CONFIDENCE INTERVAL OF PREASSIGNED LENGTH FOR
THE BEHRENS-FISHER PROBLEM

By SAIBAL BANERJEE

Indian Statistical Institute, Calcutia

0. Summary. It is shown that by drawing multiple samples from N (u;, o.?)
(7 = 1, 2) it is possible to have confidence interval of preassigned length for the
Behrens-Fisher problem.

1. Introduction. Given a normal population N (u, ¢?) by drawing two samples
as specified by Stein [5] it is possible to have confidence interval of preassigned
length for the population mean u. It is also possible [5] by adopting the same pro-
cedure to ensure that the probability of accepting the hypothesis Ho(p = po)
when an alternative hypothesis H' (u = ') is true, is equal to some preassigned
value 1 — 8 (0 < B8 < 1). Given two independent samples of n; units from two
normal populations N (u; , o) (7 = 1, 2) it is possible ([1], [2]) to have confidence
interval for ¢y + cous (where ¢i(z = 1, 2) are known constants) in terms of sample
estimates of population means and variances; it is also possible ([1], [2], [3]) to
test the hypothesis Ho( i1 + caue = M) on the basis of the sample estimates of
population means and variances with error of the first kind less than or equal to
a (0 < a < 1). It is now shown that given two normal populations N(u;, o)
(i = 1, 2) by drawing multiple samples (in all four samples, two samples from
each population) it is possible to have confidence interval of preassigned length for
¢ + coup (where ¢; (¢ = 1, 2) are known constants) with confidence coefficient
greater than or equal to some preassigned value 1 — o (0 < o < 1). It is also
shown that by adopting the same procedure it is possible to ensure that the
probability of accepting the hypothesis Ho(ciu1 + coue = My), when an alternative
hypothesis H'(cyuy + cope = M) is true, is equal to or less than some preassigned
value 1 — 8 (0 < B8 < 1). The operational procedure as specified ensures selection
of the final samples (or the second stage samples) from the two populations in
such a way that the total cost of selecting the second stage samples is approxi-
mately minimized.

2. Procedure. Let there be two populations N(u;, 0;%) (z = 1, 2) and sup-
pose it is required to have a confidence interval of preassigned length for the linear
function ciu1 + coue (where ¢; and ¢, are known constants). (When ¢; = 1 and
cs = —1 we get the Behrens-Fisher problem). Let 1 — « and 2A denote respec-
tively the preassigned confidence coefficient and the preassigned length of the
confidence interval. The following procedure may be adopted in order to have
a confidence interval of length 2A with confidence coefficient greater than or equal
to 1 — a. Two samples z;; (¢ = 1,2;7 = 1,2, --- , n) may be drawn from the
two populations providing the estimates
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(2.1) Fi= D azi/n, s’ = D ja(xy— &)/(n —1).

Let T': be the cost of sampling one unit from the first population and 7', be the
cost of sampling one unit from the second population. Also let ¢ be some positive
numerical value satisfying the relation

(2.2) 2fL f(t,vydt — [Yof(t, v+ 1) dt =1 — a

where f(¢, v) denotes frqquency function of Student’s {-variate with »(= n — 1)
df and ' = t(» 4+ 1)*/»". Now determine 6, and 6, so that

fol’sl’/(n + 6) + erls’/ (n + 6,) = A
subject to the restraint that T' defined as 7' = T16, + 726, is a minimum. By apply-
ing Lagrange’s multiplier the solution is given by
(2.3) 0; = £ e si( Ty |er] &1 + T |ea 80) /AT — m, (1 =1,2).
Determine two integers n; and ns
(2.4) n; = max {[0;] + 1, 1}, (7 =1,2),
where [g] indicates the largest integer less than ¢. Draw two samples of n; and n,

units respectively from the two populations. Let #’ and &’ be estimates of popu-
lation means u; (¢ = 1, 2). Define the combined estimates as

(2.5) a=ah+ (1 —a)d, ==abh+ (1-—a)id,
where a; (i = 1, 2) satisfy the relation
(2.6) a’/n + (1 — a)’/m = 1/(n + 6),

a’/n 4+ (1 — a)?/ne = 1/(n + 6).

It can be shown that it is possible to determine a; (7 = 1, 2) satisfying (2.6).
There will be two solutions a;; and a;; for a; , and either solution may be used in
(2.5). Also there will be two solutions as; and as for a. , and either solution may
be used in (2.5).

Now 2; and #; depend on & and s, through the numbers n; and n, . For given
sy and sz, €1 21 + €2 22 is distributed normally with mean ¢; u; + c» g2 and vari-
ance ¢’or’/(n + 6,) + ¢'or’/(n + 6,). For fixed s, and s, or x.* and x2. (where
xi' = vsl/al)

(27) P{(clzl + coze — Cipy — C2[.L2)2 = A2 ' 812, 822}
= Py’ £ wil’x’/v + wl’xe’/v | x1s X2}

where y is distributed as N(0,1), w1 = x2/(x2 + ¢x1), ¢ = |co| 0:T%*/|ea| Ty and
w; = 1 — @ . Denoting by G(u) cumulative distribution function of a x* variate
with 1 df, it follows from (2.7) that for variation in s,” and s,"

(2-8) P{(Clzl + 22 — i — 02#2)2 = Az} = E{G(wlbl + wzbz)}, i = tzxiz/v.
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It can be shown that G(u) is an upward convex function of u, so that
G(wiby + webe) = G(b1) + waG(b2).

Now

(29)  ElaGb)) = B{(1 — @)@} = E{G(b)} — EfwG(b)}
= JLf(4 v) dt = E{$xG(b)/ (e + ¢x)}-

Let f(x%, ») denote frequency function of a x° variate with » df. Since 1/(xz + éx1)
monotonically decreases and G(b;) monotonically increases with xi* it can be
shown that

I3 f(a®, M {dxaG/(x: + éx1)} dxi’
= 3 Kf(x', v + D{oG/ (e + ox1)} dxt”
= [T Kf(x’, v + Dio/Ge + ox)HG — N + N dxd’
(210) =\ [TEf(x’, v + D{e/Oe + ¢x)} d’
+ 3 Ef(x, v 4+ DI/ + x)HG — N dx®
<N [T KfGA v + Dio/(e + ¢xa)} dxd”
=\ [T wf(xd’, ») dxi’s
where Gi = G(b), N = [§f(x’, v + DGdx® = [Lof(t, v + 1)dt,
= t(v + 1)}/, K = 24{T(»/2 + 3)}/T(v/2). From (2.9) and (2.10) it follows
* that
(2.11) E{aG(b)} > [Lof(t,v) dt — E(wn) [C0 f(8 v + 1) dt.
Also similarly it can be shown that
E{wG(by)} > [Lif(t,v)dt — E(en) [So f(t, v + 1) dt
so that
(2.12) P{(cs + oo — e — cos)’ S A} > 1 — a
by virtue of (2.2). The length of the confidence interval
21+ e — A S oy + Cope = a1 + 22 + A

is 2A as preassigned.

Apart from the question of having a confidence interval of preassigned length
24, in Stein’s theory by making a suitable choice of the numerical value of 4, it
can be ensured that if 1" be the true value of the mean then the error of the second
kind (i.e., the probability of accepting the hypothesis u = o) has a preassigned
value. For the two-means case as well by suitably choosing numerical value of
A it can be ensured that if M’ be the true value of the mean then the error of the
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second kind (i.e., the probability of accepting the hypothesis M = M), has a
value not greater than some preassigned value 1 — 3. Let M " be the true value of
cim + caue and M, be the value by the hypothesis. Let P; denote the error of the
second kind so that for fixed x," and xo’

(2.13) Py = P{(cir + oo — Mo)* £ A | xd%, %27}
= P{ly/tp* — d| = 1|x’, x'},

where y is distributed as N(0, 1) independently of x’, d = (Mo — M "y/A and
p = wiby + webz. (2.13) for clarity of exposition may be considered under two
headings (i) |d] < 1 and (ii) |d| > 1. For (i) P is equal to

(2.14) 3B{G((ASp) + G(4:'p)},
where A; = t(1 + |d|) and A, = ¢(1 — |d]). Now it can be shown that
o’ + e’ £ x'/(1+ ¢) + ox/(1 + @),
so that from [1] and [4]
Py < 3E{G(Aq) + G(45°9)}
IE(G(ALC]) + G(4:'g))
11t 20) dt + [325(4, 20) di,

where ¢ = (x’ + éx:')/»(1 + ¢) and ¢’ = (xa" + x')/2v.
For (ii) it can be shown that

P, = 1E{1 — G(B’p)} — iE{1 — G(By'p)}
(2.16) < B[ i wi{l — G(Bx/v)}] — 3E{1 — G(B:q)}
= 1 — 1E{ 2 wiG(B X /v)} — 1B{1 — G(BY()}
< 2[5 f(t,v)dt =[5, f(t, v+ 1) dt — [5,f(t,2v) dt,
where B; = (|d| — 1), B = B, (v + 1)}/»* and B; = t(|d| + 1). From (2.15) and

(2.16) it therefore follows that given Mo and M ' A can be so determined so that
P, is less than some preassigned value.

An alternate procedure is possible whereby computations of a; as defined in
(2.6) can be avoided. This procedure, however, is less powerful in detecting devi-
ations from the hypothesis Ho(ciu1 + copz = Mo) when an alternative hypothesis
H'(cyn + caps = M) is true for |My — M'| < A. After drawing the initial samples
determine second stage samples 7, by

(2.17) ni = max {[6] + 1, 0]

Denoting by &;" estimates of u; based on n; units combined estimates may be de-
fined as

A A

(2.15)

I

o = (n@:i + /&) /(n + nl).
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Now for fixed xi* and x.”
(2.18) P{(aa’ + ez — ey — o)’ £ A | Xt X7}
= Py’ = o ®x’/v + X /v | xib, %},

where y is distributed as N(0, 1), w;' = ¢o/(n + 0;)l and | = clor/(n + ny')
+ &'0’/(n 4+ na'). As w/ is greater than w; (i = 1,2), G(w'by + wo'bs) is greater
than G(wb; + w:b,) and the confidence interval c;z,” + coze’ — A < ey + Coug =
¢z’ + ez’ + A will have confidence coefficient greater than 1 — a. Let P, de-
note the probability of accepting the hypothesis Ho(ciuy + cops = M,) when an
alternative hypothesis H' (ciu1 + cops = M ") is true. It can be shown that for
fixed values of x.* and x.’

(2.19) Py = Plly/tr' —d] £ 1] x, x7},

where y is distributed as N(0, 1) and 7 = @by + wy'bs . From (2.16) and (2.19)
it therefore follows that for variation in xi* and x," for |d| > 1,

Py < 3E{1 — G(B/r)} — 3E{1 — G(B)'r))
(2.20) < 3E(1 — G(B/p)}
< 2[5 f(t, v)dt — [5.f(t, v + 1) dt.

From (2.20) it follows that given My, M" and 1 — 8, by making A small so that
[(My — M")/A| is greater than 1, P; can be made less than 1 — B.
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