ESTIMATION OF PROBABILITY DENSITY BY AN ORTHOGONAL
SERIES!

By StuarT C. SCHWARTZ

Princeton University

1. Introduction and summary. Let X; --- X, represent a sequence of inde-
pendent random variables with a common (unknown) density function f(z). In
this paper, an estimate of f(z) of the form f.(z) = Z?L’B)dj,,goj(x) is considered,
where d;, = (1/n) D=1 0;(X.), ¢;( ) is the jth Hermite function and ¢(n) is an
integer dependent on n. Assuming f(z) is Ls, it is shown that the sequence of
estimates is consistent in the sense of mean integrated square error, lim,.., &
. f (f(z) — fu(z))’dz = 0 and, under additional conditions on f(z), the se-
quence of estimates is also consistent in mean square error, lim.. E(f(z) —
fa(2))? = 0, uniformly in z. For both error criteria, bounds on the rate of con-
vergence of the estimate are obtained. The rate of convergence is seen to depend
on the smoothness and integrability properties of f(x)—the maximum rate
being bounded by 1/n.

In order for the series method to achieve the same rate of convergence as an
estimate which uses the ‘“kernel” technique [4], [6], more assumptions on f(z)
are required. However, in estimating a multivariate density, with the same type
of conditions as in the univariate case, the rate of convergence remains the same
for the multivariate series estimate. With the ‘kernel” method, the rate depends
on the dimension of the density being estimated; the rate of convergence of the
estimate decreases as the dimension increases.

In the next section, we introduce notation and give some preliminary results.
Conditions for consistency and rates of convergence are established in Section 3.
These results are then compared in Section 4 to previous work in the area.

2. Preliminaries and notation. Let
(2.1) Hj(z) = (—1)¢"(d'/dz’) (™)
be the jth Hermite polynomial. It is known[7] that the normalized Hermite func-
tions
(2.2) ei(z) = (2%17") e "H (a), i=01,-->
are I, n L, and form a complete orthonormal set over the real line.

A useful bound for the Hermite functions has been given by Cramér (see[3],
p. 208):
(2.3) loi(2)| < @/ =,
where the constant ¢; (and hence ¢,;) is independent of  and j.
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Throughout this paper, we shall assume that f(z) is square integrable (e.g.
it is sufficient that f(z) be bounded). f(x) can then be expanded in the orthogonal
series

(2.4) f(z) = 2 5= a0i(x)
with the coefficients defined by
(2.5) a; = [ f(z)¢i(z) da.

For the discussion of the mean square error, we need

LeMmMma 1. Let f(x) be continuous, of bounded variation, Ly and Lz in (— o, « ).
Then, the series in (2.4) converges uniformly in any interval interior to (— =, o).

The proof can be found in Sansone [5], Section 4.10. An alternate statement is
given by Wiener [7].

To specify a rate of convergence for both mean square and mean integrated
square error, we need a simple lemma.

LEMMA 2. Assume the derivative of f(x) exists and that the function

(zf(z) — f'(x)) is square integrable. Then the coefficients a; ,j = 1,2, - - - , satisfy
the bound
(26) lasl < e/ (25"
where c3 is the Ly norm of zf(x) — f'(z).
Proor.?
(2.7) a; = [Y2f(x)e ™ *H,(x) /(21 )} da.

Use the relationship (d/dx)H;(x) = 2(j + 1)H;(z) ([3], p. 193) to substitute
for H;(z) in (2.7) and integrate by parts:
(2.8) a; = (2§ + 2)7 [LZ2 [af(z) — f'(2)lpia(z) da.

Hence, by the Schwarz inequality, a; is bounded as above.
By repeated application of the method of Lemma 2 we obtain:
LemMma 3. Assume that the function

(29) & "*(d/da")[e™ "f(=)]

= Tlalbrl/il(r — )I(=1)2PH(e/2)(d™/da" ) f(z)
exists and is square integrable. Then, the coefficients a; ,j = 1,2, - - - , are bounded by
la;| < cs(r)/(24)"", where cs(r) is the Ly norm of (2.9).

ComMENT. The L, assumption on the function in (2.9) can be replaced by an
L, requirement. This follows from the boundedness of the Hermite functions.

3. Consistency and rates of convergence of the estimate. Let X1, Xo, -+,
X, be independent random variables with a common probability density func-
tion f(x). As an estimate of f(x), we form

(3.1) Fal(Xy, oo, Xas @) = fa(z) = 235 Gines(2);

2 The essential idea of the lemma can be found in Sansone [5], pp. 368-369.
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(3.2) bin = (1/n) 2oim1 05(Xi).
It is easy to see that the d,, are unbiased estimates of a; :
(3.3) Edjn = (1/n) 24 Boi(X) = [12f(2)ei(z) dz = a;.

The variance of the estimate is bounded by
E(djn — ;)" = (1/n")B{2 im0 0" (Xs)
(3.4) + kbt 05 Xi)ei( X))} — af
< (1/n)(ced — af) £ cu/n.

The MISE (mean integrated square error) in the estimate of f(x) is:

(35)  E[f (fa(®) — f(2))de = Xi-gna + 255 E(din — a,)"
< D ieamn gl + (g(n)/n)es .

TaEOREM 1. Assume that f(x) is square integrable and that the sequence of positive
integers q(n) is chosen so that gq(n)/n — 0 as g(n) —> «. Under these conditions,
the sequence of estimates defined by (3.1) and (3.2) is consistent in the sense of

MISE. Furthermore, assume that the function f(x) satisfies the hypotheses of
Lemma 3 with r = 2. Then with g(n) = O(n''") the MISE satisfies

(3.6) E [ (f(z) — fu(®))*dz = O(1/n">").

Proor. The first part of the theorem follows immediately from (3.5). Using
Lemma 3, (3.5) is dominated by

(B7) B[ (f(2) = fu(2)) dz £ ¢'(r) 2= 1/(2)" + cxg(n)/n.

A convenient integral upper bound for the first term of (3.7) is 1/(2"(r — 1)¢’™).
Upon choosing g(n) as the largest integer less than or equal to (ncs’(r) /i)', the
desired result (equation (3.6)) follows.

ComMENT. The referee has pointed out the paper by Cencov [2] who considers
the problem of density estimation using other orthogonal systems. Conditions for
MISE convergence rates are established (2], Theorem 1a) and the convergence
rate of the present theorem can be obtained from the inequality in Lemma 3
above and Corollary 3 of Cencov.

To investigate the mean square error for fixed xz, define

(3.8) fam(z) = XL a0i(x).
The mean square error can be expressed as
(39) E(f(z) — fu(2))* = (f(x) — ful2))* + 2(f(z) — fu())
-E(fo(x) = fu(z)) + E(fo(z) — fal2))".

f(x) is an unbiased estimate of fo(z) = 23— aje;(x) (see equations (3.1) and
(3.3)). Hence, the middle term in (3.9) is zero. We then use the boundedness of
the Hermite functions (2.3), (3.4), and the Schwarz inequality to obtain the
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bound |E{(a; — G;n)(ax — Grn)ei(2)er(2)}| £ cr'cs/n. Using this in the last term
of (3.9) gives

(3.10) E(f(z) = fu(2))" £ (f(z) = fu(2))* + e’eig’(n) /n.

In analogy to the proof of the previous theorem, we obtain the following result
concerning the mean square error.

TueorEM 2. Assume f(z) s continuous, of bounded variation, Ly and Lqin
(— o, ). Choose the sequence of positive integers q(n) so that ¢’(n)/n — 0 as
g(n) — . Then, the sequence of estimates defined by (3.1) and (3.2) converges in
mean square, uniformly in x. Furthermore, assume that f(x) satisfies the hypotheses
of Lemma 3 withr = 3 (cf. Theorem 1). Then with g(n) = O(n''"), the mean square
error satisfies E(f(z) — fu(z))? = O(1/n"72").

Proor. The first part of the theorem follows from Lemma 1 and (3.10). The
second part follows from the bound

f(2) = fu(@)] £ Limsra lasei(@)| £ €2 25mgin las]
< acs(r)/(27%(r/2 — 1))
and upon choosing ¢(n) as the largest integer less than or equal to
((r = 2) &) /(2 (r/2 — 1)%)""". '
4, Discussion. A previously proposed method of estimating f(x) is the estimate
(4.1) Fa(z) = 1/(nh(n)) 2ta Ku((z — X:)/h(n)).

K.(x) is the kernel or weighting function and A(n) is a sequence of positive
numbers chosen so that h(n) - 0asn — «.

Watson and Leadbetter [6] have considered the MISE of this estimate. They
show that the MISE is a minimum if the Fourier transform of the kernel K,(x),

which we denote by ¥g,(¢) is
(4.2) U, () = n [T OF/(1 + (n — DIEAD).

W, (t) is the characteristic function of f(x) which is assumed to be L, . By specify-
ing the asymptotic behavior of ¥,(¢), they are able to calculate the maximum
rate of convergence. A typical result is: if ¥,(¢) satisfies lim e [t [¥,(¢)] = ¢,
with r > 1, the MISE of the estimate is of order O(1/n"™"'"). Hence, if the kth
derivative of f(x) exists and is absolutely integrable, the above condition is
satisfied with r = 2k.

In order to guarantee the same rate of convergence with the series method, we
need to require that the function (2.9) be integrable. For this it is sufficient that
the functions z*(d"~*/dz"*)f(x), i = 0, 1, - -+, r, be integrable. Consequently,
Watson and Leadbetter require less restrictive conditions. This is at the expense
of a more complicated estimator—the inverse transform of (4.2) as compared to
(3.1)-(3.2). '

Parzen [4] has considered an estimator of the form (4.1) with the kernel’s
functional form independent of n. With [ K(z)dz = 1 and h(n) satisfying
lim,.e nh(n) = 0, he has shown that fa(z) is a consistent estimate (in mean-

IA
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square) at every point of continuity of f(x). Assuming further that the kernel
satisfies

(4.3) [t r’K(z) dz = 0, i=1,2,---r—1,
[fe2" |K(x)| dz < =,

and that [*3 [fW,(¢)| dt < o, the bias in the estimate is shown to be O(K™).
Since the variance of the estimate is O(1/nh), choosing h(n) proportional to
1/n"®* gives a mean square error with order of consistency O(1/n* /"),

Inspection of the hypotheses of Theorem 2 shows that we require more restric-
tive conditions on f(x) to achieve the same rate. Note, however, that if r > 2,
from (4.3) the kernel K(z) cannot be a non-negative function—the sequence of
estimates of the density function f(z), as given by

Fu(z) = 1/(nh) i K((z — X3)/h(n)),

will be negative over non-degenerate intervals of x for some values of n. Using
the series method, the sequence of estimates may or may not take on negative
values for some values of n.

It is in the problem of estimating a multivariate density function that the series
method may prove to be the most advantageous. With the same type of assump-
tions as in Theorems 1 and 2, except now extended to the multivariate case, the
rate of convergence of the multivariate estimate will remain the same as given
above. (The density f(x:, 22, - - - , 2x) is expressed as

F@r, ooy @) = Djieis G (1) -+ @ (@),

and the a;,...;, are estimated in a manner analogous to (3.2).) Using a multi-
dimensional kernel estimator, the rate of convergence will depend on the dimen-
sion of the density function f(z; - - - x). (See, for example, [1].) For this multi-
variate case, the variance of the estimate is now of order O(1/nk*) while the

bias is still O(h¥"). This leads to a rate of convergence of order O(1/n® ' **)—

the rate of convergence decreases as the dimension of the density, k, increases.
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