CONFIDENCE INTERVAL OF PREASSIGNED LENGTH FOR THE BEHRENS-FISHER PROBLEM

BY SAIBAL BANERJEE

Indian Statistical Institute, Calcutta

- **0.** Summary. It is shown that by drawing multiple samples from $N(\mu_i, \sigma_i^2)$ (i = 1, 2) it is possible to have confidence interval of preassigned length for the Behrens-Fisher problem.
- **1.** Introduction. Given a normal population $N(\mu, \sigma^2)$ by drawing two samples as specified by Stein [5] it is possible to have confidence interval of preassigned length for the population mean μ . It is also possible [5] by adopting the same procedure to ensure that the probability of accepting the hypothesis $H_0(\mu = \mu_0)$ when an alternative hypothesis $H'(\mu = \mu')$ is true, is equal to some preassigned value $1 - \beta$ (0 < β < 1). Given two independent samples of n_i units from two normal populations $N(\mu_i, \sigma_i^2)$ (i = 1, 2) it is possible ([1], [2]) to have confidence interval for $c_1\mu_1 + c_2\mu_2$ (where $c_i(i=1,2)$ are known constants) in terms of sample estimates of population means and variances; it is also possible ([1], [2], [3]) to test the hypothesis $H_0(c_1\mu_1 + c_2\mu_2 = M_0)$ on the basis of the sample estimates of population means and variances with error of the first kind less than or equal to α (0 < α < 1). It is now shown that given two normal populations $N(\mu_i, \sigma_i^2)$ (i = 1, 2) by drawing multiple samples (in all four samples, two samples from each population) it is possible to have confidence interval of preassigned length for $c_1\mu_1 + c_2\mu_2$ (where c_i (i = 1, 2) are known constants) with confidence coefficient greater than or equal to some preassigned value $1 - \alpha$ (0 < α < 1). It is also shown that by adopting the same procedure it is possible to ensure that the probability of accepting the hypothesis $H_0(c_1\mu_1 + c_2\mu_2 = M_0)$, when an alternative hypothesis $H'(c_1\mu_1 + c_2\mu_2 = M')$ is true, is equal to or less than some preassigned value $1 - \beta$ (0 < β < 1). The operational procedure as specified ensures selection of the final samples (or the second stage samples) from the two populations in such a way that the total cost of selecting the second stage samples is approximately minimized.
- **2. Procedure.** Let there be two populations $N(\mu_i, \sigma_i^2)$ (i=1, 2) and suppose it is required to have a confidence interval of preassigned length for the linear function $c_1\mu_1 + c_2\mu_2$ (where c_1 and c_2 are known constants). (When $c_1 = 1$ and $c_2 = -1$ we get the Behrens-Fisher problem). Let 1α and 2Δ denote respectively the preassigned confidence coefficient and the preassigned length of the confidence interval. The following procedure may be adopted in order to have a confidence interval of length 2Δ with confidence coefficient greater than or equal to 1α . Two samples x_{ij} $(i = 1, 2; j = 1, 2, \dots, n)$ may be drawn from the two populations providing the estimates

Received 29 November 1966.

(2.1)
$$\bar{x}_i = \sum_{j=1}^n x_{ij}/n, \quad s_i^2 = \sum_{j=1}^n (x_{ij} - \bar{x}_i)^2/(n-1).$$

Let T_1 be the cost of sampling one unit from the first population and T_2 be the cost of sampling one unit from the second population. Also let t be some positive numerical value satisfying the relation

(2.2)
$$2 \int_{-t}^{t} f(t, \nu) dt - \int_{-t'}^{t'} f(t, \nu + 1) dt = 1 - \alpha$$

where $f(t, \nu)$ denotes frequency function of Student's t-variate with $\nu (= n - 1)$ df and $t' = t(\nu + 1)^{\frac{1}{2}}/\nu^{\frac{1}{2}}$. Now determine θ_1 and θ_2 so that

$$t^{2}c_{1}^{2}s_{1}^{2}/(n+\theta_{1})+t^{2}c_{2}^{2}s_{2}^{2}/(n+\theta_{2})=\Delta^{2}$$

subject to the restraint that T defined as $T = T_1\theta_1 + T_2\theta_2$ is a minimum. By applying Lagrange's multiplier the solution is given by

(2.3)
$$\theta_i = t^2 |c_i| s_i (T_1^{\frac{1}{2}} |c_1| s_1 + T_2^{\frac{1}{2}} |c_2| s_2) / \Delta^2 T_i^{\frac{1}{2}} - n, \qquad (i = 1, 2).$$

Determine two integers n_1 and n_2

$$(2.4) n_i = \max\{[\theta_i] + 1, 1\}, (i = 1, 2),$$

where [q] indicates the largest integer less than q. Draw two samples of n_1 and n_2 units respectively from the two populations. Let \bar{x}_1' and \bar{x}_2' be estimates of population means μ_i (i = 1, 2). Define the combined estimates as

$$(2.5) z_1 = a_1 \bar{x}_1 + (1 - a_1) \bar{x}_1', z_2 = a_2 \bar{x}_2 + (1 - a_2) \bar{x}_2',$$

where a_i (i = 1, 2) satisfy the relation

(2.6)
$$a_1^2/n + (1 - a_1)^2/n_1 = 1/(n + \theta_1),$$
$$a_2^2/n + (1 - a_2)^2/n_2 = 1/(n + \theta_2).$$

It can be shown that it is possible to determine a_i (i = 1, 2) satisfying (2.6). There will be two solutions a_{11} and a_{12} for a_1 , and either solution may be used in (2.5). Also there will be two solutions a_{21} and a_{22} for a_2 , and either solution may be used in (2.5).

Now z_1 and z_2 depend on s_1 and s_2 through the numbers n_1 and n_2 . For given s_1 and s_2 , $c_1 z_1 + c_2 z_2$ is distributed normally with mean $c_1 \mu_1 + c_2 \mu_2$ and variance $c_1^2 \sigma_1^2 / (n + \theta_1) + c_2^2 \sigma_2^2 / (n + \theta_2)$. For fixed s_1^2 and s_2^2 or χ_1^2 and χ_2^2 (where $\chi_i^2 = \nu s_i^2 / \sigma_i^2$)

$$(2.7) \quad P\{(c_1z_1 + c_2z_2 - c_1\mu_1 - c_2\mu_2)^2 \le \Delta^2 \mid s_1^2, s_2^2\}$$

$$= P\{y^2 \le \omega_1 t^2 \chi_1^2 / \nu + \omega_2 t^2 \chi_2^2 / \nu \mid \chi_1^2, \chi_2^2\},$$

where y is distributed as N(0,1), $\omega_1 = \chi_2/(\chi_2 + \phi \chi_1)$, $\phi = |c_2| \sigma_2 T_2^{\frac{1}{2}}/|c_1| \sigma_1 T_1^{\frac{1}{2}}$ and $\omega_2 = 1 - \omega_1$. Denoting by G(u) cumulative distribution function of a χ^2 variate with 1 df, it follows from (2.7) that for variation in s_1^2 and s_2^2

$$(2.8) \quad P\{(c_1z_1+c_2z_2-c_1\mu_1-c_2\mu_2)^2 \leq \Delta^2\} = E\{G(\omega_1b_1+\omega_2b_2)\}, \qquad b_i = t^2\chi_i^2/\nu.$$

It can be shown that G(u) is an upward convex function of u, so that

$$G(\omega_1b_1 + \omega_2b_2) \ge \omega_1G(b_1) + \omega_2G(b_2).$$

Now

(2.9)
$$E\{\omega_1 G(b_1)\} = E\{(1 - \omega_2)G(b_1)\} = E\{G(b_1)\} - E\{\omega_2 G(b_1)\}$$
$$= \int_{-t}^{t} f(t, \nu) dt - E\{\phi \chi_1 G(b_1)/(\chi_2 + \phi \chi_1)\}.$$

Let $f(\chi^2, \nu)$ denote frequency function of a χ^2 variate with ν df. Since $1/(\chi_2 + \phi \chi_1)$ monotonically decreases and $G(b_1)$ monotonically increases with χ_1^2 it can be shown that

$$\int_{0}^{\infty} f(\chi_{1}^{2}, \nu) \{\phi \chi_{1} G_{1} / (\chi_{2} + \phi \chi_{1}) \} d\chi_{1}^{2}$$

$$= \int_{0}^{\infty} K f(\chi_{1}^{2}, \nu + 1) \{\phi G_{1} / (\chi_{2} + \phi \chi_{1}) \} d\chi_{1}^{2}$$

$$= \int_{0}^{\infty} K f(\chi_{1}^{2}, \nu + 1) \{\phi / (\chi_{2} + \phi \chi_{1}) \} \{G_{1} - \lambda + \lambda \} d\chi_{1}^{2}$$

$$= \lambda \int_{0}^{\infty} K f(\chi_{1}^{2}, \nu + 1) \{\phi / (\chi_{2} + \phi \chi_{1}) \} d\chi_{1}^{2}$$

$$+ \int_{0}^{\infty} K f(\chi_{1}^{2}, \nu + 1) \{\phi / (\chi_{2} + \phi \chi_{1}) \} \{G_{1} - \lambda \} d\chi_{1}^{2}$$

$$< \lambda \int_{0}^{\infty} K f(\chi_{1}^{2}, \nu + 1) \{\phi / (\chi_{2} + \phi \chi_{1}) \} d\chi_{1}^{2}$$

$$= \lambda \int_{0}^{\infty} \omega_{2} f(\chi_{1}^{2}, \nu) d\chi_{1}^{2},$$

where $G_1 = G(b_1)$, $\lambda = \int_0^\infty f(\chi_1^2, \nu + 1) G_1 d\chi_1^2 = \int_{-t'}^{t'} f(t, \nu + 1) dt$, $t' = t(\nu + 1)^{\frac{1}{2}}/\nu^{\frac{1}{2}}$, $K = 2^{\frac{1}{2}} \{\Gamma(\nu/2 + \frac{1}{2})\}/\Gamma(\nu/2)$. From (2.9) and (2.10) it follows that

$$(2.11) E\{\omega_1 G(b_1)\} > \int_{-t}^{t} f(t, \nu) dt - E(\omega_2) \int_{-t'}^{t'} f(t, \nu + 1) dt.$$

Also similarly it can be shown that

$$E\{\omega_2 G(b_2)\} > \int_{-t}^{t} f(t, \nu) dt - E(\omega_1) \int_{-t'}^{t'} f(t, \nu + 1) dt$$

so that

$$(2.12) P\{(c_1z_1 + c_2z_2 - c_1\mu_1 - c_2\mu_2)^2 \le \Delta^2\} > 1 - \alpha$$

by virtue of (2.2). The length of the confidence interval

$$c_1z_1 + c_2z_2 - \Delta \leq c_1\mu_1 + c_2\mu_2 \leq c_1z_1 + c_2z_2 + \Delta$$

is 2Δ as preassigned.

Apart from the question of having a confidence interval of preassigned length 2Δ , in Stein's theory by making a suitable choice of the numerical value of Δ , it can be ensured that if μ' be the true value of the mean then the error of the second kind (i.e., the probability of accepting the hypothesis $\mu = \mu_0$) has a preassigned value. For the two-means case as well by suitably choosing numerical value of Δ it can be ensured that if M' be the true value of the mean then the error of the

second kind (i.e., the probability of accepting the hypothesis $M=M_0$), has a value not greater than some preassigned value $1-\beta$. Let M' be the true value of $c_1\mu_1+c_2\mu_2$ and M_0 be the value by the hypothesis. Let P_1 denote the error of the second kind so that for fixed χ_1^2 and χ_2^2

(2.13)
$$P_{1} = P\{(c_{1}z_{1} + c_{2}z_{2} - M_{0})^{2} \leq \Delta^{2} \mid \chi_{1}^{2}, \chi_{2}^{2}\}$$
$$= P\{|y/tp^{\frac{1}{2}} - d| \leq 1 \mid \chi_{1}^{2}, \chi_{2}^{2}\},$$

where y is distributed as N(0, 1) independently of χ_i^2 , $d = (M_0 - M')/\Delta$ and $p = \omega_1 b_1 + \omega_2 b_2$. (2.13) for clarity of exposition may be considered under two headings (i) $|d| \leq 1$ and (ii) |d| > 1. For (i) P_1 is equal to

where $A_1 = t(1 + |d|)$ and $A_2 = t(1 - |d|)$. Now it can be shown that

$$\omega_1 \chi_1^2 + \omega_2 \chi_2^2 \le \chi_1^2 / (1 + \phi) + \phi \chi_2^2 / (1 + \phi),$$

so that from [1] and [4]

$$(2.15) P_1 < \frac{1}{2}E\{G(A_1^2q) + G(A_2^2q)\}$$

$$\leq \frac{1}{2}E\{G(A_1^2q') + G(A_2^2q')\}$$

$$= \int_{0}^{4} f(t, 2\nu) dt + \int_{0}^{4} f(t, 2\nu) dt,$$

where $q = ({\chi_1}^2 + \phi {\chi_2}^2)/\nu (1 + \phi)$ and $q' = ({\chi_1}^2 + {\chi_2}^2)/2\nu$. For (ii) it can be shown that

$$(2.16) P_{1} = \frac{1}{2}E\{1 - G(B_{1}^{2}p)\} - \frac{1}{2}E\{1 - G(B_{2}^{2}p)\}$$

$$< \frac{1}{2}E[\sum_{i=1}^{2} \omega_{i}\{1 - G(B_{1}^{2}\chi_{i}^{2}/\nu)\}] - \frac{1}{2}E\{1 - G(B_{2}^{2}q')\}$$

$$= \frac{1}{2} - \frac{1}{2}E\{\sum_{i=1}^{2} \omega_{i}G(B_{1}^{2}\chi_{i}^{2}/\nu)\} - \frac{1}{2}E\{1 - G(B_{2}^{2}q')\}$$

$$< 2\int_{B_{1}}^{\infty} f(t, \nu) dt - \int_{B_{1}}^{\infty} f(t, \nu + 1) dt - \int_{B_{2}}^{\infty} f(t, 2\nu) dt,$$

where $B_1 = t(|d|-1)$, $B_1' = B_1(\nu+1)^{\frac{1}{2}}/\nu^{\frac{1}{2}}$ and $B_2 = t(|d|+1)$. From (2.15) and (2.16) it therefore follows that given M_0 and M', Δ can be so determined so that P_1 is less than some preassigned value.

An alternate procedure is possible whereby computations of a_i as defined in (2.6) can be avoided. This procedure, however, is less powerful in detecting deviations from the hypothesis $H_0(c_1\mu_1 + c_2\mu_2 = M_0)$ when an alternative hypothesis $H'(c_1\mu_1 + c_2\mu_2 = M')$ is true for $|M_0 - M'| \leq \Delta$. After drawing the initial samples determine second stage samples n_i' by

(2.17)
$$n_i' = \max\{[\theta_i] + 1, 0\}.$$

Denoting by $\bar{x_i}''$ estimates of μ_i based on n_i' units combined estimates may be defined as

$$z_i' = (n\bar{x}_i + n_i'\bar{x}_i'')/(n + n_i').$$

Now for fixed χ_1^2 and χ_2^2

$$(2.18) P\{(c_1 z_1' + c_2 z_2' - c_1 \mu_1 - c_2 \mu_2)^2 \leq \Delta^2 \mid \chi_1^2, \chi_2^2\}$$

$$= P\{y^2 \leq \omega_1' t^2 \chi_1^2 / \nu + \omega_2' t^2 \chi_2^2 / \nu \mid \chi_1^2, \chi_2^2\},$$

where y is distributed as N(0, 1), $\omega_i' = c_i^2 \sigma_i^2/(n + \theta_i) l$ and $l = c_1^2 \sigma_1^2/(n + n_1') + c_2^2 \sigma_2^2/(n + n_2')$. As ω_i' is greater than ω_i (i = 1, 2), $G(\omega_1' b_1 + \omega_2' b_2)$ is greater than $G(\omega_1 b_1 + \omega_2 b_2)$ and the confidence interval $c_1 z_1' + c_2 z_2' - \Delta \leq c_1 \mu_1 + c_2 \mu_2 \leq c_1 z_1' + c_2 z_2' + \Delta$ will have confidence coefficient greater than $1 - \alpha$. Let P_2 denote the probability of accepting the hypothesis $H_0(c_1 \mu_1 + c_2 \mu_2 = M_0)$ when an alternative hypothesis $H'(c_1 \mu_1 + c_2 \mu_2 = M')$ is true. It can be shown that for fixed values of χ_1^2 and χ_2^2

$$(2.19) P_2 = P\{|y/tr^{\frac{1}{2}} - d| \le 1 | \chi_1^2, \chi_2^2\},$$

where y is distributed as N(0, 1) and $r = \omega_1' b_1 + \omega_2' b_2$. From (2.16) and (2.19) it therefore follows that for variation in χ_1^2 and χ_2^2 for |d| > 1,

$$(2.20) P_2 < \frac{1}{2}E\{1 - G(B_1^2r)\} - \frac{1}{2}E\{1 - G(B_2^2r)\}$$

$$< \frac{1}{2}E\{1 - G(B_1^2p)\}$$

$$< 2 \int_{B_1}^{\infty} f(t, \nu) dt - \int_{B_1}^{\infty} f(t, \nu + 1) dt.$$

From (2.20) it follows that given M_0 , M' and $1 - \beta$, by making Δ small so that $|(M_0 - M')/\Delta|$ is greater than 1, P_2 can be made less than $1 - \beta$.

REFERENCES

- [1] Banerjee, S. (1961). On confidence interval for two-means problem based on separate estimates of variances and tabulated values of t-table. Sankhyā Ser. A 23 359-378.
- [2] HÁJEK, J. (1962). Inequalities for the generalized Student's distribution. Select. Transl. Math. Statist. Prob. 2 63-74.
- [3] LAWTON, WILLIAM H. (1965). Inequalities for central and non-central distributions. Ann. Math. Statist. 36 1521-1525.
- [4] MICKEY, M. RAY and BROWN, MORTON B. (1966). Bounds on the distribution functions of the Behrens-Fisher statistic. Ann. Math. Statist. 37 639-642.
- [5] STEIN, C. M. (1945). Two sample test of a linear hypothesis whose power is independent of the variance. Ann. Math. Statist. 16 243-258.