ON THE GLIVENKO-CANTELLI THEOREM FOR INFINITE INVARIANT MEASURES¹

BY EUGENE M. KLIMKO

Ohio State University

1. Introduction. Let (Ω, α, μ) be a sigma-finite measure space. Let τ be a (i) measure preserving (ii) conservative (iii) ergodic point-transformation on Ω . That is, we assume that: (i) $A \in \Omega$ implies $\tau^{-1}(A) \in \Omega$ and $\mu(\tau^{-1}A) = \mu(A)$; (ii) $A \in \Omega$, $A \cap \tau^{-i}A = \emptyset$ for $i = 1, 2, \cdots$ implies $\mu(A) = 0$; (iii) the invariant sigma-field $\mathfrak{g} = \{A : \tau^{-1}A = A \in \Omega\}$ is trivial, i.e. $A \in \mathfrak{g}$ implies $\mu(A) = 0$ or $\mu(\Omega - A) = 0$. In probability theory, null-recurrent Markov chains and Markov processes satisfying the Harris condition give rise to such transformations (see Harris and Robbins [4], Harris [3], Kakutani and Parry [6]).

Let X_0 , Y_0 be fixed real-valued measurable functions on Ω and let $X_n = X_0 \circ \tau^n$, $Y_r = Y_0 \circ \tau^n$, $n = 1, 2, \cdots$. If s, x, t, y are extended real numbers, let

$$(1.1) F_n^s(x) = 1_{(s,x)} \circ X_n, G_n^t(y) = 1_{(t,y)} \circ Y_n, n = 0, 1, \cdots,$$

and

(1.2)
$$F^{s}(x) = \int_{\Omega} F_{0}^{s}(x) \mu(d\omega), \qquad G^{t}(y) = \int_{\Omega} G_{0}^{t}(y) \mu(d\omega).$$

Our theorem asserts that the ratio $\sum_{k=0}^{n} F_k^{s}(x) / \sum_{k=0}^{n} G_k^{t}(y)$ converges almost everywhere uniformly in (x, y), which is however restricted to a set on which F^s , G^t behave with some moderation.

Theorem 1.1. Let s, t $\varepsilon \bar{R}$ (extended real line). Let C and D be sets in \bar{R} such that for some positive constants c, d

$$(1.3) C = \{x: F^s(x) \le c\}, D = \{y: G^t(y) \ge d\}.$$

Let $B = C \times D$ and

$$(1.4) \quad \Delta_n = \sup_{(x,y) \in B} |(\sum_{i=0}^{n-1} F_i^s(x) / \sum_{i=0}^{n-1} G_i^t(y)) - (F^s(x) / G^t(y))|.$$

Then for almost all $\omega \in \Omega$

$$\lim_{n\to\infty}\Delta_n=0.$$

We note that Theorem 1 implies the Glivenko-Cantelli theorem (see [9], p. 335, [7], p. 20, Tucker [10]; also Fortet and Mourier [2]). Let μ be a probability measure and let $X_0 = Y_0$. Further set $s = t = -y = -\infty$ and c = d = 1. Then the denominator in the first ratio in (1.4) is simply n and Theorem 1.1 asserts the uniform convergence a.e. of the experimental distribution function $n^{-1}\sum_{i=0}^{n-1} F_i^{-\infty}(x)$ of a strictly stationary ergodic process (X_n) , to the distribution

Received 25 November 1966.

¹ This paper is based on a part of a Ph.D. dissertation written at the Ohio State University under the direction of Professor L. Sucheston to whom the author gratefully acknowledges his indebtedness for advice and encouragement.

tion function $F^{-\infty}(x)$ of X_0 . Indeed, a stationary process on a probability space gives rise to a measure-preserving (hence conservative) point-transformation on the sample probability space (see Doob [1], p. 452 ff.; p. 617 ff.). The uniform convergence a.e. of experimental distribution functions carries over from the second space to the first one.

Section 2 contains the proof of Theorem 1.1. In Section 3 we indicate how Theorem 1.1 extends to the non-ergodic case: the second ratio in (1.4) is then replaced by a ratio of "conditional distribution functions."

2. Proof of Theorem 1.1. Since s and t remain fixed throughout the proof, we omit the superscripts from F^s , F_n^s , G^t , and G_n^t . We may and do assume that $c = \sup_{x \in C} F(x)$ and $d = \inf_{y \in D} G(y)$. For each positive integer M, we set $x_{MM} = \sup \{y \in C\}, y_{MM} = \sup \{y \in D\}$ and for $0 \le j < M$, we form a partition of B by letting x_{Mj} and y_{Mj} be the smallest real numbers such that

(2.1)
$$F(x_{Mj}) \leq jc/M \leq F(x_{Mj} + 0),$$

$$1/G(y_{Mj} + 0) \le (M - j)/dM \le 1/G(y_{Mj}).$$

For each pair $(x, y) \in B$, we define

$$\delta_n(x,y) = \left| \left(\sum_{i=0}^{n-1} F_i(x) / \sum_{i=0}^{n-1} G_i(y) \right) - \left(F(x) / G(y) \right) \right|.$$

From (1.1): the definition of F_n and G_n , it follows that

$$(2.3) F_n(x) = 1_{(s,x)} \circ X_0 \circ \tau^n, G_n(y) = 1_{(t,y)} \circ Y_0 \circ \tau^n.$$

Considering F_n , G_n as functions of ω , we have for fixed x, y

$$(2.4) F_n(x) = F_0(x) \circ \tau^n, G_n(y) = G_0(y) \circ \tau^n.$$

From (1.2) and Hopf's ergodic theorem ([5], p. 49) which remains true without the assumption that τ is invertible it follows that for fixed x, y

$$\lim_{n\to\infty} \delta_n(x,y) = 0 \qquad \text{a.e.}$$

The preceding argument is also valid with x or y in (2.5) replaced by x+0 or y+0, respectively. Let (x,y) ε B, $x \neq x_{Mo}$ and $y \neq y_{Mo}$. Since for each fixed M, the x_{Mj} 's and the y_{Mj} 's form a partition of B, there is an i and a j such that $x_{M,i-1} < x \le x_{Mi}$ and $y_{M,j-1} < y \le y_{Mj}$. The monotonicity of F, F_n , G, G_n implies that

(2.6)
$$F(x_{M,i-1} + 0)/G(y_{Mj})$$

$$\leq F(x)/G(y) \leq F(x_{Mi})/G(y_{M,i-1}+0)$$

and

$$(2.7) \sum_{k=0}^{n} F_k(x_{M,i-1} + 0) / \sum_{k=0}^{n} G_k(y_{Mj})$$

$$\leq \sum_{k=0}^{n} F_k(x) / \sum_{k=0}^{n} G_k(y)$$

$$\leq \sum_{k=0}^{n} F_k(x_{Mi}) / \sum_{k=0}^{n} G_k(y_{M,i-1} + 0);$$

hence

$$(\sum_{k=0}^{n} F_{k}(x) / \sum_{k=0}^{n} G_{k}(y)) - (F(x)/G(y))$$

$$\leq (\sum_{k=0}^{n} F_{k}(x_{Mi}) / \sum_{k=0}^{n} G_{k}(y_{M,j-1} + 0))$$

$$- (F(x_{Mi})/G(y_{M,j-1} + 0))$$

$$+ (F(x_{Mi})/G(y_{M,j-1} + 0))$$

$$- (F(x_{M,i-1} + 0)/G(y_{Mj})).$$

By (2.1), the last difference in (2.8) is bounded by

$$(ic/M) \cdot ((M-j+1)/dM) - ((i-1)c/M) \cdot ((M-j)/dM) \le 2c/dM.$$

An inequality similar to (2.8), giving a *lower* bound for the left side of (2.8) is obtained, and the two inequalities together yield:

$$(2.9) \quad \delta_n(x,y) \leq \max \left[\delta_n(x_{Mi}, y_{M,j-1} + 0), \delta_n(x_{M,j-1} + 0, y_{Mj}) \right] + 2c/dM.$$

In case $x = x_{Mo}$, a computation similar to the previous one shows that (2.9) holds with x_{Mi} and $x_{M,i-1}$ both replaced by x_{Mo} ; similarly if $y = y_{Mo}$. Hence, if $y_{Mo} \not\in D$, an upper bound for $\Delta_n = \sup_{(x,y)\in B} \delta_n(x,y)$, is given by:

(2.10)
$$\max_{i=1,2} \left[\Delta_{n,M}^{(i)} \right] + 2c/dM$$

where

(2.11)
$$\Delta_{n,M}^{(1)} \stackrel{\text{def}}{=} \underset{\text{def}}{\operatorname{max}}_{0 \le i \le M, 0 \le j < M} \delta_n(x_{Mi}, y_{Mj} + 0) \\ \Delta_{n,M}^{(2)} \stackrel{\text{def}}{=} \underset{\text{def}}{\operatorname{max}}_{0 \le i < M, 0 < j \le M} \delta_n(x_{Mi} + 0, y_{Mj}).$$

If $y_{M0} \varepsilon D$, we allow j = 0 in the definition of $\Delta_{n,M}^{(2)}$. It follows from (2.5) that for i = 1, 2, each M and almost every $\omega \varepsilon \Omega$, $\lim_n \Delta_{n,M}^{(i)} = 0$, and therefore $\limsup \Delta_n \leq 2c/dM$. Since M is arbitrary, it follows that $\lim \Delta_n = 0$ almost everywhere, which completes the proof of the theorem.

3. The non-ergodic case. In this section we show that Theorem 1.1, with suitable modifications, remains true even though the invariant sigma-field $\mathfrak g$ is not trivial. We assume that μ is sigma-finite on $\mathfrak g$. For any integrable function f, $E(f\mid \mathfrak g)$ has its usual meaning of a Radon-Nikodým derivative of a finite measure with respect to a sigma-finite measure; i.e., μ restricted to $\mathfrak g$. The limit in the Hopf ergodic Theorem [5] is now the ratio $E(f\mid \mathfrak g)/E(g\mid \mathfrak g)$; this identification is easily seen to be equivalent with the one made in [5]. (Even when μ is not sigma-finite on $\mathfrak g$, it is still possible to compute the limit as a ratio of conditional expectations with respect to an equivalent finite measure.) For each $\mathfrak s, x, t, y \in \bar R$, we define

$$(3.1) \quad F^{\mathfrak{s}}(x \mid \mathfrak{G}) \, = \, E(1_{(\mathfrak{s},x)} \circ X_0 \mid \mathfrak{G}), \qquad G^{\mathfrak{t}}(y \mid \mathfrak{G}) \, = \, E(1_{(\mathfrak{t},y)} \circ Y_0 \mid \mathfrak{G}).$$

Using the method of regularization as in the case of conditional probability distributions, we may and do assume that for every $\omega \in \Omega$, $F^{s}(x \mid \mathfrak{I})$ and $G^{t}(y \mid \mathfrak{I})$

are (i) nondecreasing in x(y) (ii) left-continuous and (iii) $F^s(s \mid g) = G^t(t \mid g)$ = 0. In the sequel, $F^s(x)$ and $G^t(y)$ are assumed to be replaced in Δ_n , $\delta_n(x, y)$ etc. by $F^s(x \mid g)$ and $G^t(y \mid g)$ respectively. The proof of the next theorem uses an idea of Tucker [10] and is an extension of his result.

Theorem 3.1. Let s, t ε \bar{R} and let C and D be sets in \bar{R} such that for some positive a.e. finite-valued s measurable functions $c(\omega)$ and $d(\omega)$,

$$(3.2) C = \{x : F^s(x \mid \mathfrak{G}) \leq c(\omega)\} D = \{y : G^t(y \mid \mathfrak{G}) \geq d(\omega)\},$$

the inequalities holding for all ω outside of a null set N independent of x, y. Let $B = C \times D$. Then for almost all $\omega \in \Omega$,

$$\lim_{n\to\infty}\Delta_n=0.$$

Proof. The proof is similar to that of Theorem 1.1 and we merely sketch it, indicating the essential changes. We may and do assume that for every ω , $c(\omega) = \sup_{x \in C} F(x \mid \mathcal{S})(\omega)$ and $d(\omega) = \inf_{y \in D} G(y \mid \mathcal{S})(\omega)$. Let M and j be integers with $0 \leq j < M$. Set $X_{MM} = \sup \{x \in C\}$ and $Y_{MM} = \sup \{y \in D\}$. We define \mathcal{S} measurable functions X_{Mj} and Y_{Mj} by letting for each fixed ω , X_{Mj} and Y_{Mj} be the smallest real numbers for which

(3.4)
$$F(X_{Mj} \mid \mathfrak{g}) \leq jc(\omega)/M \leq F(X_{Mj} + 0 \mid \mathfrak{g}),$$
$$1/G(Y_{Mj} + 0 \mid \mathfrak{g}) \leq (M - j)/M d(\omega) \leq 1/G(Y_{Mj} \mid \mathfrak{g}).$$

 ${\it g}$ measurable functions are shift invariant; since $X_{\it Mj}$, $Y_{\it Mj}$, are ${\it g}$ measurable,

(3.5)
$$\tau^{-1}[s < X_n < X_{Mj}] = [s < X_{n+1} < X_{Mj}]$$
$$\tau^{-1}[t < Y_n < Y_{Mj}] = [t < Y_{n+1} < Y_{Mj}],$$

and therefore we can write

$$(3.6) F_n(X_{Mj}) = F_0(X_{Mj}) \circ \tau^n, G_n(Y_{Mj}) = G_0(Y_{Mj}) \circ \tau^n.$$

From (3.6) we can conclude by Hopf's ergodic theorem that

$$\lim_{n\to\infty} \delta_n(X_{Mi}, Y_{Mj}) = 0 \qquad \text{a.e.}$$

Applying the argument of Section 2 for each fixed $\omega \in \Omega$, we obtain

(3.8)
$$\Delta_n \leq \max_{i=1,2} \left[\Delta_{n,M}^{(i)} \right] + 2c(\omega)/M d(\omega).$$

The theorem then follows by noting that $c(\omega)/d(\omega)$ is a.e. finite valued and M is arbitrary.

4. Concluding remarks. One may ask whether the stationarity of the sequence X_n is essential. In the case when τ is onto and invertible and $\mu(A) = 0$ implies $\mu(\tau A) = \mu(\tau^{-1}A) = 0$, we may drop the assumption that τ is measure preserving provided that F_n^s and G_n^t are suitably weighted. Let φ_n be the Radon-Nikodým derivative of $\mu \circ \tau^n$ with respect to μ . Theorems 1.1 and 3.1 remain valid if F_n^s and G_n^t in (1.4) are multiplied by φ_n . Indeed, in this case the role of

Hopf's ergodic theorem may be played by the ergodic theorem of Hurewicz-Halmos (see [8]).

REFERENCES

- [1] Doob, J. L. (1953). Stochastic Processes. Wiley, New York.
- [2] FORTET, R. and MOURIER, E. (1953). Convergence de la répartition empirique vers la répartition théorique. Ann. École Normale Sup. 70 267-285.
- [3] HARRIS, T. E. (1955). The existence of stationary measures for certain Markov processes. Proc. Third Berk. Symp. Math. Statist. Prob. 2 113-124.
- [4] HARRIS, T. E. and ROBBINS, H. (1953). Ergodic theory of Markov chains admitting an infinite invariant measure. *Proc. Nat. Acad. Sci. U.S.A.* 39 860-864.
- [5] HOPF, E. (1937). Ergodentheorie. J. Springer, Berlin. (reprinted Chelsea Publishing Co., New York, 1948).
- [6] KAKUTANI, S. and PARRY, W. (1963). Infinite measure preserving transformations with "mixing". Bull. Amer. Math. Soc. 69 752-756.
- [7] Loève, M. (1955). Probability Theory, D. van Nostrand, New York.
- [8] Oxtoby, J. C. (1948). On the ergodic theorem of Hurewicz. Ann. Math. 49 872-884.
- [9] RÉNYI, A. (1962). Wahrschinlichkeitsrechnung. Veb Deutsher Verlag. Berlin.
- [10] TUCKER, H. G. (1959). A generalization of the Glivenko-Cantelli theorem. Ann. Math. Statist. 30 828-830.