it
can be applied to the difference of the sample means (for details see [9]); and
the author conjectures that the Chernoff-Savage statistics with unbounded J

can be handled if suitable restrictions are imposed.

3. Proof of Theorem 1. The proof of Theorem 1 requires a considerable
amount of construction and preliminary lemmas. Some of the ideas and defini-
tions are due to Sanov [14]. These will be pointed out as the discussion progresses.

We start out by introducing a certain kind of elementary set of cdf’s which will
be used to approximate more complicated sets. For F, a fixed continuous cdf,
let (A)y={—o0 =ar < a1 < -+ < ay1 < ay = + =} be a partition of
(— 0, + ) which is defined by

(3.1) a, = inf {z: Fo(z) = k/M}, fork=1,---,M — 1.

Let

(32) I = ((k = 1)/M, /M), k=2, M,
= [0, 1/M], k=1,

be M sub-intervals of [0, 1]. The partition, (@) , of (— o, 4 «) and the parti-
tion, {0 < 1/M < --- < (M —1)/M < 1}, 0f [0, 1] form a grid on (— 0, 4 o)
X [0, 1], which shall be called an Fo-grid of size M (see Fig. 3.1). We use this
grid to associate with each cdf, H, a set of cdf’s which is defined as follows:
Fork =1, ---,M — 1, suppose H(ax) € I;x, then {F: F(ax) € L) for k = 1,
-, M — 1} shall be called a Fo-strip of size M (see Fig. 3.1). This concept is
closely related to that of e-neighborhood introduced in [14]. The functions

H(z) =0 forz e (—e, a;)
= (j(k) — 1)/M for x e [ax , Qry1), k=1,---,M —1,
H(z) = j(k)/M for z & (a1, @), k=1 ---,M—1,
=1 forze (am—, ©)

shall be called the lower and upper border functions of the F strip; and H(ax) —
H(a,) = 1/M shall be called the width of the Fo-strip at ax (see Fig. 3.1).

As in [14], the set of cdf’s F, for which F(ax) = vz, where0 = v S v < - --
< vy_1 < vy = 1, shall be called a cylinder of size M ; vy, shall be called the vertex
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Fia. 3.1. Fo-grid of size 8 and Fo-strip of size 8.

of the cylinder at ax ; and Aw = vr — vx_1 shall be called the increments of the
vertices (see Fig. 3.2). If vy, = I/N with [ an integer and 0 = I < N, then the
cylinder is called an N-cylinder. Note that empirical cdf’s fall in N-cylinders.

For any cdf H, let A H denote H(ax) — H(ax1). A cdf, F, is said to be Fo-prece-
wise-linear on (a)y ,if fork =1, .-+, M,

(3.3) F(z) = F(ar—1) + (AF/AFo)[Fo(x) — Fo(ar)] for xe (ar—1, ar)-

We shall call m;, = (AF/AFo) the Fo-slope of F on (ax—1, ax). (see Fig. 3.2).
LemMa 3.1. If F is Fo-piecewise-linear on (a) u , with Fo-slope my on (@x—1 , @x),
then (1) mp = M(AF), (i) D mtym, = M, (iii) I(F, Fo) = M7 Dt my In my
<InM.
Proor. (i) By construction AFo = M, hence mi = (AF/AcFo) = M(AF).
(i) 2Myme = D s M(AF) = M.
(iii) I(F, Fo) = 2i (AF) In (AF/DFo) = M7 D0 my In my, .
Also,

I(F, Fo) = D 2 (AF) In AF — D0 (AF) In AF
= > (AF)InAF +In M
<l M.

Suppose A is a cylinder with vertices v, - -, va—1 . Then by definition, A is
just the class of all c¢df’s which pass through the points (a1, »1), -+, (@u-1,
vau-1). The unique Fo-piecewise-linear cdf, which passes through these points,
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Fig. 3.2. F is Fi-piecewise-linear and is the Fo-extremal cdf of the cylinder A.

is called the Fo-extremal cdf of A(see Fig. 3.2), and we have
LemMA 3.2 (Theorem 6 of Sanov [14]). If A is the cylinder with vertices vy, - - - ,
vu_y with respect to (@) , then

I(A, Fo) = I(q)o, Fo) = Z)?Ll Ag In (Akv/AkFo),

where &, s the Fo-extermal cdf of A.

The next step is to derive an asymptotic expression for P{Fy ¢ Vy}, where Vy
is a sequence of Fy-strips of size My and My — « at a certain rate. Such an ex-
pression is given in [14], p. 239, line 5, for a certain sequence of e-neighborhoods;
but the proof does not seem to be valid for the generality considered there.
However, the basic ideas in Sanov’s proof apply to the proof of the lemma
below

LemMma 3.3. Let Xy, --- , Xn be a sample drawn from a population with con-
tinuous cdf Fo , and let Fy be the empirical cdf. If {Vx} is a sequence of Fo-strips of
size My = o(N/In N), then

P{FyeVy} = exp {—N[I(Vx, Fo) + O(My In N/N)J}

uniformly in Vy as N — «

Proor. For notational convenience, let M = My . The width of Vx at ax
is M™*; hence, since M = o(N/In N), it is clear that for sufficiently large N,
there is an N-cylinder contained in Vy . Now let Ay be any N-cylinder contained
in Vy with vertices vy, - - - , va_1 . It follows from the multinomial distribution,
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Sanov [14], pp. 214215, formulae (3) and (4), and Lemma 3.2 that
P{FyeAx} = exp {—N[D i (Aw) In (Aw/AF,) + O(M In N/N)}}
(3.4) = exp {—N[I(Ax, Fo) + O(M In N/N)]}
= exp {—N[I(Vy, Fo) + O(M In N/N)]}

uniformly in Vy as N — .

Let {Ax}3=1 be the set of all distinct N-cylinders contained in Vy . The num-
ber of possible vertices of N-cylinders at ax ,k =1, --- ,M — 1,is N 4+ 1; s0
s < (N + 1)¥, and hence

P{F)vé‘VN} = ler—-lP{FNeAN,k}
(N + 1)¥ exp {~N[I[(Vw, Fo) + O(M In N/N)}}
exp {—N[I(Vx, Fo) + O(M In N/N)]}

(3.5)

I\

uniformly in Vyas N — .
Let 7v = O(M In N/N), and let &* be a cdf in Vy for which

I(Vy, Fo) < I(®x™* Fo) < I(Vy, Fo) + 7v.
Also let Ay™ be a cylinder of size M defined by the points
(a1, 8" (@), -+, (Gu-1, BN (Ga1)),
and let ®y be the Fo-extremal cdf of Ay*. Then &y ¢ Vy and
(36) I(Vw, Fo) < I(@x, Fo) < I(&", Fo) < I(Vw, Fo) + 7.

Since M = o(N/In N), it is clear that for sufficiently large N, there is an N-cylin-
der, Ay’, contained in Vy , with vertices vy, « -+ , v3_1 , for which

v — ®x(ar)| < N7, k=1,.---, M — 1.
It is generally true that for z, y ¢ [0, 1],
|zt —y| < 2/N=|zlnz — ylny| < ex = O(In N/N).
This along with (3.6) yields:
0 < I(Ax', Fo) — I(Vw, Fo)
< I(Ay, Fo) — I(®y , Fo) + o
= DM a0 In (Aw'/AF,) — Ay In (Ady/AFo)] + v
< oM |aw In Aw' — Ay In Ay
+ Do Ay — A| |In AFo| + 7
S Mew+ (2/ NYMIn M + 74
= O(M In N/N),
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uniformly in Vy as N — . Combining this with (3.4) gives
P{FyeVy} 2 P{Fye Ay}

exp {—N[I(Ax', Fo) + O(M In N/N))}

= exp {—N[I(Vy, Fo) + O(M In N/N)}}

uniformly in Vy as N — «. The lemma follows from (3.5) and (3.7).

We now generalize Lemma 3.3 to the c-sample set-up. If, forj = 1, --- , ¢,
V;is an Fjo-strip of size M, then U = V; x --- x V., C D° will be called a
Qo-product strip of size M.

Lemma 3.4. In the c-sample set-up, if {Ux} is a sequence of Qo-product strips of
size My = o(N/In N), then

P{SyeUn} = exp {—N[I(Uwr, @) + O(My In N/N)]},

uniformly in Uy as N — .,
Proor. Uy is a Qo-product strip; hence it can be written Uy = Vyy % ---
x V., whereV;xis an F; o-strip of size My . By independence and Lemma 3.3,

we get
P{SyveUn} = P{(Fin,, -y Fon,) eVin % -+ x Vel
= JI5< P{Fjn; € V;n}
II5-1exp {=N{(ni/N)I(V,x, Fi0) + O(My In N/N)]}
exp {=NII(Ux, Q) + 251 (ni/N — p)I(Vin, Fja)
+ O(My In N/N)]}

uniformly in Uy as N — «. But V; » contains a cylinder and thus contains the
the F; ¢-extremal cdf (call it G;) of that cylinder; hence by Lemma 3.1

I(Vin,Fio) £ I(Gj,Fj,) SIn My.

(3.7)

(3.8)

]

Therefore
| 2251 (ni/N — p)I(Vin , Fio)| < In My 2 %1 |ni/N — p;| = O(MyIn N/N),

uniformly in Uy as N — . Applying this to (3.8) yields the lemma.

In order to get an asymptotic expression for P{Sy ¢ Qx}, where Qy is a sequence
of sets in D°, we must put regularity conditions on Qx . These conditions amount
to saying that Qy can be approximated by Qo-product strips.

DErFINITION 3.1. A sequence, {Qy}y—1, of subsets of D° is said to be a Qp-regu-
lar sequence if for each p = (py, - - -, pc), with p; > 0, the following conditions
are satisfied:

(A) I(Qy, Q) < o, and limy.e I(2x, Q) =1 < x;

(B) for each n > 0, there exists K + 1 = K(9, N) + 1 Qo-product strips of
size My = O(N/hl N), Ux 5 Ul,zv y vy Ux,zv , such that

(i) UwrC Q,
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(11) I(UN,QO) < I(QN, QO) +77,

(iii) Qv U Usw,

(iv) I(Uin, Qo) > I(Qv, Q) — n.

In the one sample case, this is closely related to the concept of Fo-distin-
guishability, which was introduced by Sanov [14], p. 233. The difference is that
here we use Fo-strips of size My = o(N/In N) instead of e-neighborhoods, and
we drop the condition that K = o(N).

Lemma (3.5). For the c-sample set-up, if {Qx} is a Qo-regular sequence, then

limN_m N_I In P{SN&'QN} = —].

Proor. Let Uy, Uiy, - -+, Uk,» be the Qo-product strips given in Definition
3.1. By Lemma 3.4 and condition (B)-(i), (ii) of Definition 3.1, we have
P{Sy e Qv} = P{Sy e Uy}
(3.9) = exp { —N[I(Ux, Q) + O(MyIn N/N)}}
= exp {—N[I(Q, Q) + 7 + O(Mx In N/N)]}.

From each F;-grid of size M, one can construct no more than (M 4 2)
strips of size M ; hence

(3.10) K < (My + 2)°+,
So by condition (B)-(iii), (iv) of Definition 3.1, (3.10), and Lemma 3.4 we have
P{Sw e} = 2% P{Sv e Uin}
= > %exp {—N[{I(Uix, Q) + O(My In N/N)J}
(3.11) < K maxi<i<x exp { —N[I(U;n, Q) + O(My In N/N)J}
< (My + 2)°"™ exp { —N[minicicx I(Usn, Qo)
+ O(MyIn N/N)1}
< exp {—N[I(Qv, Q) — n + O(My In N/N)J}.
Putting (3.9) and (3.11) together yields
O(MyInN/N) — n — I(Q, Qo)
(3.12) - < N7'1n P{Sx & O}
= —I(%,Q) + O(MyInN/N) + 1

M1y
Fjo-

as N — «. Letting N — o, noting that n > 0 is arbitrary, and using condition
(A) of Definition 3.1 proves Lemma 3.5.
Before getting into the proof of Theorem 1, we require one more lemma.
LEMMA 3.6. Let F be an Fy-piecewise linear cdf with Fo-slope mi on (i1, ax).
Let 1 = maxy<k<u mi - If > Moy , where ay | 0 in such a way that oy L =
o(ln M) as M — oo, then I(F, Fo) = by , where limy by = + .
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Proor. Let m; = 7. Then from Lemma, 3.1, we have that

I(F, Fo) = M2 ker my, In my + 70 In i)

It is generally true that if w,, ---, w,, o1, ---, v, = 0, then
D imviln (vifus) = (D ivi) ’111 [(2oi0:)/( D sud)l

(See [8], p. 97, inequality no. 17.) Using this inequality, and the fact that
Zk;ﬂ my, = M — M, the above becomes
(3.13) I(F,Fo) 2 M™H{(M — ) In[(M —h)/(M — 1)] + s Inh}.
Applying the hypothesis that % > May to (3.13) yields, for Ma, = 1,

I(F,Fo) 2 (1 —i/M){In (1 —m/M) + In[M/(M — 1)]}

(3.14) 4+ M (Moy) In May
—[exp {1}]_1 + axIn M 4 oy In ay
= bM .

But ay > 0= axIn ay — 0;and ay ' = o(In M) = ay In M — + o ; hence
lim e by = + .

We are now in a position to prove Theorem 1. The first step is to show that the
constant sequence @, = {Q ¢ D°: T(Q) = r} is a Qo-regular sequence for every
r > T(Qo) at which I(r) is continuous.

ConprtioN (A). I(Q., Qo) = I(r) < «, because I is continuous at 7.

ConprTioN (B). Since Q, does not depend on N, we need not consider N in
the verification of condition (B). Fix g > 0. By the continuity of I at r, we may
choose 6 > 0 such that I(r 4+ 8) < I(r) + n/2. Now choose Q* = (F,*, --.  F.*)
& Q.45 such that

(3.15) I(Q%, Qo) < I(Qss, Q) + n/2 =I(r+8) +n/2<I(r) +n
= I(Q, Qo) + .

Since T is continuous at Q*, we can choose ¢ > 0 such that
(3.16) 1@ — Qe < e=T(Q) > T(Q") —5=r.

Forj=1,---,¢ 1 (Fi* F;o) < implies that F;* is absolutely continuous
with respect to F;,0 , hence there exists § > 0 such that AF; 0 < 0= AF;* < ¢/2.
Since Fj, is continuous, we can choose M so large that A0 = 1/M < 6,
forj =1,---,candk = 1, --- , M, and hence AF;* < ¢/2. Let Vi be the

F; ostrip of size M which contains F;* and let F;*(F,;*) be the upper (lower)
border function of Vi . By construction

IF* — Fi¥[ < maxicicn AF,* 4+ 2/M;
so if we also choose M so large that 2/M < €/2, then
[F* — Fi¥ll < ¢/24¢/2 =«

v
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Thus for any F; and G; in V. ", IF; — Gj]| < ¢; and hence for any Q in U™ =
Vi x - x Viu, 1@ — Q¥. < ¢, which implies by (3.16) that 7(Q) > r;
so Ux™ < Q.. Applying (3.15) yields

(3.17) I(Ux™, Q) = I1(Q% Q) < I(2, Q) + n;

hence U™ is that product-strip required in condition (B)-(i), (ii).
For parts (iii) and (iv) fixn > 0; then by the continuity of I at r, we can choose
6 > 0 such that

(3.18) I(r — &) > I(r) — n/2.
Since T is uniformly continuous, we can choose ¢ > 0 such that
(3.19) 1@ — R||. < e= T(R) > T(Q) — 5/2.

Consider the sequences {ay} and {by} defined in Lemma 3.6, and choose M so
large that for m = M,

(3.20) am + 2/m < e and bn > (minigjge p7) " I(7).

Consider now the finite class of all Q,-product strips of size M, and let € be
the sub-class of product strips U for which either infe.y 7(Q) = r or infe.r T(Q)
< r = supeww T(Q). Label the members of €, Uy, -+, Ug . We proceed now to
show that Uy, ---, Ug are the product strips required by condition (B)-(iii),
(iv).

Every F;g-strip V; of size M contains a F;c-piecewise linear cdf; hence by
Lemma 3.1, I(V;, F;0) < In M. For any Qo-product strip, U = Vy x --- x V.,
it is true that, I(U, Qo) = D> o1 p;I(V;, Fjo) < In M; thus I(U;, Q) < «

forz =1, , K. From the definition of @, it follows thatﬂ = {Q:T(Q) = r}
c UL U i3 hence it remains only to show that
(3.21) I(Q, Q) —n < I(U;:, Q), for: =1, ---, K.

For those U ¢ @ for which infg.y T(Q) = r, we have U C Q. ; hence (3.21)
holds. The remaining members of € need special attention.
Let

(3.22) = {UecC:infev T(Q) < r = supew T(Q)}.

Each U e S can be written U = V; x --- x V., where V; is an F; ¢-strip of size
M. 1t is clear that there exists F,;* & V; such that

(3.23) I(Fi*, Fj0) < I(V;,;Fj0) + 1/2,

and F;* is F; o-piecewise linear with an F, ¢-slope of m;; on (@1, a;z). Let
M; = maxi<k<u Mjr. Note that Q* = (K", ---, F.*) e U, and by (3.23)

(3.24) I(Q* Qo) = 2 5 pd(Fi*, Fi0)

< X5 pll(Vs, Fip) + 1/2] = I(U, Qo) + n/2.
Now V;is an F; ¢-strip with border step functions H; and H; . It is clear from the
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construction of H; and H; that

(3.25) AF* 2 Hi(ajn) — Hiaje) — 2/M.
Since AF;* = M 'm; i, (3.25) becomes

(3.26) Hi(aix) — Hi(@i01) £ M7 (msp + 2);
hence

(3:27) sup: [H(x) — Hi(z)]
= maxigigu [(Hi(ajs) — Hi(aj1)] £ M7 (h; + 2).

We now decompose 8§ into the two disjoint sets:

(3.28) & ={Ue8:; < May,forj=1, - ---,c};
8 =8 — 8.
For U ¢ 8, by (3.27) and (3.20), we have, forj =1, --- , ¢,
(3.29) sup: [Hi(z) — Hi()] < M7'(h; + 2) = M (Moax + 2)
=axy + 2/M < ¢
hence for @ and R in U, [|Q — R||. < ¢, which implies by (3.19) that
(3.30) T(R) > T(Q) — &/2.
From (3.22), we see that one may choose § ¢ U such that
(3.31) T(Q) > r — §/2.

Since Q* is also in U, (3.30) and (8.31) yield T(Q*) > T(J) — §/2 > r — &;
ie.
(3.32) Q% Qs
Combining (3.24), (3.32), and (3.18), yields
I(U, Qo) > I(Q*,Q0) — 1/2 2 I(Q—s, Q) — /2
=1I(r—128) —n/2>I(r) — 9 =I1(2,Q) — n;

hence (3.21) is satisfied for those U ¢ 8, . For U ¢ 8» , we still have from (3 .24)
that
(333)  I(U, Q) > I(Q%, Q) — n/2 = 25 pd(Fi*, Fio) — n/2.
Since U € 8, , thereisanl, 1 < I = ¢, such that 7#; > Manm ; hence by Lemma 3.6,
(3.34) I(Fi*, Fr0) Z ba.
Combining (3.33), (3.34), and (3.20) yields
I(U, Qo) > pd(Fi*, Fr0) — 0/2 2 pibac — 1/2

> (minigjge p5) "l (r) — 0/2 > I(r) — 9 = I(Q, Q) — n;
hence (3.21) is satisfied for U ¢ 8. ; and therefore for U ¢ €.
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We have now proved that Q, is a constant Qo-regular sequence; hence by Lemma
3.5,

(3.35) limyao N 'In P{T(Sy) = 7} = —I(r).

The above result is now used to prove Theorem 1. I is non-decreasing for
r > T(Qo); hence it has at most countably many discontinuities. Therefore we
may choose a sequence, {6; > 0}i=1, such that r == & are continuity points of
I, and limg., 8 = 0. For each k, choose N so large that |£v| < 6; ; hence we have

(3.36) N'InP{T(Sy) Zr+ & <N InP{T(Sy) =7+ &}
S N 'InP{T(Sy) = v — &}.
For k suitably large, we can apply (3.35) to (3.36) and get
—I(r + &) < liminfy, N"'P{T(Sy) 2 r + &}
< lim supyseo N ' P{T(Sy) = 7 + &} £ —I(r — &).
Letting k — o, the continuity of I at r gives Theorem 1.

4. Conditions and proof for Theorem 2. The conditions for Theorem 2 are
(1) I®(y) < w,foryelro, n), and I® is continuous at r, for suitably large
B.
(IT) I(y) = limp.e I®(y) < o, forye[ro, ), and I is continuous at r.
(II1) For each sequence By — «, there exists a sequence oy 1 0 such that for
each y & [ro, 71)
(i) P{T®(Sy) Z y + éx} > 0 for suitably large N,
(ii) P{Tw~ = y} > O for suitably large N,
(i) limyae N 10 [1 — P{ldx®"| > v | T®(Sy) Z y + &}] = 0,
(iv) limyse N7 In [1 — P{|dx®¥| > ov | T Z y}] = 0.
As with Theorem 1, we first prove Theorem 2 for the case &y = 0. Choose
5> 0and B* > 0 such that for all B > B* we have

(i) T®(Q) <r—34.
(4.1) (ii) I®(y) is non-decreasing for y ¢ [r — 6, r + §], and [ ® is con-
tinous at r.

Let
(42) A= {yelr—8r+8:I® iscontinuousat y forall

B > B*, and I is continuous at y}.

By (4.1), it is clear that [r — 8, 7 4+ 8] — A is countable; hence A is dense in
[r — 8, + 8]. Now consider a fixed y ¢ A and a fixed n > 0. For B > B*, T® is
uniformly continuous, and y is a continuity point of I ®. hence Theorem 1 as well
as its proof are applicable. From the proof of Theorem 1, we get Qo-product

strips of size M = M(B), U®, U,", -+, Ux®™, which have the following
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properties:
i U®ca®
(4.3) (i)  I(U?, Q) < I(2,®, Q) + n,
i) % < UL, U.®,
(iv) LU, Q) > L2, Q) — u.
It is clear that we can choose a sequence { By} y—1 , such that
(4.4) limy.oBy = © and My = M(By) = o(N/InN)

as N — . From assumptions (I) and (II), (4.3), and (4.4) we see that @, is
a Qo-regular sequence; hence by Lemma 3.5, we have, letting B = By,

(4.5)  limyae N ' In P{Sy £ 2,®} = limy.e N ' In P{T®(Sy) = v}

= —limy.o I(QH(B): QO) = _I(y);
for each y € A.
To complete the proof of Theorem 2 in the case £y = 0, we need to show that
(46)  limy.o N7'InP{Ty = r} = limy.o N In P{T®(8y) = r}.

To do this, assumption (III) will play the dominant role. Let 6y | O be the
sequence guaranteed by assumption (III). Then for suitably large N, we have,

P{T®(Sy) = r + 6u}
= P{T®(Sx) Z 7 + on, [dx®| < &)
(4.7) + P{T®(8Sy) = r + o, |dx®| > on}
< P{T®(8y) = r + dy*®}
+ P{TP(8y) 2 v+ s} P{ldx| > o | T®(Sw) Z 7 + &} ;
hence, by noting (2.6), we see that
(4.8)  P{Ty =71} = P{T®(Sy) = r + 6}
QL = P{dx®| > 6w | T®(Sw) = + o}l
On the other hand, for suitably large N, we have
P{Ty 2 1} = P{Ty 2 7, |[dv®| > ox}
(4.9) + P{T®(8y) = r+ dx™, |dy"™| < ox}
= P{Ty 2 T}P{ldN(B)| > o | Tw =1}
+ P{T(8x) 2 r — ox};
therefore
(410) P{Ty =1} < P{T®(8y) = r — oy}[1 — P{ldx®| > on | Tw = #}|”".
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An application of condition (III) to (4.8) and (4.10) yields
lim infy. N7 In P{T® (Sy) = r + dn}
(4.11) < lim infy, N In P{Tx = 7}

< lim supy.e N ' In P{Ty = 7}

< lim supyae N7 In P{T®(Sy) = r — &x}.

Since the complement of A is countable, we can choose a sequence \r | 0 such
that r &= A¢ € A. Then for k fixed, it is clear from (4.5) that

(412) —I(r +N) < liminfy,o N7 In P{T®(Sy) = r + oy}
< lim supwao N In P{T®(Sy) = 7 — 6y} = —I(r — \s).
Combining (4.12) with (4.11), letting ¥ — o, and recalling that I is continuous
at r, we get
limy, N InP{Ty = 7} = —I(r) = —limp.e 1(2, Qo);

which completes the proof of Theorem 2 in the case &y = 0.

To remove the restriction £y = 0, one uses the same argument that was used
for Theorem 1.

6. Application of Theorem 1 to the Wilcoxon statistic. Consider the 2-sample
set-up, where we adopt the following special notation:m = ny ,n = ny , Fo = F, 0,
Go = F0,Fp = Fu,,and G, = F,, . Let T be defined by T(F, G) = [ F dG;
then T(8Sy) = [ Fr dG, is just the Mann-Whitney form of the Wilcoxon statistic.
The purposes of this section are to first show that Theorem 1 is applicable to this
statistic, and then to derive a useful formula for the probability of a large devi-

ation.
To show that Theorem 1 is applicable, we need only show that 7T is uniformly

continuous. Integration by parts yields

|f F1dGy — [F2dGy| = |[ (F1 — F2) dGy + [ F2dGy — [ F,d @
< [|F1 — Fo| dGy + |[ F2d(Gy — Gy)|
= [|Fy — F3|dG: + | (Gi(z — 0) — Go(z — 0)) dF
< [|Fy — F)|dGy + [ |Gi(z — 0) — Ga(z — 0)] dF.,

Il

which proves the uniform continuity of 7.

We now compute the index of a large deviation of the Wilcoxon statistic, which
can be done explicitly if Fo = Go . Since the Wilcoxon statistic is distribution free,
we can, without loss of generality, assume Fy = Gy = U,, where U, is the cdf of
the uniform distribution on [0, 1]. In this case, T(Qs) = [ UodU, = %, and
sup f F dG@ = 1; hence we consider 3 < r < 1. The problem is to minimize
el (F, Uy) + p2I(@G, Uy) subject to the condition that f F d@ = r. A necessary
condition for I(F, U,) to be finite (see Section 2) is that F be absolutely con-
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tinuous with respect to Us ; hence we may restrict attention to those F and G
which are absolutely continuous cdf’s on [0, 1]. If we let f and g denote the densi-
ties of F and G, then we seek the minimum of p; [§fInfdz + p» [o g In g dz sub-
ject to f% Fg dz = r. For notational convenience, let H(f,g) = m f tfInfdz+
p2 [3 9 In g dz.Now for X > 0, N[t Fgdz — r] = 0; hence

(5.1) —H(f,g) < [sorfIn (1/f) dz + [ o9 In (1/g) dz + NJo Fg dz — 7],

where ylny = 0 = yIn (1/y) when y = 0. Using integration by parts and
Jensen’s inequality, we get from (5.1) that

—H(f,9) = alfif1n (1/f) de — [s (Mm)Gf da]

+M1 = 1) + 2 fog1n(1/g) do
(52) = p [oIn [(1/f) exp {—(N/p)G}If dz + N1 — 7)

+ 02 [69In (1/g) da

< pln [exp {—O\/p)G} dz + N1 — 1) + p2 JogIn (1/g) dz,
with equality if and only if
(5.3) (i) [iFgdz =r,
(ii) (1/f) exp{—(\/p1)G} = a constant.

Notice that the last term in (5.2) does not depend on f; hence for a fixed g, H(/, q)
is minimized by any solution, f, of (5.3).
Interchanging the role of F and G when manipulating (5.1) we obtain:

—H(f, 9) < mlfsgIn (1/g) dz + [o (N p2)Fg dz] — N
(5:4) + [spfIn (1/f) dz
= pal[3In [(1/g) exp {(Np2)F}lg de — N + [opuf In (1/f) do
< poIn [Sexp (\p)F de — M + [§ of In (1/f) dz,
with equality if and only if
(5.5) (i) [iFgdz =,
(ii) (1/g) exp {(N/p2)F} = a constant.

Notice again that the last term in (5.4) does not depend on g; hence for a fixed
f, H(f, g) is minimized by any solution g of (5.5).

We proceed now to show that (5.3) combined with (5.5) has a unique solution;
and hence the minimum of H(f, g) is attained by this unique solution. The details
of the following are routine but lengthy, and will therefore be left out. They can
be found in [9]. Letting r = % + ¢, we seek a solution of

i)  [iF@)G (2)dz — } = ¢
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(5.6) i)  G'(2) = Kiexp {(Mm)F(2)},
(i)  F'(z) = Kzexp {—(N/pm)G(2)}.

(5.6)-(ii) implies that G(z) = fﬁ Ky exp {(N/p2)F(t)} dt; and since F(t) is
continuous, we get from the fundamental theorem of calculus that G is differ-
entiable on (0, 1). Likewise ¥ is differentiable; hence @ is twice differentiable,
which implies that F is twice differentiable. In fact, both F and G have deriv-
atives of all orders on (0, 1).

Applying elementary techniques to (5.6), one finds that the solution is

(5.7) Fx(z) = —(po/N) In [ exp { —(N/p1p2)x} + (1 — po)],

G\(2) = (1/p2)(x + (p1p2/N) In [pru exp { —(N/prp2)x} + (1 — pu)]),
where A > 01is a solution to [§ FAGy'dz — % = ¢, and
(5.8) # = (1/p)[(exp {—=(N/p2)} — 1)(exp {—=(N/pp2)} — 1)7.

By routine methods, one can show that W(\) = [ FAG\' dx — % is a strictly
increasing function on (0, ), with limx.o W(A\) = 0 and limy.., W(N) =
hence W(N) = ¢ has a unique solution, A(¢) > 0, for 0 < ¢ < %, and (5.6) has
the unique solution (Fio, Gro), which minimizes p; [3F In F’ da
+ p2 [0 @' In G’ dx subject to [S FG dz — % = e

The computation of the minimum is also routine, and the result is stated below.

THEOREM 5.1. If Uy is the R(0, 1) cdf, then for 0 < e < %,

inffrag-yze [MI(F, Us) + pI (@, Us)] = prIn (1/p1) + pzIn (1/ps)
+ In[(1 — exp { =N/p})" (1 — exp {=N/p})**(1 — exp { —N/pp}) 7]
+AM2e — 1],
where N = Ne) > 0 s the unique solution of
WN) = —(1/pi2) [ [ exp { —(N\/ppe) )
“(exp { —=(Mpwp2)z} + [(1/pw) — 1) 7T da + (1/2p2) = ¢,
and
#(N) = (1/p)[(1 — exp {=N/p2})(1 — exp { —N/pipa}) 7],
Furthermore, the minimum s attained by
F\(z) = —(p2/N) In [orp exp { — (N mp2)z} + (1 — pus)],
G\(z) = (1/p2)[z + (p1o2/N) In (p1u exp { —(N/prp2)x} + (1 — pwu))].

6. Interpretation of results. At this point, it is useful to give an interpretation
of the result in the Wilcoxon case, which one can extrapolate to the general case.
To do this, we appeal to [14], Theorem 13, page 242. This theorem says that if
Fy is the empirical cdf of a sample drawn from a population with cdf F , and F is
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a cdf which is absolutely continuous with respect to Fy , then
(6.1) limso limyae N ' In P{||Fy — F|| < 8} = —I(F, Fo).

Hence I(F, F,) is an asymptotic measure of the unlikelihood of the sample
having a cdf near F when the true cdf is Fo . If I(F, Fo) = I(Q, F), where Q is
some Fy-regular class of cdf’s, then, in the above sense, F is the most likely cdf
for the empirical cdf to be near, given that Fy ¢ Q. Furthermore, according to
Lemma 3.5 and (6.1), we have lims.o limy.., N 'In P{||Fy — F| £ 8} =
limy,, N ' In P{Fy ¢ Q}, which says intuitively that given Fy e, it is very
likely to be near F.

Applying these ideas to the Wilcoxon example, we see that given fF,,. da,
— 3 = ¢, the empircal cfd’s are very likely to be near Fi and G, respectively,
in the sense that lims_,o limN_,w ZV_1 In P{ ”Fm - F)\(e)“ <3 and ”Gn - G)\(G)H = 5}
= limy.o N 'In P {f F..dG, — 5 = €. It is interesting to note that by applying
I’Hospital’s rule to (5.7), we get that for0 = z < 1,

(6.2) lime,o Frxo () = limeo Grho(z) = ;5

and a routine computation shows that

lime,; Frao(z) = z/p1, 0<z=np,

(6.3) =1, pm=z =1
lime,; Gho(z) = 0, 0=z=n,

= (1/p2)(z — p), pmsz =1

So given [ F,.dG, — % = 0, the empirical cdf’s are very likely to be near U,,
which is what one would expect, since { [ F dG, — 3 = 0} is not even a large
deviation. However, given the largest deviation possible, namely f F,. dQG,
— % = %, the empirical cdf’s are very likely to be near uniform on (0, p) for F,, ,
and uniform on (p; , 1) for G, , which again is what one would expect.

7. Some other applications of Theorems 1 and 2. For the one sample case,
let T be defined by T'(F) = sup, |F(x) — Fo(x)|. Then T(Fy) is the Kolmogorov-
Smirnov two-sided test of fit statistic. Since T is uniformly continuous, Theorem 1
applies. In [9], I(r) = inf {I(F, Fy): sup, |F(z) — Fo(z)| = r} is computed for
0 < r < 1 and shown to be continuous; hence an expression for

limyo N 'P{sup; [Fx(z) — Fo(z)| = 7}

is obtained, which agrees with the one derived by Sethuraman [15] using a
different method.

If T is defined by T'(F) = sup, [Fo(z) — F(x)], then T'(Fy) is the Kolmogorov-
Smirnov one-sided test of fit; and in [9], an expression is obtained for
limy.. N 'P{sup; [Fo(x) — Fy(z)] = r}. In order to compute the Chernoff
efficiency (see [4]) of Dy~ = sup, [Fo(x) — Fx(x)], it is necessary to consider the
probability of a large deviationof Dy~ when the sample is drawn from a population
with a continuous cdf G % F,. If for example,
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G(z) £ Fo(z) and sup,[Fo(z) — G(z)] =d > 0,

then the large deviation of interest is {Dy = r} with 0 < r < d. Its index is
computed in [9].

In the 2-sample case, Theorem 2 can be applied to the difference of the sample
means if some fairly restrictive conditions are imposed. Using the special notation
of Section 5, we assume

(i) Fo and G are absolutely continuous with densities fo
and ¢o;
(7.1) (i) [ exp {tx} dFo(z) < o}
(iii) [ exp {tx} dGo(z) < o forall ¢,
JxdFy(z) = [z dGo(z) = 0.

For each positive integer B, define

ve(z) =z for |z| £ B
(7.2) =B for z > B
= —B for z < —B
and
(7.3) T®(F,G) = [ysd(G — F).

In [9], it is shown that Theorem 2 is applicable to Ty = [ 2 d(Gn — Fu) = ¥ —
X, and

limpae I®(r) = limgs.., [inf {o(F, Fo) + pd(G, Go): [ v d(G — F) = r}]

is computed for r > 7y = limp,« T®(Fy, Gy) = 0. Elsing a completely different
method, Abrahamson [1] derived the result for Y — X under different conditions.

8. Exact Bahadur efficiency. The purpose of this section is to show how the
results of the paper can be used to compute exact Bahadur efficiency. As a first
step, it is shown how the index of a large deviation of a statistic enters into the
formula for the exact slope of that statistic. (For a description of Bahadur
efficiency and a definition of exact slope, see [2].) Let (%, a, Ps) be a probability
space, where 0 ¢ ©, the parameter set. Let ©¢ be a subset of @, and consider the
problem of testing the hypothesis 6 € @, based on N observations on X. Let
{ Tw} y=1 be a sequence of statistics defined on % for which the following conditions
are satisfied:

I. There exists a continuous cdf, F, such that for every 6 € 6,

limy. Po{ Ty < z} = F(z), —o <z < o,

II. There exists a function b on ® — Oy, with 0 < b(8) < b1, (b1 could be
+ ), such that for every 6 ® — @, Tw/N* — 5,b(0).

III. For every sequence, ex — ¢ with 0 < e < b;, and every 6 ¢ ©,,
Po{Tx/N* = ey} = exp {—N[I(e) + 0o(1)]} as N — = ; e.g. I(e) might be the
“Vimpow I(2?, Qo)” of Theorem 2).

When these conditions are satisfied, {T»} is a standard sequence in the strict
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sense, (see [2], p. 282), and the exact slope of { Ty} is given by
(8.1) c(6) =0 for 6 € Oy
= 2I(b(0)) for0e® — Q.
This is easy to see, because the equation at the bottom of p. 281 [2] becomes
(8.2) 2N In Po{Tw/N* = uny/NY} = —2I(2)[1 + o(1)]

as N — = ; hence f(z) = 2I(2}), and (8.1) follows from [2], p. 282, (6¥).

As an example, we compute the exact Bahadur efficiency of the Wilcoxon test
relative to the ¢-test in the 2-sample location problem. Let X;, -+, X, and
Y1, ---, Y, be independent samples drawn from normal populations with
common unknown variance 7, EX = p, and EY = p + 0. We consider the prob-
lem of testing Ho : 6 = 0 versus Hy : 6 > 0. Let

Tv® = N[ F,dG, — 3],
(8.3) Tx® = (mm/N)}(¥ — X)
U (X = X 4+ (Y — DY/(N =)

denote the statistics to be compared. {Tx®} and {Tx®} are both standard
sequences in the strict sense with

(8.4) bi(8, 7) = [ ®(x/7) dB((z — 0)/7) — %,
ba(0, ) = (prp2)¥(6/7),

where ® is the standard normal cdf.
To compute the exact slopes of {Tx®} and {Tx®}, one must first compute the
I,(e) and Ix(e) of condition ITI. By Theorem 1 and Section 5, we have, under Hy ,

P{Tv"/N* 2 &5} = P{[ FndGn — } = e}
= exp { —N(inffrao-sz¢ [0I(F, Us) + p2I(G, Uo)] + 0(1))},
as N — o« ; hence
(8.5) Ii(e) = inffragyze [I(F, Uo) + pl (G, Uy)],
which is given in Theorem 5.1. Also under H, , we have
P(Ty®/N' 2 e} = P{Fino/N 2 e},

where Fy y_s is a statistic which has a F-distribution with 1 and N — 2 degrees
of freedom. To compute this, we appeal to Abrahamson [1], p. 120, (4.8.11),
and obtain

P{Tx®/N* 2 &} = exp {—N([ln (1 + &)]/2 + o(1))};

(2) }

hence
(8.6) In(e) = [In (1 + é)]/2.

By use of (8.1), we can now compute the exact slopes, and hence the exact
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Bahadur efficiency, which is just the ratio of the slopes. The result is
(8.7) Ei12(0, 7) = 21(bi(6, 7)) /21:(bs(0, 7))
211(by(6, 7)) /In [1 + (pupab”/7")],

where b;(0, 7) is given in (8.4) and I; given in (8.5).
In [9], p. 95, it is deduced that for fixed 7,

(8.8) Ei2(0,7) =3/ + 0o(6) as 6—0.

One recognizes 3/7 as the Pitman efficiency. Formula (8.8) actually gives more
than the Pitman efficiency, because it contains the slope of the efficiency curve
at 6 = 0, namely zero; hence 3/7 is a good local approximation to the efficiency
curve.
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F1g. 8.1. Exact Bahadur efficiency.

TABLE I

Ezxact Bahadur efficiency of the Wilcoxon test relative to the t-test for the 2-sample location
problem with normal samples

o/t
P 0 1 .5 1.0 1.5 2.0 2.5 3.0
& .9549 .9549 .9435 .9132 .8704 .8252 7812 .7336
1 .9549 .9545 .0485 .9300 .9018 8671 .8277 7799
1 .9549 .9549 .9557 .9555 .9469 .9264 .8921 .8454
1 .9549 .9552 .9615 .9746 .9808 .9694 .9385 .8929
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Note that b1(8, 7) and bs(8, 7), and hence E; (6, 7) depend on 8 and r through
6/7. Also, if p; and p, are interchanged, E; (6, 7) remains the same.

A series of FORTRAN IV programs have been written by the author to carry
out the computation of E; (6, 7). The computations were performed at Bell
Telephone Laboratories, Incorporated, Holmdel, New Jersey; and the results
follow in Table I and Figure 8.1.

The referee pointed out to me that by comparing the above graph with Figure
1 of [12], one can see that the efficiency at 6/7 in the two-sample case with p; = %
is the same as the efficiency at u in the one-sample case when u = 6/27. It would
be interesting to have an analytical verification of this numerical agreement.
The reader should note that the efficiencies computed by Klotz in [12] are just
exact Bahadur efficiencies.

The main conclusion that can be reached on the basis of Figure 8.1 is that the
performance of the Wilcoxon test becomes worse as the sample sizes become more

unequal.
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