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1. Introduction and summary. For the experiment §, given by & = [z (in
space X ) distributed with probability element f(z | 8) du(z), {6} = © the param-
eter space, W(d, 0) a non-negative loss function for decision d ¢ D], the definition
of a (non-randomized) sirict Bayes decision function (BDF) can, following
Wald [7], be stated: 8., given by the decision function d.(x), is a stricc BDF
with respect to the proper prior probability measure = on @ if 5, minimizes

R(m, 8) = [dr(8)r(8, 8) = [ dw(8) [ du(z)WI[d(x), 6f(x|6)

[requiring, of course, that R(w, 6.) < «]. (As is well known, randomized deci-
sion functions can be excluded from standard Bayesian methods. We will not
here attempt to justify their exclusion in the below deviations from the standard
Bayesian formulations.)

Relaxing the restriction that the prior measure be proper, we have:

DeriniTION 1.1. 8, is a normal generalized BDF (NGBDF') with respect to
the generalized prior m on @ if §,, minimizes E(m, §) [requiring, of course, that
R(m, 6,) < oo].

DeriniTION 1.2. 8, is an extensive generalized BDF (EGBDF) with respect
to m if 8, = {dm(z)} where dn(z) minimizes [ dm(8)W(d, 6)f(z) | 8) a.e. p.

(The use of the epithets ‘“extensive” and ‘“‘normal” is consistent with their
use in Raiffa and Schlaifer [5]. Definition 1.2 differs from the definition of Sacks
[6] in not requiring the finiteness of | dm(6)f(z |8).) Theorem 2.1 shows that
if 6, is an NGBDF then it is also an EGBDF. For some cases in which
min; R(m, §) = o, the following generalization of EGBDF is useful:

DzriniTION 1.3. 8, is a comparative generalized BDF (CGBDF) with respect
to m if the quantity Am(8, 8,") defined by

An(8, 3,") = [ dm(0)[r(8, ) — r(6, 3n™)]

is non-negative for all 6.

Admissibility considerations are unaffected by multiplying W(d, 6) by an
arbitrary positive function of 8. So, since the above definitions involve m and
W in the composite element W(d, 6) dm(6), it is clear that any general sufficient
condition for admissibility of 8, or 8, for m proper may also be stated for m gen-
eral (that is, possibly improper). (The same point is made by Stein [4], p. 232.)
Theorem 3.1 gives such a sufficient condition, suggested by the Lehmann-Blyth
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technique for proving admissibility [1], while Corollary 3.1 is an extension of the
well known admissibility of strict BDEF’s under certain conditions.

The above ideas are applied in Section 4 to the estimation with quadratic
loss of the mean of the one dimensional exponential family. The very close links
with Karlin’s technique [3] are immediately apparent. The application clarifies
Karlin’s remark (p. 411 of [3]) that his results may be regarded as a refinement
of the Lehmann-Blyth technique and also, finally, lends some support to his
conjecture (p. 415 of [3]) that a certain condition for admissibility of the con-
tracted estimator yx, 0 < v = 1, is necessary as well as sufficient. An associated
reference is Cheng Ping [2].

2. EGBDF, NGBDF and CGBDF connections. If §,, is an NGBDF with re-
spect to m, it is clearly a CGBDF with respect to m. In addition:

TrEOREM 2.1. If 6, is an NGBDF with respect to m then it ts an EGBDY with
respect to m.

Proor. Suppose 8, is not an EGBDF. Then there exists a & = {d(x)} such
that

[ du(z) J dm(8)Wld(2), 6)f(x | 0) < [ du(z) [ dm(6)Wldu(z), 6)f(z | 6)

or, since, by Tonelli, non-negativity of W allows inversion of integrations, R(m, 8)
< R(m, 6x). Whence, since R(m, 6,) < =, there is a contradiction. So 6, is an
EGBDF.

ExameLe 2.1. For & = [z is binomial (n, 6), ® = [0, 1] = D, W(d, 6) =
(d — 0)%), 8 = {dn(x) = 2/n} is both an NGBDF and an EGBDF with respect
to m given by dm(6) = d6/6(1 — 6).

ExampLe 2.2. For & = [zis N(6,1), ® = R' = D, W(d, 0) = (d — 6)7],
On = {dn(z) = 2z} is an EGBDF with respect to m given by dm(6) = df but no
NGBDF with respect to the same m is definable.

The following examples concern CGBDF’s.

Exampii 2.3. In Example 2.2, §,, is a CGBDF. This result is a special case
of Theorem 4.1 below.

ExampLE 2.4. Suppose & has X = {x1, 22, ---}, @ = {6, 6, --+},
D = {dy, do}. Defining

Ay = G+ 170/ + 1) — (0 + 277G+ 1D/ + 2)™
ifjisodd and 7 > jorif jiseven and i = j, A;; = 0 otherwise, set
dm(6;) = 1, Jj=12---,
W(ds, 0;) — W(da, 0;) = 25Aij,
F(wi| 05) du(m:) = Ai/ Doi b -

(It may be proved that A; /D :Ay; = 0.) A lengthy analysis shows (a)
D iA; <0,45=1,2, -+, s0 that the EGBDF is 8,, = {dn(x:) = di}, and (b)
> (Zi Aq) > 0, so that 8, cannot also be a CGBDF for the example.
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3. Admissibility.

TuroreM 3.1. Suppose © has a topology 3 of open sets. If

(i) given a decision function &, , the risk function v(6, 8) of any & better than or
equavalent to & is continuous with respect to 3;

(ii) there exists a sequence of generalized priors {ms} such that (a)

lim infi_,w 17%'( To) >0

for all non-null open sets Toin 3, (b) lim;,e An, (80, 8;) = 0 where §;1s a CGBDF
with respect to m; then & 7s admzssible.

Proor. Suppose 8 is inadmissible. Then there exists a 8t such that r(6, &%)
< (0, 6), 00, and 7(6y, §) < (60, 8) for some 6, . But, by assumption,
(0, 8%) and (8, &) are continuous. So there is a neighbourhood of 6, , say T,
with 7(6, &) > (6, 87) + ¢, ¢ > 0, 0 To. Whencé A, (8, 67) = emi(Ty),
1 =12, ---. But

(3.1) 0 < Any(8%, 85) = Aumi(80, 8:) — Auy(80, %),

As 7 — =, the lim inf of the right-hand-side of (3.1) is negative. The contradic-
tion proves & admissible.

CoroLLARY 3.1. If (i) 6. is @ CGBDF with respect to m, (ii) the r(0, 8) of any
8 better than or equivalent to 8o is continuous with respect to 3, (iii) m(Ty) > 0
for all open non-null sets Ty in 3 then 8, 1s admzissible.

Proor. In Theorem 3.1,set m; = m (2 = 1,2, ---,) and 8o = 8 .

4. The exponential family. Our specialization is given by:
f(z[8) = B(w) exp (wz);
0 =0(w) = E(x|w);
© = (0] 8(w)™ = [ exp (wn) du(z) < o, B |w) < »};
Q = {w|0(w) e B};
@ = lim inf {w | w e Q};
& = lim sup {w | we Q}.

Then @ — (w, &) is at most {{a}, (@} }, For w e (w, &), 8(w) = —'()/B(w).
© is also an interval (which is given the relative usual topology). Take W (d, 9)
= (d — ).

LEmmA 4.1. If r(6, §) < « for all 0 £ ©, r(6, ) s continuous in 0.

Proor. Now (6, 8) = E[d(x)"|6) — 26E[d(x)| 6] + 6°. Observe that for
wo = w(f) and v = w(f) in Q,
|Bld(2)* | 6] — Bld(2)* | ail

= JZ B(wo) d(2)%™ [B(wo) B(w)e“ ™" — 1] du(z)

+ [T B(w) d(2)%e™ [1 — B(w) "B(wo)e™ ™7 du(z).
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Since B(w) is continuous in £, .
1B(0) B(@)e“ ™" — 1| and |1 — B(w) "B(wo)e “T|

are, in (—, 0) and (0, » ) (respectively), bounded functions of z tending to
zZero as o N wo. So, since §(w) is continuous and monotone increasing and
| B(wo) d*(x)e*™ du(x) < o by assumption, we have E[d(xz)* | 6] — E[d(z)® |6,
as @ \i 6, . Similarly as 6 ./ 6, . So E[d(z)’ | 6] is continuous in 6. An almost similar
argument establishes the continuity of E[d(z) | 6] and the lemma follows.

Karlin’s sufficient condition [3], K, , say, for the admissibility of the estimator
z/(N 4+ 1) of 0 is that ﬂ’,ﬁ—)‘(w) dw— © asa— wandasb — .

TureoREM 4.1. If K, holds, 8, = {d(z) = z/(\ 4+ 1)} s a CGBDF with respect
to ma given by dmy = B(w)" dw.

Proor. Writingy = 1/(N + 1),

r(8, 8) — (0, &) = Ef[d(z) — 6|6} — E{(vx — 0)"| 6}
T(w) + 2E{[d(z) — yzllve — 6] 6}

where T(w) = Ef{[d(z) — val’| 6}. If Any(8, &) = ©, Am (8, &) > 0 auto-
matically. While A, (8, &) < © = [o dwB(w)[7(8, 8) — (8, &)] < = for arbi-
trary @ > o, b < @, whence by the continuity of B(w) and r(6, &) in Q,
f ® dwB(w)*r(6, &) < o and ﬂ: dwB(w)r(8, 8) <  ; which justify the inversions
of order of integration that give

(4.1)  [2dwB(w)r(8, 8) — 7(6, )]
= [2deB(e)T(w) + 2 [ du(z)ld(z) — va] fodwB(w) e (va — ).

Reference to pp. 413—414 of [3] shows that, if K, holds, the right hand side of (4.1)
is non-negative, that is, letting a — @, b — @, A, (8, &) = 0 if K, holds.

Define Ko = ‘[28(w) ¢ ™™ dw—>  asa —@and asb — @.’

TureoreM 4.2. If K, holds, 8., = {d(z) = (z 4+ a)/(N + 1)} s a CGBDF
with respect 10 ma,« given by dmy o = B(w)'e™ do.

Proor. It is readily verified that

(4-2) Amx,a(a; 6X,a)
= [ dwBy(e) [ du(9)Bu(w)e**{[d(y) — ¢ — [y/(N + 1) — ¢’}

wherey = 2 — a/N, ¢ = 0 — /N = E(y | w), dw(y) = du(y + a/N), d(y) =
d(y + a/N) — a/\ and By(w) = B(w) exp (aw/N). Theorem 4.1 then applies to
show that the right hand side of (4.2) is non-negative if Kx holds with 8,(w) for
B(w), that is, if Ky , holds. So A, (8, 6r,) = 0if Ky, , provingthe theorem.
TureoreM 4.3. If K, . holds then 8\,. 7s admissible.
ProOF. (0, 8.,) is readily verified continuous in 2. Theorem 4.2, Lemma 4.1
and Corollary 3.1 then give the result.
, [Theorem 4.3 is also proved in Cheng Ping [2] and is a simple extension of
Karlin’s Theorem 1. We reprove it to complete and illustrate our approach.]
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The possibility of finding a counter example to Karlin’s conjecture that K, is
necessary for the admissibility of é) , involving for some u a sequence of « values
tending to zero for which

(i) K« holds but K, does not,

(11) lima_,o Am)\_a( 5)‘ , 5)‘,01) =0
is dismissed by Theorem 4.4 below. [The particular choice u = {du(x) =
2’ exp (—1/z) dz, 0 < x < 1;du(x) = 0 otherwise} does in fact obey Ky, for
A>0and0 < a < A but not K, .]

THEOREM 4.4. If there is a sequence {a;} of a-values tending to zero, such that
Kyo; holds for © = 1,2, -+ - and im0 Amy o, (O , 8r,0;) = 0 then Ky holds.

Proor. It is verifiable, using integration by parts that ‘A, .(8 , 8 ) =0 =
(2 N ajw ’ v
al [ deB(w)e™ — 0. .

By Schwarz

(4.3) (2 8(w)™ dellad [5B(w)e™ de]

v

[ o & du]
— 4[e%a,-b _ e%uia]fz'

If ® < o then, for any 7, Ky ., = fﬁ B(w)™ dw—> o asb—>@. If @ = o then the
choice of b = | ™ and fixed a in (4.3) establishes that [ 8(w) ™ dw — = as
b — ®. Similarly f,‘: B(w)™ dw— » asa—> @. Hence Ky holds.

I am grateful to a referee for pointing out an error in the first' version of
Example 2.4.
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