REPLICATED (OR INTERPENETRATING) SAMPLES OF UNEQUAL
SIZES!

By J. C. Koor®

North Carolina State University at Raleigh

1. Introduction.

1.1. The technique of replicated (or interpenetrating) samples, introduced by
Mahalanobis, is now well known. Some aspects of this technique, and its under-
lying theory, relative to equal-sized samples, were clarified by Lahiri (1954) and
Koop (1960). Deming (1956) has given a simplified version of the technique based
on the use of two or more systematic samples drawn from the entire universe of
ultimate units or elements.

1.2. In practice equal-sized replicated samples are used. However if considera-
tions of field work, and/or other causes, should dictate a departure from this
practice, the outcome would still be favorable. The main purpose of this paper is
to point out this surprising result; that is, replicated samples of unequal sizes are
more efficient than those with equal sizes.

2. Technique underlying the theory.
2.1. We consider a single universe U containing N first-stage units

ul,m, ...’uj’ ...,uN'

The first-stage units are selected with equal probabilities, and without replace-
ment after each draw. Beyond this stage, the procedure, say D;, (7 = 1, 2,
.-+, N) for selecting the units at the second and subsequent stages, with equal
or unequal probabilities and with or without replacement, is specified in advance
for each u; . For the sake of generality we do not explicitly define this procedure.

22 Let X; (j=1,2, ---, N) be the total value of a characteristic of interest
in the first-stage unit u; . We note that X; is equal to the sum of all the variate
values in the ultimate units of ;. It is desired to estimate

(1) T = I]Llij

on the basis of & independent replicated samples each of size m; > 1 (¢ = 1, 2,
---, k). For this purpose, m; first-stage units are selected as specified in the
previous paragraph. Denote this collection of first-stage units by s; . Then for
every unit u; , which is a member of s; , the procedure D, is applied for selecting
the second- and subsequent-stage units and for ascertaining the variate values of
the ultimate-stage units. Next these m; first-stage units are returned to U. The
same procedure is repeated for the selection of sets of ms, ms, - -+, my units,
and for the selection of the multi-stage units internal to them.
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2.3. We digress to note that all the & replicated samples (of unequal sizes) are
mutually statistically independent simply because of the replacement of first-
stage units after each set of draws.

2.4. In all there are Zi m; = ik first-stage units, and the m;’s are chosen so
that 7 is an integer. The overall first-stage sample size, 7k, is fixed.

2.5, Similarly we may draw k sets of independent replicated samples each con-
taining an equal number of first-stage units 7. In current practice this is usually
done.

3. Theory and solution of problem.

3.1. Now consider the replicated sample s; based on m; first-stage units (¢ =
1,2, -+, k). Let X, be an unbiased estimate of X;, with variance V(X;), for
allyj. Then T; (¢ = 1,2, --- , k), an unbiased estimate of T’ will be given by

(2) Ti = (N/mi) Du,ess X,
with variance (Madow (1949))
(3) V(T = NI(S/my)(1 — my/N) + (1/m) (N7 23 V(X))

where §* = > ¥ (X; — T/N)*/(N — 1). The expression for V(X,) can be ob-
tained by applying Madow’s theorem again as soon as the procedure D; , defined
in paragraph 2.1, is specified in detail for all j. Writing N> ¥ V(X;) = E(u),
suggestive of the fact that this value is the mathematical expectation of the vari-
ance functions internal to each u;, o = 8*/(8* 4+ E(u)) and f; = mi/N, (3)
can be rewritten as

(4) V(T:) = (1/m)N*(8* + E(u))(1 = fia).

We note that 0 < a =< 1, and in uni-stage sampling, when ¥ (u) is formally zero,
« attains its greatest possible value one.

3.2. Now an unbiased estimator of 7', with the least variance, based on the k
independent estimates defined at (2), will be given by

(5) Tu= 25w,

where w; > 0 and D1 w; = 1, when

(6) wi = (UV(T))/ 224 (1/V(T)),  (i=1,2-,k).
Substituting for the V' (7.) in (6) we find

(7) w; = (mi/(1 — fi))/ 221 (ms/ (1 = fier)).

The variance of the estimator T, (with weights specified by (7)) is

(8) V= 1/223 (1/V(T).

The results at (6) and (8), under other notations, were well known to surveyors
and astronomers in the problem of combining observations. Later in paragraph
4.3 the approximations for the w;’s will be considered. Substituting V(T;) given
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by (4) in (8), we find
(9) Vi = N(8 + E(u))/ 221 [mi/ (1 — fie)].

As a subsidiary problem, we shall consider the estimation of V, in Section 3.

3.3. Equally, on the basis of results at (4), (6) and (8), an unbiased estimator
of T, based on k independent replicated samples each containing 7% first-stage
units and having the least variance, will be

(10) Te= 2 ia Ti/k,

with variance

(11) V.= V(T:)/k = N*(S8* + E(u)(1 — fa)/mk,

where f = D % fi/k. We observe that V, = V,whenm, = mg = -+ = my = .

3.4. In what follows it will be demonstrated that V. > V., when at least two
among k values of the m,’s are unequal. From (11) and (9) we find

(12) Ve/Vu = (1/kim)(1 — Ja) 2.5 mi/ (1 — fia)].

We recall that km, the overall first-stage sample size, is fixed; f = /N is also
fixed. Only the expression under the summation sign in (12) can vary, subject
to the choice of (positive) values of m; which sum to the fixed value km. In view
of this, consider the expression multiplied by Y i m;. By Cauchy’s inequality

(13)  (Xham)(Xhami/(1 = fia)) 2 [Zimd(mi/(1 — fu))'T"
Equality in (13) is attained if and only if

(14) (mi/(1 — fia))/md = 1/(1 — fia)* = a constant, for all 4.
Even if two of the m.’s are unequal (13) will still be true. When condition (14)
is satisfied, which implies that

(15) 1 —fia=1= (mi/N)a =X\ (i=12,--+,k),

where \ is a constant, the lowest bound for the expression on the left-hand side
of (13) will be obtained. Noting that the restricting condition Y & m; = ki
holds, and summing over all ¢ in (15) we find

KN =k — (2imi)a/N = k — kma/N,

so that

(16) A=1—fa=1-fu (Z=1,2,--,k).
Further from (16) we have

(16.1) fi=F or m;=m, for all 3.

Hence the lowest value which the expression on the left-hand side of (13) can
attain, subject to the restriction that > m; = km, is when (16.1) holds. This
value is ( Qi m/(1 — Ja)})? = (km)?/(1 — ja). Hence even when two of the
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m/’s are unequal,

km2 0 [my/ (1 — fie)] > (km)*/(1 — fa),
80 that

(17) V/Vu= (1/km)(1 — Ja) 2% [mi/(1 — fia)] > 1.

4. Comments.

4.1. We note that (17) is true regardless of the value of o = S%/(S* + E(u)),
and regardless of the nature of the sample design internal to the first-stage units.

4.2. Numerical calculations will show that for any given k¥ and «, the ratio
V./V. increases with increasing dispersion among the m,’s, and it attains its
maximum when my = my = -+ = myy = 2 and mp = Wk — 2(k — 1). We
present some of these calculations for a universe of N = 100 first-stage units and
for overall sample sizes of mk = 10, 20, 30.

The tables speak for themselves. We only note that when the overall sampling
fraction 77k/N is as high as 3/10, the ratio V./V, can rise as high as 1.177 for
uni-stage sampling when dispersion among the sizes of the three replicated sam-
ples is highest.

4.3. Regarding the problem of weights for T, , for uni-stage sampling, since
a = 1 for all characteristics of interest, we find

wi = (mi/ (1 = f2))/ 221 (mi/ (1 = £)) (i=12 - k)
TABLE (i)
k=2
Sample
sizes (2, 8) (4, 6) (2, 18)
(my, my)

a 3 3 1 3 $ 1 3 i 1
Ve/Vu 1.009 1.015 1.020 1.0010 1.0016 1.0022 1.036 1.056 1.080
Sample sizes

(nble =i 4, 16) 2,28 (4, 26)

o 3 % 1 3 % 1 3 i 1
Ve/Vu 1.022 1.032 1.045 1.066 1.109 1.160 1.047 1.077 1.114
TABLE (ii)

k=3
Sample sizes
(1, ma, ms) (2, 2,26) (4, 4, 22)
a 3 % 1 H 1 1

Ve/Vu 1.074 1.121 1.177 - 1.014 1.067 1.096
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However, in multi-stage sampling « (which lies between 0 and 1) will vary from
characteristic to characteristic. For calculating the weights for each characteristic,
a can be estimated from one of the samples. Fortunately this will not be neces-
sary as the w,’s can be approximated as m;/km (i = 1,2, --- , k) (since fia will
be closer to zero than one, particularly if the individual f.’s are less than 1/10,
as they usually are), thus leading to a uniform vector of weights for all character-
istics, which is a desirable property of the technique.

5. Estimation of variance.

5.1. One of the objectives of the technique of replicated samples is to simplify
the estimation of sampling variance. Recently Srikantan (1964) showed that an
unbiased estimate of the variance of T, , with weights w; different from those
given by (7) is

(2 w’Td — (L w)HTS/A — 2 wd).

He computed estimates of variance for the two cases when these weights were
chosen (i) equal and (ii) unequal. Of course in case (1), the formula reduces to
S (T — T.)*/k(k — 1), where T. is given by (10), which is well known. In
case (ii), an estimate can assume negative values.’ We shall show that positive
estimates of variance, which are unbiased, can always be constructed.

5.2. One of them is given by

(18) Vo = [(ma/(1 — afu))/ (2t mi/ (1 — of))]- 225 (Ti — T)'/(k — 1)

where my is the harmonic mean of the m/s, i.e. ma™" = 2t mi " /k, fa = ma/N
and T = D% T./k. We recall that o = S*/(S* + E(u)). Remembering that
E(T? = V(T:) + T*for all 4, E(T:T:) = T"for ¢ > ¢, and using the formula
for V(T,) given by (4), the essential steps in the proof of (18) are as follows:

(19) E[25 (T:— T)/(k — 1)]
= EEYTE — (/k(k — 1)) Dierr TiT) = K12 V(T)
= N¥(§ + E(u))(1 — afn)/mau .

The proof is completed by eliminating N*(S8* 4+ E(u)) between (19) and (9).
5.3. For any given «, the expression in the square brackets in (18) can be

approximated as myg/ki, because it can be shown that in the underlying bi-

nomial expansion, where second order terms are neglected, the first order term,

affs — (2 fims)/( > ms)}, is nearly zero, so that

(20) V. (approximately) = (ma/m) > ¢ (T; — T)’/k(k — 1).
5.4. Another unbiased estimator of V, is
(21) V= 2 8wiT: — T,/ (k —1)

3 Shrikantan had the courage to publish these estimates. The general problem of negative
estimates of variance in sampling theory remains open (Koop (1957), (1964)), both in regard
to interpretation, and to the nature of the circumstances giving rise to such estimates.
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where the w;’s are given by (7). The proof that E(V’,) = V. is much simpler.
The essential steps are as follows:

BI2fwi(Ti — Tu)*/ (b — 1)] = [ 225 wiV (Ts) — 223 wlV(T)l/(k—1).

Next by substituting for the w,’s, V, as given by (8) will be obtained. As argued
in paragraph 4.3, w; in (21) can be approximated by m;/k. This estimator will
be more stable if the m.’s, and therefore the w;’s, vary substantially.

5.5. In uni-stage sampling & = 1. By substituting this value in (18) and (21),
we obtain the exact analogous expressions for the estimates of V, .

Acknowledgment. The author is grateful to the referee, and an associate
editor, for various criticisms which have improved the presentation of the paper
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