ON SELECTING A SUBSET OF %k POPULATIONS CONTAINING
THE BEST!

By W. J. StuppEN
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1. Introduction. This paper is concerned with the problem of selecting a sub-
set of k£ populations which is in some sense an optimal subset. In the usual subset
selection type setup we are given k populations m;, m, - - -, m with densities
fou s foo 5+, for . In general the parameters 6; are not known and usually range
over some subset of the real line. For convenience it is assumed that the larger
the parameter 6, the more preferable is the selection of the corresponding popu-
lation. The population with the largest parameter is called the best and a selec-
tion of any subset containing the best population is called a correct selection.
If the selection proceeds according to some rule R, then the subset selected is
required to contain the best population with a specified probability v.

For many types of densities fy(), e.g. normal, gamma, binomial and more
general situations, different types of rules have been proposed and numerous
properties of the rules have been investigated. References to some of the litera-
ture on the subject can be found in Gupta (1965).

In this paper we first investigate the more elementary problem of defining
“optimal” subset selection rules for the case where we have k fized density func-
tions and only the correct pairing of the densities and populations is unknown.

Section 2 contains a decision theoretic formulation of the selection problem
and a solution is obtained under the usual symmetry conditions. In Section 3
we examine the solution for the exponential family when the parameters are in a
“slippage” type configuration. In Section 4 we obtain a result for the normal
case where the parameters are permitted to vary. Section 5 contains two re-
marks; one concerning scale invariant procedures, the other concerning the fact
that certain “classical” procedures appear as limits of the procedures obtained
in Section 3 for the exponential family.

The results presented below are all quite elementary, however, it is hoped
that the selection procedures introduced (especially those in Theorem 3.1) will
have some interest as alternatives to those procedures now in use. Theorem 4.1
indicates that the usual procedures are not the “best’ for certain specific situa-
tions.
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2. Formulation of the problem. We formulate our problem as follows. We are
given k fized values 0 < 09y < -+ = 6y and k populations my, wa, -+« , 7.
The correct pairing of the populations and the parameters is unknown. We are
given one observation z; from each population m;,¢ = 1, 2, --- | k. The vector
of observations x = (21, 22, -+, k) is assumed to have density f(x; 6) (with
respect to some measure u) where 6 = (6;, 6., ---, 6;) belongs to the set Q
of k-vectors consisting of permutations of the k fixed values 0y, 0, -,
0[1,] .

Let A denote the action space consisting of the 2° subsets of the set {1, 2,

-+, k}. A measurable function § defined on X X A is called a selection procedure
provided that for each fixed k-vector of observations x ¢ X, §(x, a) = 0 and
> 4 8(x; a) = 1. Thus if x ¢ X is an observed vector of observations, 8(x, a)
is the probability of selecting the subset a ¢ A. Let 0i(z) = 2 a3 8(z; a)
(summation over those subsets a containing 7) denote the probability of select-
ing the 7th population. The functions ¢1, ¢z, - -+ , ¢ Will be referred to as the
individual selection probabilities. Note that the selection procedure § is completely
specified by the individual selection probabilities whenever the latter take on
only the values zero and one.

The population associated with the largest parameter 6y, is called the ‘“best”
and a selection of a subset containing the best population is called a correct
selection (CS). In the case where two or more of the largest parameter values
are equal one of these parameters or the corresponding populations is “tagged”
and called the best population.

We shall assume that a selection of the subset a@ ¢ A results in a loss L(8, a) =
> iea Li(8) where L;(8) is the loss whenever the sth population is selected. An
additional loss of L will be imposed if a correct selection is not made. It is readily

seen that 24 L(8, a)Ee 8(x, a) = 1 Li(80)Eep; . Our problem will be to
minimize the risk
(2.1) R(8,0) = 2.t Li(8)Eep: + L[1 — Po(CS|o)].

This minimization will be done under the usual symmetry conditions imposed by
the group @ of permutationsg(1, ---, k) — (g1, -+, gk). If h = g~' denotes
the inverse of g let gx = g-(21, -+, @) = (Tm, -+, Tw) and g0 = (6u,
-+« , 0i). We assume that all quantities involved are invariant under G, i.e. the
measure g is invariant, f(x; 0) = f(gx, ¢0), L:(8) = L;(g8) and &(x, a) =
8(gx, ga) where ga = {gi |7 £ a}. The invariance of the selection rule § implies
immediately that the individual selection probabilities are also invariant, i.e.
that ¢i(x) = ¢,:(gx),7 =1, 2, .-+, k. An invariant selection procedure é or a
set of invariant individual selection probabilities which minimizes (2.1) will be
called best invariant.

Since G acts transitively on Q it is easily seen that for invariant § both R;(6,
©) = 2 1 Li(8)Eep; and Pe(CS |@) are invariant under G, i.e. they are inde-
pendent of 8 £ Q. The class of invariant loss functions includes the following
cases.
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(i) L:(8) = 1. In this situation R:(8;¢) = > %1 Eep: is the expected size
of the selected subset.
(ii)
L.(6) = 1if 6; # 0y

, i=1,2 -,k
=0if 6, = Oy -

In this case Ry(0;¢) is the expected subset size excluding the best population.

Tt is easily seen that the functione defined in (2.2) below is the same for cases
(i) and (ii). In the examples considered we restrict ourselves to case (i). It
should be noted however that when the parameters 6; are permitted to vary,
it would probably be more appropriate to use case (ii) or (iii).

(iii) Li(8) = rank of §; in the sequence 0y , Ou—11, -, O - Here we as-
sume that 6y has rank one and 6y has rank k, etc. Then R1(8;0) is the expected
sum of ranks of the populations in the selected subset.

Let @ denote those permutations of (61, 8;, --- , 6) such that the largest
parameter value 6y (or the tagged parameter) is in the last component. In
addition let

pi(x;0) = (1/(k — 1)) D a, f(x;00) ¢=1,2--,k

where G; = {g|¢g 'k = 7}. We then have the following theorem.
TuroreM 2.1. A selection rule & is best invariant if and only if

(2.2) ou(x) = L1if Lpi(x; 8) > 2t Li(0)pi(x; 0)
= 0if Lpi(x; 0) < Dk Lie)pi(x; 0)
for 8 £ Qi , almost everywhere u. The functions ¢; , 1 % k are defined by the invariant
conditions on @. (Note that the quantities defining . are independent of 0 & & so
that ¢ and hence @ are well defined on the set where Lpi(X; 0) = 2 i Li(0)pi(x;
8)).
Proor. Since our problem is invariant under G and G acts transitively on @
there is at least one best invariant procedure and any best invariant procedure
is Bayes with respect to the uniform distribution on €. The result now follows by

noting that for 8 & @
e R(g0, 0) — L = 2ict f i(X)[ kot Li(8) 210101 f(2; g6)
— LY tg-1je) f(z; g0)] d.

Since Po(CS |¢) is independent of 8 & @ for invariant selection rules we may
define y(L) = Po(CS | ©) where ¢ satisfies Equation (2.2) for a given value of
L. The following corollary is immediate.

COROLLARY 2.1. An invariant selection procedure minimizes > k1 Li(8)Ee:
subject to the condition

(2.3) Pe(CS |@) = v(L) foralle e Q

if and only if the individual selection probabilities are determined by (2.2).
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RemARk 2.1.
(a) The function v(L) is nondecreasing in L so that for a fixed value of
v € (0, 1) the minimum of Z’f,,l L;(8)Eep; subject to Pe(CS |o) = v will be
attained by the ¢ in (2.2) where L is the minimal value of L for which
Po(CS o) =z

(b) If two fixed k-vectors 8° and 8 are considered and we replace Po(CS |@)
by Peo(CS |@) in (2.1) and (2.3) then Theorem 2.1 and its Corollary remain
valid when p.(x; 8) is replaced by pi(x; 6°) in (2.2).

3. Exponential family. The expression given in Equation (2.2) defining the
selection probabilities which minimize the risk R(8; ¢) is rather complicated
when written down explicitly in terms of the original densities. However for the
“slippage” situation when the underlying densities are from an exponential
family and L.(8) = 1 the expressions simplify considerably.

We suppose that fs(x) is a density of the form

(3.1) Jo(z) = C(8)e™
with respect to some o-finite measure u on the real line. Let
(3.2) Fo(x) = JTia fo(2)

and suppose further that 6 = 0y =0 = .-+ = Op_y = 6y — A for some
fixed A > 0. It then follows that for 8 £ &

pe(x;0) = JTi C(6:) exp {02 % a; + Ami} .

If > denotes a summation over all permutations of x;, 2, - -+, xx then

2iipd(x;0) = (1/(k — 1)) 200 27 TT5- €(6)) exp (02 5 + Az
(T2 CC6:)/(k — 1)1) lexp 030 2,127 D4t €™

=TI C(8;) lexp 62 1 2,12 11 e

With the aid of Corollary 2.1 the above analysis proves the following theorem.

TurorEM 3.1. Let fo(x) = [[izifo,(z:) where fo(z) = C(0)e* and 6 =
O = by = -+ = Oy = Oy — A(A > 0). Let S denote the size of the se-
lected subset. An- invariant selection rule & minimizes E oS subject to the condition
Po(CS|@) = v if and only if for almost all x
(3.3) ou(x) = 1if i1 e < Qe

= 0if D516 > Ce™

Remark 3.1. If fo(x) possesses the slightly more general form fy(z) =

Il

C(0)e®®™™ and 6 = y; = -+ = Oy = Ou) — A then the expression in
(3.3) defining ¢, (x) is obtained by replacing z; by T'(x;) and A by Q(8 + A) —
Q(9).

It seems worthwhile to point out a number of properties of the function ¢
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defined through (3.3) and the region
(3.4) A = {x| DM e < Ce™

for which we select the kth population with probability one. These properties
are listed in the following lemma.
Lemma 3.1. The region Ay defined in (3.4) is:

(i) converz,

(ii) translation tnvariant, i.e. if (zy, - , x) € Ay then (T +b, -,z + b)
& Ay for all b,

(iii) symmetric in 1, -+ - , 24y,

(iv) & (21, -+, x) € Ax then for any b > 0 (1, -+, Tpx, 2 + b) € A
and (1, -+, — b, -+, Ti1, 2) € A for i = 1,2, ...,k — 1.

(v) if the constant C in (3.3) is >k — 1 then Dy gi(x) = 1 for dll X, ie.
we select at least one population with probability one;if C < k — 1 then Sk ei(x)
< 1 at least for x in a neighborhood of the equiangular line.

Proor. The proofs of the first four parts are immediate; part (iii) in fact is
simply a restatement of the invariance imposed on . To prove part (iv) we
define

Bk = {x I Tk g max; {:1:,}}

andlet A;and B;,7 = 1,2, --- , k — 1, denote the corresponding sets obtained
by interchanging x; and z; in A, and B, respectively. Since B; C A;,i = 1,2,
.-+, kand U, B; = E, = euclidean k-space, the result follows. The converse
statement of part (v) is nearly immediate.

REMARK 3.2. With regard to part (v) in the above lemma it should be noted
that situations where Y i ¢.(x) < 1 for some x do exist. For example consider
the situation of Theorem 3.1 for k = 2 where fy(z) = f(z — ) and f(zx) is the
standard normal. In this case the second population is selected if z, > z; —
A7 log C. If y is sufficiently close to 3 and 6, > 6, then C < 1. In this situation
qu(X) -+ gag(X) = 0 for liL‘l —_ Il'gl < A-l lOg C—l.

4. Normal density. In this section we consider a simple situation concerning
normal populations where the parameters are permitted to vary.

The following lemma will be used. The proof will be omitted since the result
follows readily from Lemma 2, p. 74 of Lehman (1959).

LemMA 4.1 If (1, -+, 2.) s nonincreasing or nondecreasing in each of the
variables x; separately and f(x; 8) = []i- fo,(z:) where fo(x) has a monotone
likelihood ratio in x then Eop = (61, - -- , 6,) is nonincreasing or nondecreasing
wn each 0, separately and in the same direction as the corresponding z; .

We assume that f(x; 0) = []%. f(z; — 6;) where f(z) is the standard normal
density. For fixed A let o(x; A) denote the selection probabilities defined by
(3.3) where C is chosen so that Pe(CS |o(x; A)) =« for all 6 = (6, --- ,
8, 6 + A). Let #(A) denote the class of invariant procedures satisfying

Po(CS|@) =y forall 6eQ(A)
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where
QA) = {0] 6y < 0y £ -+ = O = Oy — AL

TuroREM 4.1. For any 0 with 6y = 0 = -+ = Oy = Oy — A the mini-
mum value of the expected subset size Eo(S | @) over the class ®(A) is attained by
o(x; A);ie.

(4.1) mineay Eo(S |@) = Eo(S [o(x; 4)).

Proor. For a fixed k-vector 8 with 8y = -+- = Op—y = 0 — A Corollary
2.1 asserts that o(x; A) minimizes Eo(S | @) over those procedures satisfying
Po(CS |@) = v. By Lemma 4.1 the procedure with selection probabilities
o(x; A) is contained in ®(A) so that o(x; A) also minimizes Eo(S|¢) over
®(A).

ReMARK 4.1. For the case k = 2 the selection probability ¢»(x; A) reduces to

e(x;8) = lifas >a — ¢
=0ifzs <21 — c.

For this case it can be shown that ¢(x; A) possesses a stronger property, namely
that Equation (4.1) is valid not only for those 8 with 6y = 6 — A but for all
0 for which 8 = 6 — A or equivalently |6, — 6:| = A. This result can be
verified with a judicious application of Remark 2.1 (b).

REMARK 4.2. The result proven in Theorem 4.1 holds in general for translation
invariant exponential families since these were the only properties of the normal
density that were used. However, if the density fo(x) is given by f(z — 6) =
C(6)e*h(z) then fo(z) can be shown to be normal provided h(z) is continuous.

5. Additional Remarks

(A) The procedures defined in Theorem 3.1 are invariant under translation
of each component by a constant. This property would seem natural if the under-
lying densities are translation invariant but not if they are scale invariant. The
results in Theorems 2.1 and 3.1 can be modified in the usual manner to produce
scale invariant procedures. For example let f(x; 6) = I1%= fo.(x:) where
fo(z) = (1/8)f(z/6), 8 > 0 and f(z) = ("¢ /T(p)), = >0, p>0 and
suppose 0 = Ou = O = -+ = Opy and Oy = 70 (r > 1 and fixed). Then
among all procedures which are invariant under both permutations and scale
change and satisfy Peo(CS lo) = « for all 6 the procedure minimizing Ee(S | @)
is defined by setting gx(x1, -+ , zx) = 1if and only if

2 (e 4 10T 2)/ (@i + 1 2 1)) < C
(B) Consider the sequence of selection probabilities defined for A £ (0, » ) by
(5.1) ou(x; A) = 1if D 52i e < C(A)e™
0if Dkl e > C(A)e™™

i
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For A = 0 we let

(5.2) e(x;0) = Lif 255 i/ — 1 < 2 + C(0)
=0if D5 zi/k — 1 > x + €(0),

while for A = » we define

(5.3) or(x; 0) = 1if maxycjcha @; < 2% + C( )
= 0if max; < k1 2; > a + C(=).

The values C(A), A ¢ [0, «] are all chosen so that for a fized set of values 6 <

- £ Oy the probability of a correct selection is equal to a given value «.
It should be emphasized that the present choice of C(A) is different from that
used elsewhere in the paper.

The procedures defined in (5.1) and (5.2) are presently in use and have been
considered and investigated by numerous authors; see for example Gupta (1959)
and Seal (1955).

It can readily be shown as may be anticipated by the notation that the func-
tions ¢r(x; A) have limits ¢r(x; 0) and ¢;(x; ) almost everywhere u as A ap-
proaches zero and infinity respectively.
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