SIMPLE RANDOM WALK AND RANK ORDER STATISTICS!

By MEYER Dwass

Northwestern University

1. Introduction. Suppose X;,-::, X,, Y1, -+, Y, are 2n independent
random variables, each having the same continuous cdf. Let the 2n random varia-
bles be arranged in increasing order, and the values of the X’s replaced by (—1)’s
and the values of ¥’s replaced by 1’s. This sequence of (—1)’s and 1’s is called
the sequence of rank order indicators. There are (') equally likely sequences of
rank order indicators. A random variable which is a function of the X’s and Y’s
only through these rank order indicators is called a rank order statistic. Often
rank order statistics are defined in terms of the empirical edf’s F, and @, :

F,(t) = (number of X’s =< t)/n,
G.(t) = (number of Y’s < t)/n.
Some examples of rank order statistics are

Dn+ = Sup—oo<t<°o (Fn(t) - Gn(t) )
(one-sided Kolmogorov-Smirnov statistic),

SUP—wo<t<eo |[Fn(t) — Ga(t) !
(two-sided Kolmogorov-Smirnov statistic)

D,

With every sequence of rank order indicators one can associate a “random-
walk” graph in a familiar way. (See Figure 1.) As indicated in Figure 1, this
random walk moves from (0, 0) to (2n, 0) performing n» upward steps and »
downward steps, with the () possible paths being equally likely. Gnedenko
and his coworkers succeeded in determining the distributions of various rank
order statistics including D,* and D, by combinatoric analyses of the above
described random walk. This is now a much used technique and accounts for the
methodology in the papers [2], [4], [5], [6], [7], [8]. The above random walk con-
sists of nonindependent steps. The purpose of this paper is to provide an alternate
method based on ordinary simple random walk which has independent steps. We
believe this new method gives simple and unified proofs for the distributions
previously derived and for new distributions as well.

2. The method. Suppose that W, , W, , --- are independent and identically
distributed random variables with distribution given by

W, = 1, with probability p,
“=1~1, with probability 1 — p = g.

The following lemma is easy to verify.
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This graph represents the sequence This graph represents the sequence
-1,-1,-1,1,1, 1. -1,1,1, -1,1, —-1.

F1c. 1. A downward step denotes —1 and an upward step denotes 1. The graph starts at
(0, 0) and ends at (2n, 0). There are (%) possible paths.

Levma 1. For any p in (0, 1) the conditional distribution of Wy, - -+ , Wi, given
that Wy + --+ + Wy, = 0 assigns equal probabilities to each of the (%) possible
sequences of n 1’s and n (—1)’s. In other words, the distribution 1s exactly that of
the rank order indicators described in Section 1.

If p < 3 then the simple random walk, W1, W1 + Wy, W1 + Wy + W3, -
is transient. With probability 1 there are only finitely many returns to the origin.
(In other words, Wy + --- + Wy, = O for only finitely many values of n. Of
course, a return to the origin cannot take place for an odd index.) Let T be the
time of last return of the random walk to the origin. That is, T is the largest
value of 2n for which Wy + --- 4+ Wa, = 0. The following assumption is im-
portant in what follows.

DerinmrioN. Let U be a function defined on the random walk. We say that
U satisfies Assumption A if the value of U is completely determined by W,
-+, Wy, whenever T > 0.

Closely related to Lemma 1 is the following:

LemMa 2 (a). The conditional distribution of W1, -+, Wr, given that T = 2n,
assigns equal probabilities to each of the (%) possible sequences of n (—1)’s and
n Us. If U satisfies Assumption A, the conditional distribution of U given that
T = 2n s exactly that of a rank order statistic.

(b). Conversely, suppose U, is a rank order statistic defined for every n = 1, 2,
-+ . Then there is a function U satisfying Assumption A, such that the conditional
distribution of U given that T = 2n is exactly the distribution of U, .

Proor. Part (a) follows immediately from Lemma 1. To prove part (b)
simply define

UWy, -, Wg) = Us(Wy, -+, Waa)

when 7 = 2n > 0. When T = 0, U can be defined arbitrarily. This definition
makes sense since U, , being a rank order statistic, is defined for every sequence
ofn (—1)’sandn .
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Noration. In what follows, we shall use the dual notation U, U, as suggested
in Lemma 2. If U satisfies Assumption A, U, is a rank order statistic, U will
denote the function satisfying Assumption A defined in the proof of Lemma 2.

The main tool which we use to determine distributions of rank order statistics
is the following:

TuaeoreEM. Suppose U, is a rank order statistic for every n and U is the related
Sfunction satisfying Assumption A. Define

E(U) = k(p), 0=p<3

Then the following power series (in powers of p(1 — p) = pq) is valid for 0 < p
< 3.

(2.1) h(p)/(1 — 2p) = 2 2= E(U.) (%) (pg)".
Proor. For p < 3,
h(p) = B(U) = 250 E(U|T = 20)P(T = 2n) = > ao E(U)P(T = 20),

by Lemma 2. Since the probability that the simple random walk never returns
to the origin is 1 — 2p (see Appendix (2)), it follows that P(T = 2n) = (%)-
(pg)"(1 — 2p). Hence h(p)/(1 — 2p) = 2 7= B(U.) (M) (pg)™.

RemaRrks. (a) If ¢ is a function defined over the possible values of U then
¢(U,) is also a rank order statistic. In particular if ¢ is the set indicator function
of A then E(o(U,)) = P(U, in A). In the applications of the theorem we shall
let the symbols U, U, represent ¢(U), ¢(U,) for the various versions of ¢ that
may be convenient to the problem at hand, without further comment.

(b) The usefulness of the theorem in determining distributions of rank ordér
statistics depends on the ease with which one can explicitly evaluate h and then
determine the power series expansion h(p)/(1 — 2p) = 2 aoa.(pg)”. Once
such a power series expansion is available, then since the a,’s are uniquely de-
termined, we immediately read off the relationship

(2.2) E(U,) = a./(D).

ExampLE. Let F, , G, be as defined in Section 1. Suppose that Z; < Z, < ---
< Zs, are the ordered values of the combined set X;, --- ,X,, Yy, ---,V,.
(Define Zy = — ».) Now define the rank order statistic U, as follows:

U, = number of indices 0 < ¢ < 2n for which F.(Z;) = G.(Z,).

(This can be roughly described as ‘“the number of times the two empirical cdf’s
are equal to each other.”) The related function U is then the number of times
that the random walk visits the origin. Explicitly (with W, = 0), U = number
of indices 3 for which Wo + -+ + W;=0,i=0,1,2,--- ,P(U > k) = (2p)*.
(See Appendix (3).) Hence, identifying A(p) as P(U > k), we have
h(p)/(1 — 2p) = (2p)*/(1 — 2p)
=283 L (3PS (pg)™.  (See Appendix (14).)

Hence: by (22) P(Un > k) = 2k<2::kk)/(2:)’ n = k’ k 4+ 17 R
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In the remainder of this paper we have made a selection of derivations of
distributions which appear in the literature. We provide alternate proofs based
on (2.1). This list is not meant to be encyclopedic. We also present some distri-
butions which appear to us to be new. Sometimes in the literature after a distri-
bution has been determined by complicated combinatoric means, a ‘‘generating
function” is determined by even more complicated means. This generating func-
tion turns out to be essentially (2.1). It does not seem to have been noticed how-
ever that (2.1) can be directly and easily evaluated using simple random walk
and then the distribution determined from the generating function. See [7], [8]
and the proofs of VIIIa in this paper for an illustration of this point.

3. List of rank order statistics. Recall that X;, --- , X,,, Y1, ---, Y, are 2n
independent and identically distributed random variables, with F, the empirical
cdf of the X’s and G, the empirical cdf of the Y’s. Let Z, < Z, < -+ < Z,, be
the ordered values of the combined set of X’s and Y’s and let Z, = — «. Define

n[F(u) — Gu(u)] = Hu(u), —o < u < ®.

(Notice that by our definition of cdf, H,(u) = H,(u+).)

The following is the list of rank order statistics whose distributions will be
derived. (Figure 2 illustrates these definitions in terms of the random walk
diagram.)

1. N, , the number of times F,, equals G, .

N, = number of indices 7 for which H,(Z;) = 0,7 =0,1,2, ---, 2n.

II. N,*, N, the positive and negative sojourns.

Let 0 < 4 < @3 < -++ < iy, = 2n be the indices for which H.(Z;) = 0.
If H.(Z;) > 0fori;,1 <7 < i;,wesay the jth sojourn is positive, and if H,(Z;)
< 0for i,y < i < 1;, we say the jth sojourn is negative. (Use the convention

3
2

: N
. N
S Y

-3

n=9

F1a. 2. The above is the graph of the rank order indicators —1, —1,1,1,1,1, —1, —1
-1,1, -1, -1,1,-1,1,1,1, -1,

N, =6
N.t=2, N, =3
N.(1) =3, N.(2) =1,N.3) =0
Nt (0) = 2, N,*(1) =1
N*(0) = 3, N*(1) = 2
Dt = 2, D,~=2, D,=2
Qn = 1
Qﬂ.l = 4» Qm? = 8. Qn-3 = 10r QNA =16
R,t=6
6.

L n
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that 7¢ = 0. Notice that since H(Z;) = 0 only for even indices < then the sets
1j-1 < 1 < 1; are not empty.) Let

N, = number of positive sojourns and
N, = number of negative sojourns.

II1. N,.(r), number of visils to height r.
N, (r) = number of indices ¢ for which H(Z;) = r,r = 0,1, -
IV. N, *(r), upcrossings of r.
N.*(r) = number of indices ¢ for which H(Z;) = r + 1
and H(Zi4) =r,r=20,1,---.

V. N, *(r), number of crossings of .
N.*(r) = number of indices ¢ for which

H.,(Z)) = rand [r — Hy(Z;)r — Hi(Zi1)] <0, r=20,1,---.

(For r = 0, adopt the convention that a crossing automatically is counted for
i =0and? = 2n.)
VI. D,*, D, the one-sided maximum deviations.

D,,+ = MAX_o<u<w Hn(u) = MaXogi<2n Hn(Zi):
D;,” = maxX_wcucw —Ha(U) = maxocico —Ha(Z;).

VII. D, , the two sided maximum deviation.
D, = max_wcuce [Ha(u)] = maxogi<on |H.(Z:)| = max D", D,”.
VIIIL. Q, , the number of times D, is achieved.
Q. = number of indices ¢ for which H,(Z;) = D,*.
IX. Q. x , position of kth zero.
@Q..x equals the index ¢ for which H,(Z;) = 0,0 < 4, for the kth time.
('This is defined only when N, = k.)
X. R, index where D," is first achieved.

R." = smallest ¢ such that H,(Z;) = D,*,if D,* > 0,
=0,if D," =0

XI. L, , length of positive sojourns.

Recall the notation in II above. If the jth sojourn between #;_; and 4; is posi-
tive the contribution to L, is 7, — 7,1 . L, is the sum of all such contributions
over [0, 2n].

4. Distribution results.
1. P(N, > k) = 2*C3220/C0), k= 1,2, -+, n.
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II. P(N,* 2 k) = P(N.~ 2 k) = (n—k)/(“) k=01,

IIL P(N.(r) > k) = 2°(222)/C0), b = 0 1 n.

IV. P(N,"(r) 2 k) = (,,_A_,)/(“) k= o ,n). (Theorem 1 of [6))

V.Ifr>0,k=1,2---,P(N,(r) = 2k) = (,,_,2_';H1)/(2,:'). (Equivalent
to Theorem 2.1, [2].)

Ifr=0%k=12 -, P(NJ0) = k) = 2(2%2)/(*). (Equivalent to
Theorem 1.1', 2D

VI(a). P(D," 2 k) = P(D™ 2 k) = (a2)/(W), bk =0,1,--- ,n.[4]

VI(b). P(D,.+ <k D. <71r)=1-— Z?=1 [(n—?l?—(i—l)r) +(n—(i2—'i)k—.‘r) -
2t/ ), k= 1,--+ ,m;r = 1,---, n. (Theorem 1 of [5].) (There are
only a finite number of non-zero terms in this summation.)

VIL P(D, < k) = 1 — 2270 [(aei™on) — <n_m)]/(2") k=1 ,n 4]

VIII(a). P(D.tV 2k, Qu 2 1) = (55 /), k=0,1, -+ 57 = 1,2, e

VII(b).P(Q. = ) = (5)/(C),r =1, ,n.

1X(a). If r > 0,

PQui =2, N, =k +r)
= 2"/ (2 — BICEDE/ (20 — 20 — DICREE) /N,
1=k - ,n—r.
(Obviously, if N, = k then @, = 2n.)
IX(b). P(Qui = 2%, Nu = k) = 2"k/(2 — R CRzi)/ (), i = K,
s, Nn.
X(a). P(D,Y =k, R, = 1)
= [k(k + 1)/r(2n — r + DGR (ogoiw) /G, if r + &
is even, k > 0.
(If k = 0, then R,* = 0.) (This is Theorem 1 of [7].)
X(b). 2(R," + D,*) is uniformly distributed over 0, 1, - - - , n.
P(3(R.+D.,") =k) =1/(n+1), k=01, ,n
XI. L,/2 is uniformly distributed over 0, 1, -+ , n.
P(L./2=k) =1/(n+ 1),k = cym (1)

Proors oF DisTriBUTION RESuLTs. Recall that we are using the dual nota-
tion U, U, . If U, is a rank order statistic, then U is the function defined on the
simple random walk (srw) as defined in Lemma 2. Let Wy = 0 and W1, Wa, -
be independent random variables with

W

= 1 with probability p < 3,
= —1 with probability 1 — p = q.

Define S, = Wo+ -+ + Woy,n=20,1,---
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I. This was already proved in the example of Section 2.
IL. Let N* denote the number of positive sojourns of the srw and N the number
of returns to the origin. It is easy to verify that the conditional distribution of
1

N* given that N* = 7 is binomial with parameters r, ¥ = p/2p. (2p is the
probability of ever returning to the origin. See Appendix (2).) Hence

P(N" = k) = 2" ()($)(2p)"(1 — 2p)
((2p)"(1 — 2p) is P(N = r + 1). See Appendix (3).)

Hence P(N* = k) = (1 — 2p)p*/¢"™ and P(N" = k) = (p/q)*. Hence
h(p)/(1 — 2p) = (p/@)*/(1 — 2p) = 2 (22)(pg)". (See Appendix (15).)
Hence P(N," = k) = (2%)/(1), by (2.2).

III. Let N(r) be the number of indices ¢ for which S; = r. Then P(N(r) > k)
= (p/q)"(2p)" by Appendix (6) and (3).

h(p)/(1 = 2p) = (p/q9)"(2p)"/(1 — 2p)

= 2"p""/(pg)"(1 — 2p) = 22 Tcnsar (W5I5T) (p)™
0 2n—k

= 2" 0 () (pg) ™.

Hence P(N,(r) > k) = 2°(%2) /(0.
IV. Let N+(r) be the number of indices 7 for which S;.; = r, 8S; = » + 1,
i=1,2 --..By Appendix (12), P(N*(r) = k) = (p/q)*"". Hence

h(p)/(1 — 2p) = (p/Q)"™"/(1 — 2p)
2on (n-i%)(pg)", by Appendix (15).

Therefore P(N,*(r) = k) = (aiz)/C0).
V. Let N*(r) be the number of indices for which srw crosses height r, that is,
N*(r) equals the number of ¢ for which

Sia<r=8,<8qu or Siu>r=8>84u, 05¢=T

Then P(N*(r) = 2k) = (p/q)"™ ", if r > 0. ((p/q)"™1 is the probability of
reaching 7 + 1 and then going down to r — 1 (first 2 crossings); (p/q)*-1 is the
probability of going from r — 1 to r 4+ 1 and back to r — 1 again (next 2 cross
ings), ete.) Also

P(N*(0) = k) = 2p"™/q".
(P(N*(0) 2 1) = p-1-(p/q) + q(p/q)"-1 = 2p’/q, ete.) Hence for r > 0,
h(p)(1 — 2p)™" = (p/@)"™™ 7 (1 — 2p)™" = 2 (artiiin) ()"
(Appendix (15))
and P(N*(r) 2 k) = (a-rzen)/ (D).
Forr = 0,
h(p)(1 — 2p)™" = (2p*7/¢") (1 = 2p)™" = 2(p™*/(p)") (1 — 2p)~"
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=23, ) (p) ™
23, (a22) (p) ™

Hence P(N*(0) = k) = 2(:221)/(%).

VI(a). Let D* = max (0, S1, Sz, ---). By Appendix (6), P(D” z k) =
(p/q)*. Hence h(p)/(1 — 2p) = (p/q)*/(1 — 2p) which equals > 7 (a%)
(pg)" by Appendix (15). Hence P(D." = k) = (a2)/(%)-

VI(b). By Appendix (10)

P(—r < 8 <kn=1---,T;uT =0)
=1 — (p/9"1 = (p/91 = (/D"
Hence
h(p)(1 — 2p)™" = 11 — (p/0)* — (P/9)" + (/0)"™"]
e (p/9 (L — 2p)
=1 — X (p/e)™ T = X (p/9 T
+ 2% (p/9)" (L — 2p)7
= Zn a.(pg)"
wherea, = 1 — Zz (n_ikz—'zi—nr) + (n—(iz—'i)k—ir) - 2(1&—%1?—1’1’) by Appendix (15).
VII. Simply set 7 = k in VI(b).
VIIL Let D* = max (0, S;, S:, --+), @ = number of indices 7 for which
S; = D*. By Appendix (11), P(Q = r, D" 2 k) = (p/9)"p"
h(p)/(1 — 2p) = (p/@)*p™"/(1 — 2p) = " /(pg)*(1 — 2p)
= Yo (R (pg) (by Appendix (14))
= Yo EE) (po) ™
Hence P(Qn = 1, Dot 2 k) = (Z5%574) /(). For P(Qq Z 1) set k = 0.
IX(a). As in the proof of II, let N be the total number of returns of srw to 0
and let Q; be the position of the kth 0. Then

SiP(Q =4 N=Fk+nt=101— (1 — 4pg""(2p)’(1 — 2p)
by Appendix (1) and (2). Hence
h(p)/(1 — 2p) = [1 — (1 — 4pgt")'I*(2p)”
971 — (1 — 4pgt®)'*-27-[1 — (1 — 4pg)'T2""
= Y () (p) " [r 2 () (p9) ),

by Appendix (16). o
CMYP(Qux = 26, N, = k + r) is the coefficient of *(pg)™ which is easily
checked to be

Il

Il
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2/ (26 — DICEDI/ (20 — 20 — NIED).
IX(b). 22P(Qe =4, N 2 k)f' = [l — (1 — 4pgt*)'T".
h(p)/(1 — 2p) = [1 — (1 — 4pgt’)'I"/(1 — 4pg)}
= 2% 2 m T ChZ) (p) " 15 (D) (pg) ).

(“)P(Q,. v = 20, N, 2 k) is the coefficient of ¢'(pq)" which is easily checked
to be [2¢%/(2i — k))(*h) (1),

X(a). Let R* be the index at which the maximum of srw is first achieved.
R* = smallest ¢ for which S; = D+, =10,1,2, ---.

E(™; DY = k) = (2¢t)"1 — (1 — 4pgt™)'1*(1 — p/y),
by Appendix (7) and (5).
EWDt = k) (1 —2p)7" = 271 — (1 — dpg®)']* p""/(pg) 'tk
=271 — (1 — 4pgth)}*
27— (1 — 4pg)' 1Y (pg)* "
= [2:(2 — B)7'CiZ(pg)]
1225 (2 — k — D7) (pg)] [(pg) 17

CHP(R,Y = v, D,* = k) is the coefficient of t"(pq)™ in the above. This co-
efficient is easily checked to be
—r+1

k(k + D[r(2n — v 4+ DI (G4 2) W Xtiyyey) where r + & is even.

X(b). Let V1, V,, ---, Vp+ be the times it takes srw to go successive steps
upward, (0 if D* = 0). Then

i+ 1)+ Vet 1)+ - 4 (Vp+ + 1) = R* + D*.

The generating function of V; 4+ 1is f[l — (1 — 4pqt®)*(2¢1)™ by Appendix
(4). Hence

E(™PT) = Tl — (1 — 4pg®)'T(20) (1 = (p/g))
= (1 — 2p){g — 31 — (1 — 4pgt®)}) "

Referring to the proof of XI below, E(t* **") = E(t*). Hence R,™ 4+ D,* and
L, have the same distribution.
XI. Let L be the length of all positive sojourns in srw. By Appendix (13)

E(t")/(1 = 2p) = {g — 31 — (1 — dpgt®)}}™*
=31 — (1 — 4pg)'] — 31 — (1 — 4pgt*)llpg(1 — &)™
(by some elementary algebra)

= 2o 2 (20 + )T (pg)
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- 2o Zn (2n + l)—1(2”:1)(pq)nt2(n+m+1>
(by Appendix (16)).
(*")P(Ly = k) equals the coefficient of (pg)"¢** in E(1)/(1 — 2p). Hence
P(L,=k) = (n+1D)7"ifk=10,2--,2n
=0if &k > 2n.

APPENDICES
Appendiz on Simple Random Walk (srw)

All the facts that we need either appear in Feller [3], or are easily derived from
elementary considerations. The following list covers what is needed in this paper.
We suppose as before that p < 1. As above, S, = Wo+ --- + W.,n =0, 1,

(1) The generating function for return time to the origin is
1— (1 —dpgt)' = y(1). (3], p. 257

(2) The probability of ever returning to the origin is ¢(1) =

(3) The probability of being at the origin more than k& tlmes 1s (2p) , k=
0,1, 2 . (This counts an initial visit at time 0.)

(4) The generating function for the time to reach 1 is y(¢)/2¢t. [3], p- 255

(5) The probability of ever reaching 1 is y(1) /2q = p/ q

(6) The probability of ever reaching k is (p/9)" k =

(7) The generating function for the time to reach k is [x//(t) / 2qt] ,k=1,2

. (This follows from (4).)

(8) The generating function for the time to reach k, with —7 not being reached

by that time is

(W()/2g) 11 — ((8)/2)" () /1L — (¥(1)/20)* " (pg) ™",

=1,2,---;r=1,2 ---.(Thisis (4.11) p. 320 Feller [3].)
(9) The probability of hitting & before hitting —r is

(W(1)/29)"11 — (¥(1)/2)"(pg)"VI1 — (¥(1)/2)* ™ (pg)™ """
= (p/)'1 — (p/Q)')/11 — (p/O""].
(This follows from (8).)
(10) P(—r < 8a <kyn=1,---,T;uT =0) =[1 - (p/9)"1 11 — (p/0)'}:

1= (p/9)" T
Proor. The required probability is 1 minus the probablhty of hitting & before

hitting —r or hitting —r before hitting £ and then returning to the origin. The
first probability is (p/9)1 — (p/9)"111 — (p/)* T by (9). The second
probability is

(1 — (p/)*11 — (p/9) 111 — (p/Q)* 7T} X (p/g)".
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The sum of these two probabilities is
1 -1 - (p/@)"111 = (p/9)" 111 = (p/g)* T
(11) Let D* = max (0, S;, Sz, - -+ ). Let Q = number of indices 7 for which
8; = D"
P(Q =r,D* =k) = (p/9)"p'(1 — 2p);
PQzr)=p
P(Qzr, Dtz k) = (p/o)*p™

Proor. P(Q = r,D* = k) = (p/q)“(g-p/q)" (1 — 2p). (p/q)"* is the proba-
bility of reaching height k. Never to exceed k but to reach it again » — 1 times
has probability of (¢p/q)"(1 — 2p). Q and D* are independent. The second
and third assertions follow from summation of the first.

(12) Let N*(r) equal the number of times srw upcrosses height r, r = 0, 1,
- -+ . Specifically, N*(r) = number of indices 7 for which S;; = », S; = r + 1.

P(N*(r) z k) = (p/9)""".

Proor. First observe that P(N*(0) = k) = (p/q)*. N(0) = k means srw
reaches 1 and returns to 0 successively at least k times. This event has proba-
bility (p/q-1)*. (p/q)" is the probability of reaching r, and (p/q)* is the proba-
bility of then upcrossing r k times. Hence P(N*(r) = k) = (p/q)*™".

(13) Suppose 7 and 7, are two successive return times to the origin of srw.
If 0 < Si, 4 < ¢ < 4y, the interval [i;, 75] is called a positive sojourn and if
S; < 0,% < ¢ < 7t is called a negative sojourn. The length of the sojourn is
%2 — %1 . Let L = the sum of lengths of all positive sojourns. Then

E(t") = (1 — 2p){g — 31 — (1 — 4pgt")') ™",
Proor. The generating function for the positive contribution to any one
sojourn is
pil — (1 — 4pgt’)'1(2pt)™" + q(p/q) = 31 — (1 — 4pat")’] + p.

(If the first step is positive then the contribution to the generating function is
the first term by (4); if the first term is negative the contribution is ¢(p/q)
the probability of starting down and then returning.)
E(t") = 225031 — (1 — 4pgt™)'] + p)*(1 — 2p)

= (1 = 2p){g — 311 — (1 — 4pg")'} ™",

Appendix on power series

The following power series expansions in powers of pq are all valid for 0 <
p < %. k 2n—k

(14) p*/(1 — 2p) = 2 u= CaX)(pg)™.

Proor. Let Wy, W, --- be variables in terms of which the srw is defined.
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PWy=Wy,=-..=W,=1) =p*
= i PWi=Wa= o = Wu = 1| T = 20)(}1)(p0)"(1 — 2p),
as in the proof of the Theorem in Section 2. But
P(Wi=Wy= - =W,=1[T=2n) = (%5)/(7)

since this is simply the probability that a sequence of n 1’s and n(—1)’s starts
off with k 1’s, when all (°7') sequences are equally likely.

(15) (p/g)*/(1 — 2p) = 25—k (%) (pa)™.
Proor.
(p/9)*= p™/(pa)* = Zn-n (2250 (pg)" *(by (14))
= 2% (2%) (pg)™.
(16) p'= 31 — (1 — 4pg)"]" = k27— (20 — k) 7(220) (pg) ™

Proor. That p = 31 — (1 — 4pq)*] is a matter of elementary algebra. The
mappingpg = tis1 — 1 of [0, 1) onto [0, 1) withinverse p = 4[1 — (1 — 4t)].
The transformed version of the expansion (14) with k& — 1 instead of % is
1 — (1 — 40/ — 4) = Deo (P28 HE. Integrating both sides
with respect to ¢ and determining the constant of integration from ¢t = 0

= (1= 40 = k20 (v + DTESEDET
= k27— (20 — B)T(CRIE"
Expressing this in terms of p gives the required result.
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