NOTES

HOW TO SURVIVE A FIXED NUMBER OF FAIR BETS!

BY W. MOLENAAR AND E. A. VAN DER VELDE

Mathematisch Centrum, Amsterdam

Suppose a gambler with initial capital b_0 wants to maximize his probability of still having a positive capital after n_0 successive independent bets, under two conditions: (a) the minimal stake is one dollar; (b) bets are fair and their probbility of success is at most $\frac{1}{2}$.

A bet is determined by the stake c and the odds k: the gambler wins kc - c with probability 1/k and loses c otherwise. If b_{m-1} denotes the gambler's capital after m-1 bets, he must choose for the mth bet c_m $(1 \le c_m \le b_{m-1})$ and k_m $(k_m \ge 2)$. For simplicity of presentation we make the inessential restriction that all b_m , c_m and k_m are integers. In a fair roulette (without zero) k can only be a divisor of 36. A bet c = 1, k = 2 is called conservative.

A situation is a pair (n, b) where b is the capital and n the number of bets to go. A strategy for (n_0, b_0) is a rule prescribing which bet should be made in the initial situation (n_0, b_0) and in each situation which may evolve from it. Under the stated conditions there exists for each (n_0, b_0) a (possibly non-unique) optimal strategy which leads to a (unique) maximal probability of survival (pos) denoted by $p(n_0, b_0)$. The independence of bets implies that for n > 1 and $b \ge 1$

$$p(n, b) = \max_{c,k} \{ (1/k)p(n-1, b+kc-c) + (1-1/k)p(n-1, b-c) \}.$$

Theorem 1. The pos q(n, b) for the conservative strategy (i.e. c = 1 and k = 2 in each situation) is for every $n \ge 1$ a concave function of b.

PROOF. The theorem holds for n=1 as q(1, 0)=0, $q(1, 1)=\frac{1}{2}$ and q(1, b)=1 for $b\geq 2$. We proceed by induction. The definition of q implies that

$$(1) q(n-1,\beta) \ge q(n,\beta)$$

and

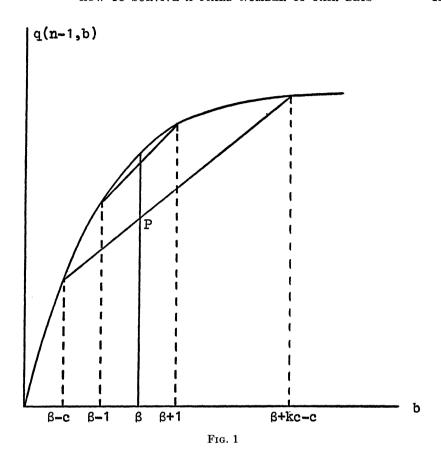
(2)
$$q(n,b) = \frac{1}{2}q(n-1,b+1) + \frac{1}{2}q(n-1,b-1).$$

Substituting (1) with $\beta = b \pm 1$ into (2) we obtain $q(n, \lambda\beta_1 + (1 - \lambda)\beta_2) \ge \lambda q(n, \beta_1) + (1 - \lambda)q(n, \beta_2)$, first for $\lambda = \frac{1}{2}$ and then by well known arguments for all $\lambda \varepsilon$ (0, 1) and all β_1 , β_2 such that both sides of the inequality are defined.

Theorem 2. The conservative strategy is optimal for all n_0 and b_0 .

Received 5 December 1966.

¹ Report S 374 (Sp 101), Statistische Afdeling, Mathematisch Centrum, Amsterdam.



Proof. This is trivial for $n_0 = 1$. Suppose it holds for $n_0 = n - 1$. The pos from (n, β) for the bet (c, k) followed by (n - 1) conservative bets is represented by the ordinate of the point of intersection P of the vertical in β and the chord connecting the points on the graph of $q(n - 1, \cdot)$ with abscissae $\beta - c$ and $\beta + kc - c$ (see Figure 1). As the function is concave, the choice c = 1, k = 2 is seen to be optimal under our conditions $c \ge 1$, $k \ge 2$.

Remark 1. Very similar and somewhat more general results were obtained independently by Freedman [2].

Remark 2. q(n, b) is determined recursively from (2) and the boundary conditions q(n, 0) = 0 for all n, q(0, b) = 1 for all $b \ge 1$. No closed expression for q seems to exist, but we have

$$q(n, b) = \sum_{j=n+1}^{\infty} \lambda_j^{(b)}$$

where $\lambda_j^{(b)}$ are the well-known first passage probabilities for the symmetric random walk given in [1]; p. 254–256.

Remark 3. Suppose bets are unfair, in the sense that there is a fixed $\alpha < 1$

such that the gambler gains kc - c with probability α/k , and loses c otherwise. It then turns out that bold bets become attractive for small α . For $n_0 = 3$, $b_0 = 1$ the conservative strategy is only optimal for $\alpha > 2 - 2/3^{\frac{1}{2}} \approx .84$. For $n_0 = 13$, $b_0 = 1$ an initial bet $c_1 = 1$, $k_1 = 3$ must be made even for an ordinary roulette with one zero ($\alpha = 36/37$).

REFERENCES

- [1] Feller, W. (1957). An Introduction to Probability Theory and Its Applications (2nd edition). 1 Wiley, New York.
- [2] Freedman, D. (1967). Timid play is optimal. Ann. Math. Statist. 38 1281-1283.