EQUIVALENT GAUSSIAN MEASURES WITH A PARTICULARLY SIMPLE
RADON-NIKODYM DERIVATIVE!

By DALE E. VARBERG
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1. Introduction. We consider two Gaussian probability measures P, and P,
determined by covariance functions p(s, t) and r(s, ¢) respectively (the mean
functions will be assumed to vanish). The well known Feldman-Hdjek theorem
asserts that P, and P, are either equivalent or perpendicular. If they are equiva-
lent, the Radon-Nikodym derivative (dP,/dP,)(z) exists and is the exponential
of a quadratic form in z. This quadratic form may be diagonal, i.e., expressible
as fo(t)x2(t) dt. If P, is Wiener measure, L. A. Shepp [4], p. 352, has
shown precisely when this happens. His method allows him to calculate
Efexp [—%foT f()z*(t) dt]} and this in turn permits him to prove an interesting
zero-one law for the Wiener process. The purpose of this paper is to extend these
results to an arbitrary Gaussian process.

We will use »(s, t) consistently to denote a continuous covariance function
defined on [a, b] X [a, b]. For f(t) = 0, we let K(s,t) = [f(s)f(t)]%r(s, t) which
is then a positive (semi-definite) kernel and hence has nonnegative characteristic
values [3], p. 237. Let \; be the largest of these values. Finally, let D(\) and
Ky (s, t) be the Fredholm determinant [3], p. 173, and resolvent kernel [3], pp.
151-158, corresponding to K.

TreorEM 1. Let f(t) be nonnegative, bounded and measurable on [a, b), and let
r(s, t), D(N) and \; be as above. If N < 1/\;, then

E{exp 3\ [of(0)2"(0) d} = [DOV]

Here E'{- -} denotes expectation on the Gaussian process with covariance func-
tion r.

TaEOREM 2. Let f(t) be positive and continuous on [a, b] and let v(s, t), D(N),
Ki(s, t) and \; be as above. If X < 1/\; and of we let px(s,t) = Ki(s, t)/[f(s)f(t)]’,
then pr(s, t) s a covariance function, P,, is equivalent to P, and

(1.1) (dP,,/dP,)(x) = DOV} exp BN [27(1)2*(0) dd).

THEOREM 3 (zero-one law). Let f(t) be measurable on [a, b] and let r(s, t) be as
above. The set of x’s for which f(t)a’(¢) e L'(a, b) is either of probability (P,
measure) one or zero, and these alternatives occur according as f(t)r(t, t) is or is
not in L'(a, b).

If r is the covariance function of a stationary Gaussian process (i.e., r(s, )
= p(|s — t|)) so that r(¢, t) is a positive constant, we have the particularly simple
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CoroLLARY. In the stationary case, f(t)2°(t) € L'(a, b) with probability one or
zero according as f(t) is or is not in Li(a, b).

2. Proof of Theorem 1.

Cask 1. f is positive and continuous. We make use of techniques and a repre-
sentation of Gaussian processes due to Kac and Siegert [1]. On some probability
space 2, let ai(w), as(w), - - - be a sequence of independent identically distributed
normal random variables each with mean 0 and variance 1. Let {\:} be the
characteristic values (including multiplicities) and {¢:} the corresponding set of
normalized characteristic functions of the integral equation

A(t) = [aK(s, 1)(s) ds.
Noting that f(¢) > 0, we define
(2.1) zo(t) = [f(O)]7 i Mla(w) du(2).

For each ¢, this series converges with probability one (i.e., for almost all w £ Q)
and hence determines a Gaussian process {z,(¢), a < t < b} which moreover has
r(s, t) as its covariance function. Furthermore with probability one, the series
(2.1) determines a real-valued function z,( -) which belongs to L*(a, b) and to
which the series converges both for almost all ¢ and in the mean. For these facts
one may see {1] and 2] or for more details [6].

Using the representation (2.1), Parseval’s equation, monotone convergence
and the independence and normality of the a;’s, we get

E'{exp BN [of(1)2°(1) dt]} = Efexp (3N 2im Meow’(w)]}

limoe E {exp BN i M’ ()]}
limae [ Tim Efexp M) /2]}

= liMpao [ L1 (1 — M)~ = [DOV)] A

CASE 2. f is nonnegative, bounded and upper semi-continuous. Then there is
a uniformly bounded sequence {f,} of positive continuous functions decreasing
monotonically to f (see [5], pp. 284-292 and pp. 314, 315 for a discussion of upper
and lower semi-continuous functions and their relation to measurable functions).
Moreover using the obvious notation,

F'{exp (A [2f(0°(8) dt]} = limg E'{exp BN [21(02(2) dt]
= lim,... (D] = DOV

I

The first equality follows by monotone convergence. The second is a consequence
of Case 1 and the easily demonstrated fact that A\i» — M so that A < 1/A; implies
that N < 1/\y, for large n. The third equality is a little more tedious to substan-
tiate. We note first that [3], p. 173,

D\) =14 21 (—N\)"cu/m!
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where

T(tl,ll) "'T(tl,tm)
= [0 [2] :

f) - f(tw) dty - -+ dbn.

'r(tm; tl) ce 'r(tm y tm)

Also Du(N) = 1 4+ Doy (—N)"Cmn/m! where cnn is the same as ¢, except that
f is replaced by f..

Now consider a fixed X and let ¢ > 0 be given. Using the fact that f is bounded,
that the f.’s are uniformly bounded and Hadamard’s lemma for determinants,
1t is easy to show that there exist M/ (depending on X and e but not n) such that

|2 (—=N)"en/m)] < ¢/3 and | Da_u( —N)"Cun/m!| < ¢/3.
On the other hand, limn,e ¢us = ¢, S0 that we may choose N such that forn = N
Do (=N)"(Cm = Cmn)/ml| < €/3.

These inequalities clearly imply that forn = N, |D(A\) — D,(\)| < e

Case 3. f is nonnegative, bounded and measurable. Then there is a uniformly
bounded sequence {f,} of nonnegative upper semicontinuous functions increasing
monotonically to f almost everywhere. The proof now proceeds as above.

3. Proof of Theorem 2. By Theorem 1, [D(\)]}exp (3 [2 f(t)a*(t) di] is
integrable and has expectation one. We may therefore introduce a probability
measure P4 satisfying (1.1) by defining

Pu(M) = IDOVIE {xu(x) exp 3\ [2f(2)a*(2) di]},
xx being the indicator of the set M. We need only show that Py is a Gaussian
measure with covariance function p\(s, t). To do this we will show that P
has the right n-dimensional characteristic function. Let {£;} and {¢}, 5 = 1, 2,
-+, m, be sequences of real numbers with ¢; ¢ [a, b]. Then using the representa-
tion of section 2, we have
DOV E*{exp [ 227 £2(4;)]}
= E'{exp [i D=1 £2(t;) + 3\ [L5(8)*(t) dt)}
= Elexp [ 22718 2imMlow(@)u(t) (F(t)) ™ 4+ I D hean(w)]}
= limnw Blexp [ D71 £ 2o i Men(w) (8 (F()) ™ + 3A 2ima heew™(w)]}
(by dominated convergence)
= liMusw | [im1 E{exp [ian(w)Ar + Mo’ (w)/2]}
where 4, = N} 2T Ede(t) (F(45))
= limMu.w ] [im (1 — M) exp [—447/2(1 — W)
= DOV exp [—§ 20t [/ 17t (4:)]']
<208 /(L = AN Ju(t) ().
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But this implies
E*{exp [i2_j=1 £2(4;)]} = exp[—3 2 Tsm EEim(ti, t))]

as desired.
In these calculations we have used the Mercer expansions [3], p. 245, for the
kernels K and K, and the product expansion of D()).

4. Proof of Theorem 3.

Cask 1. f(t)r(t, t) # L'(a, b). Let us suppose first that f(¢) is nonnegative.
It is then almost everywhere the monotone limit of a sequence of nonnegative
simple functions {f,(¢)}. From Theorem 1 and the series expansion of D(\)
(3], p. 173,

E'{exp [~} [afa(0)2°(0) dt]} = [Du(—=1)]7*
=[1 4+ f,'ifn(t)r(t, t) dt + positive terms] .
Since f(t)r(t, t) £ L'(a, b), the latter approaches zero as n — « and so
E{exp [—3 [af(1)2*(¢) dil} = 0.

But this means that [5f(#)z’(t) dt = -+ with probability one.

For a general f, we write f(¢) = f*(t) — f7(¢) and note that either f*(¢)r(, t)
zLXa,b) orf(t)r(t,t) £ L'(a, b). The conclusion follows easily.

Case 2. f(t)r(t, t) € L'(a, b). Then both f7(¢)r(¢, t) and f(t)r(t, t) are in
L'(a,b) and by Fubini’s theorem,

[af(tyr(t, tydt = [ofT(e)r(t, t) dt — [2F7(t)r(t, t) dt
= E{[ofH(0)a(t) d) — E'{[of ()7 (¢) dt}
= E'{[2f(t)2(t) dt}.
From this it follows that f(¢)2°(¢) ¢ L(a, b) with probability one.
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