ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE
INVARIANT MEASURES!

By EuvcenE M. Krimko

Ohzo State Unaversity

1. Introduction. Let (?, @, p) be a sigma-finite measure space. Let 7 be a
(1) measure preserving (ii) conservative (iil) ergodic point-transformation on Q.
That is, we assume that: (i) 4 ¢ @ implies 7 (4) ¢ @ and p(7'4) = p(A);
(i) Ae@ Anr A = & fori= 1,2, - implies u(A) = 0; (iii) the in-
variant sigma-field § = {A:7'A = A & @} is trivial, i.e. A ¢ g implies u(4) = 0
or u(2 — A) = 0. In probability theory, null-recurrent Markov chains and
Markov processes satisfying the Harris condition give rise to such transforma-
tions (see Harris and Robbins [4], Harris [3], Kakutani and Parry [6]).

Let Xo, Y, be fixed real-valued measurable functions on € and let X,, = X, 0

Y, =Yyor", n=12 -... 1Ifs z,t y are extended real numbers, let
(1.1) F(z) = 1o o Xa, G.'(y) = law o Ya, n=201---,
and

(1.2) F'(z) = [o Fé'(@)u(dw),  G'(y) = [a Go'(y)n(dw).

Our theorem asserts that the ratio Y r—o Fi'(z)/ D=0 G+‘(y) converges almost
everywhere uniformly in (z, y), which is however restricted to a set on which

F’, G' behave with some moderation. )
TueoreMm 1.1. Let s, t ¢ R (extended real line). Let C and D be sets in R such

that for some positive constants c, d

(1.3) C={z:F'(z) ¢, D= {y:G"(y) zd.

Let B = C X D and

(14) By = SUpawes |( 2150 Fi(x)/ 20150 Gi(y)) — (F'(2)/G'(y))!.
Then for almost all w € Q

(1.5) limy,e A, = 0.

We note that Theorem 1 implies the Glivenko-Cantelli theorem (see [9], p.
335, [7], p. 20, Tucker [10]; also Fortet and Mourier [2]). Let p be a probability
measure and let Xy = Y,. Further set s =¢{ = —y = —w and c =d = 1.
Then the denominator in the first ratio in (1.4) is simply n and Theorem 1.1
asserts the uniform convergence a.e. of the experimental distribution function
n D 15 F%(z) of a strictly stationary ergodic process (X.,), to the distribu-
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tion function F~"(z) of X, . Indeed, a stationary process on a probability space
gives rise to a measure-preserving (hence conservative) point-transformation
on the sample probability space (see Doob [1], p. 452 ff.; p. 617 ff.). The uniform
convergence a.e. of experimental distribution functions carries over from the
second space to the first one.

Section 2 contains the proof of Theorem 1.1. In Section 3 we indicate how
Theorem 1.1 extends to the non-ergodic case: the second ratio in (1.4) is then
replaced by a ratio of “conditional distribution functions.”

2. Proof of Theorem 1.1. Since s and ¢ remain fixed throughout the proof, we
omit the superscripts from F°, F,’, G, and G,'. We may and do assume that
¢ = Supsc F(z) and d = inf,.p G(y). For each positive integer M, we set
Tuy = sup {y €C}, ¥y un = sup {y ¢ D} and for 0 £ j < M, we form a
partition of B by letting z; and y,; be the smallest real numbers such that

(2.1) F(zu;) S je/M £ F(zy; + 0),

1/G(yx; + 0) = (M — j)/dM £ 1/G(yu;).
For each pair (z, y) ¢ B, we define
(2.2 oz, ) = [( XI5 Ful=)/ 25 Guly)) — (F(=)/G(y)l.
From (1.1): the definition of F, and G, , it follows that
(2.3) Fu(z) = 1z 0 Xoo 77, Go(y) = 1y o Yoo 7™
Considering F, , G, as functions of w, we have for fixed z, y
(2.4) Fo(z) = Fo(z) o 7", Gu(y) = Go(y) o 7"

From (1.2) and Hopf’s ergodic theorem ([5], p. 49) which remains true without
the assumption that 7 is invertible it follows that for fixed z, y

(2.5) limy,e 6,(z,y) = 0 a.e.

The preceding argument is also valid with z or y in (2.5) replaced by = + 0 or
y + 0, respectively. Let (z, y) ¢ B, x # Ty, and y # yu, . Since for each fixed
M, the zu;’s and the y,’s form a partition of B, there is an ¢ and a j such that
Taia < T = Ty and ya,ju1 <y = yu;. The monotonicity of F, F., G, G,
implies that

(2.6) F(xumia+ 0)/Q(yu;)
= F(2)/G(y) £ F(2u)/G(Ywm,ia + 0)
and
(27) Xro Fu(@aic + 0)/ Xieo Gelys)
S im0 Fu(x)/ 20 Gi(y)
D i Fr(@ i)/ 2o0=0 Ge(Ym,ia + 0);
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hence
( 2ok~ Fi(z)/ 2ok=0 Gu(y)) — (F(z)/G(y))
S (k=0 Fr(@ i)/ 2okmo Ge(ya.ia + 0))
(2.8) — (F(2ui)/G(ynm.j2 + 0))
| + (F(2u)/G(yw.i1 + 0))
— (F(zuia + 0)/G(yu;)).
By (2.1), the last difference in (2.8) is bounded by
(ic/M)-((M — j + 1)/dM) — ((i — L)e/M)-((M — j)/dM) £ 2c/dM.

An inequality similar to (2.8), giving a lower bound for the left side of (2.8) is
obtained, and the two inequalities together yield:

(2.9) 6.(x,y) = max [6u(Tui, Yu,j1 + 0), 6:(2 2,51 + 0, yurj)] + 2¢/dM.

In case £ = zu,, 2 computation similar to the previous one shows that (2.9)
holds with zy; and z,:_1 both replaced by z, ; similarly if y = yu,. Hence,
if yuo £ D, an upper bound for A, = sup.yes 6.(z, y), is given by:

(2.10) max;_y s [AS W] + 2¢/dM
where
(2.11) ALy = def MAXo<i<m 0<j<n On(Tari, Yuri + 0)

(2) def
Anm = def MAXo<i<m,0<icm 0n(Tai + 0, Yarj)-

If yuo € D,we allow j = 0 in the definition of ALy. It follows from (2.5) that
for 4 = 1, 2, each M and almost every w ¢ Q, lim, AY% = 0, and therefore
lim sup A, = 2¢/dM. Since M is arbitrary, it follows that lim A, = 0 almost

everywhere, which completes the proof of the theorem.

3. The non-ergodic case. In this section we show that Theorem 1.1, with
suitable modifications, remains true even though the invariant sigma-field g is
not trivial. We assume that u is sigma-finite on 4. For any integrable function f,
E(f| 9) has its usual meaning of a Radon-Nikodjm derivative of a finite meas-
ure with respect to a sigma-finite measure; i.e., u restricted to 9. The limit in
the Hopf ergodic Theorem [5] is now theratio E(f | 9)/E(g | 9); this identifica-
tion is easily seen to be equivalent with the one made in [5]. (Even when y is not
sigma-finite on d, it is still possible to compute the limit as a ratio of conditional
expectations with respect to an equivalent finite measure.) For each s, z,t,y ¢ R,
we define

(31) F(z|9) = E(lemoXol9), G'(yl9) =E(leyo Yol9).

Using the method of regularization as in the case of conditional probability dis-
tributions, we may and do assume that for every w ¢ @, F*(z | 9) and G'(y | 9)
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are (1) nondecreasing in z(y) (ii) left-continuous and (iii) F*(s |9) = G(¢|9)
= 0. In the sequel, F*'(z) and G'(y) are assumed to be replaced in A, , 8,(z, y)
ete. by F*(z | 9) and G'(y | 9) respectively. The proof of the next theorem uses
an idea of Tucker [10] and is an extension of his result.

THEOREM 3.1. Let s, t ¢ R and let C and D be sets in R such that for some posttive
a.e. finite-valued 9 measurable functions ¢(w) and d(«),
(3.2) C={e:F(z]|9) =c(w)} D={y:G"(yl9) 2 d(w)},

the inequalities holding for all w outside of a null set N independent of x, y. Let
B = C X D. Then for almost all » ¢ Q,

(3.3) lim,,0An = 0.

Proor. The proof is similar to that of Theorem 1.1 and we merely sketch it,
indicating the essential changes. We may and do assume that for every w,
¢(w) = supsec F(z]9)(w) and d(w) = inf.p G(y|9)(w). Let M and j be
integers with 0 =< j < M. Set Xyu = sup {x ¢ C} and Yy = sup {y ¢ D}.
We define 9 measurable functions X, and Y,; by letting for each fixed w,
X u; and Y i be the smallest real numbers for which

(3.4) F(Xu;|9) = je(w)/M = F(Xu; +0]9),

1/G(Yu; +0|9) = (M — j)/M d(w) £ 1/G(Y yj| 9).
9 measurable functions are shift invariant; since X »;, Y »;, are 9 measurable,
(3.5) 78 < Xo < Xajl = [s < X < Xujl

T <Y <Yausl=[t < Yara < Vi,

and therefore we can write
(3.6) Fo(Xuj) = Fo(Xuj) o7, Gu(Yu;) = Go(Yus) o 7"
From (3.6) we can conclude by Hopf’s ergodic theorem that
(3.7) limyaew 6, (X s, Yai) = 0 a.e.
Applying the argument of Section 2 for each fixed w ¢ 2, we obtain

(38) A, < maxi1s [ASM] + 2¢(w)/M d(w).

The theorem then follows by noting that ¢(w)/d(w) is a.e. finite valued and M
is arbitrary.

4. Concluding remarks. One may ask whether the stationarity of the sequence
X, is essential. In the case when 7 is onto and invertible and u(A) = 0 implies
u(7A) = p(r'A) = 0, we may drop the assumption that r is measure pre-
serving provided that F,’ and G,* are suitably weighted. Let ¢, be the Radon-
Nikodym derivative of uo 7" with respect to u. Theorems 1.1 and 3.1 remain
valid if F,* and G, in (1.4) are multiplied by ¢, . Indeed, in this case the role of
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Hopf’s ergodic theorem may be played by the ergodic theorem of Hurewicz-
Halmos (see [8]).
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