SAMPLE FUNCTIONS OF GAUSSIAN RANDOM HOMOGENEOUS FIELDS
ARE EITHER CONTINUOUS OR VERY IRREGULAR

By D. M. EavEs

Simon Fraser University

1. In [1] Yu. K. Belyaev proves the following is true of any stationary
stochastic process ¢ — z(t) over the real numbers, mean-square continuous as a
function of the reals, and having Gaussian joint distributions: Either with prob-
ability one the paths of the process are continuous or with probability one
thsey are totally unbounded in any time interval. In this paper we will establish in
a impler way the analogous result for a left-homogeneous random field over a
second-countable locally compact topological group; i.e., one whose topology con-
tains a countable base and is locally compact. We may arrange and re-label
Belyaev’s results as follows:

LemMa 1.1. If the map t — x(%) fails at to to be continuous with probability one,
then there exists a > 0 such that for all ty and every neighborhood N of ¢, ,

(1) super (z(t) — 2(t)) > a with probability one.

LemMA 1.2. If @ > 0 exists such that (1) holds for all ty and all neighborhoods N
of to , then for all to and N supeen (x(8) — x(to)) > 2a  with probability one.

By induction, if condition (1) holds then given any positive M, for every N,
supen (2(t) — x(t)) > M with probability one. Belyaev’s proofs of both
lemmas depend on the fact that one can write z(t) = D nz0Ya(t), where for
1 # 7, y«(s) and y;(t) are independent Gaussian random variables no matter what
s and ¢, and where each summand ¢ — ¥,(t) is continuous with probability one.

Belyaev’s proof of Lemma 1.1 is difficult and depends on the fact that each
summand ¢ — ¥,(¢) can be made stationary. This he does by regarding each x(t)
as a stochastic integral over the dual group of the reals, and by partioning the
domain of integration into countably many compact subsets. Although the
random variables of random homogeneous fields over many interesting groups can
also be so regarded (i.e., as random integrals over the dual object of the group),
we wish to avoid irrelevant and difficult questions such as: When is the support
of a spectral measure small enough to ensure path continuity with probability
one, and when can one partition the dual object into countably many such
“small” subsets?

On the other hand, Belyaev’s proof of Lemma 1.2 applies to arbitrary locally
compact second-countable groups with only minor obvious changes of notation.
The proof is given here as Lemmas 2.4 and 2.5. It is essentially a verbatimrepeat
of the corresponding part of Belyaev’s proof.

I am indebted to Professor R. A. Gangolli for posing the question of the scope
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of Belyaev’s result, and to Professors R. M. Blumenthal and N. D. Ylvisaker for
suggesting a more elementary approach than Belyaev’s.

2. For the remainder of the paper G will be a locally compact second-countable
group. A left-homogeneous random field-over G is a continuous map 2: G — Ly(Q, P),
a Hilbert space of real-valued random variables with finite mean-square norm,
with Ez(g) = 0 for all g ¢ G and with finite covariances Ex(g)xz(h) depending
only on 7 'g. We regard elements w of the sample space @ as paths (sample func-
tions) in the usual way. We shall assume that every finite family z(g1), - - - , (g.)
has a Gaussian joint distribution. By Theorem 2.4 in Chapter II of [3] (which con-
siders the case where @ is the real line but which is valid in the present context)
we may assume with no loss of generality that x is separable; i.e., that there exists
a countable dense subset D € @ such that for every closed set A of real numbers
and every open subset N C @, the events {x(g) ¢ A for dll g ¢ N} and {z(g) ¢ A
for all g ¢ N n D} differ only by a P-null set. Let H be the closed subspace of
Ly(Q, P) generated by all (g). We assume the reader is familiar with the follow-
ing result in case G is the real line. Our proof in our general context is the same;
one uses continuity of the map g — x(g) and the existence of a countable dense
subset of G. (Homogeneity (stationarity) is not needed, however.)

LemMa 2.1. There exists in H a sequence e, ey, - -+ of independent Gaussian
random variables with mean zero and variance one, such that for all g ¢ G
(2) x(g) = anl.fn(g)en 5

each coefficient f, ts continuous as a function on G.

Henceforth 9 will denote a countable totally ordered neighborhood base at the
identity e ¢ G; each N ¢ 9T is assumed to have compact closure. The following
proof is essentially Dobrushin’s proof for G the real line ([2]).

TaeoreM 2.2. Either P{x(h) is continuous at every h e G} = 1 or for some 8 > 0

(3) P{lim sup,-»x(g) — liminf,,, 2(g) = B} = 1 for every heQ.

Proor. If P{z(h) is continuous at every h ¢ G} % 1 then for some 3 > 0, some
heGand N e, PA(B, h, N) > 0, where A(B, h, N) = {lim supg.4 z(g) —
lim inf,.4 z(g) = B for some go e D n hN}. (This set is an event, since we may
take lim sup and lim inf with g restricted to the countable set D.) Since at every
weQ the summands f,(g)e.(w) in (2) are continuous functions of ¢ ¢ @G,
A(B, h, N) is a “tail” event belonging to the Borel fields ® {e, | n = m} for every
m. By the zero-one law ([4] page 228) PA(B, h, N) = 1, since it is non-zero. From
invariance of Ex(g)x(h) under left translation it follows that the probability of
any event generated by a subclass of {x(g)|g ¢ G} is invariant under left-transla-
tion of the subclass; thus PA(B, h, N) does not depend on h. From
PA(B, e, N) = 1it follows that, given any M ¢ 9, PA(B, e, M) = 1: Otherwise
PA(B, ¢, M) = 0 by the zero-one law, but this is impossible, since if
hi, - , ke Garesuchthat Ui— h;M D N, then the condition PA(B, hi, M) = 0
(i=1,---,n) would imply PA(B,e, N) = 0.

Now if & € G is arbitrary,
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P{lim sup,.» z(g) — lm inf,.; z(g) = B}
= P{limae (Supgense 2(g) — infoann 2(g)) = 6}
= limurse P{supgens (g) — infans 2(g) = B}
= limy,. PA(B, h, M) = 1, proving the Theorem.

We need a slight strengthening of Dobrushin’s theorem :
Lemma 2.3. Either P{x(h) is continuous at every h ¢ G} = 1, or for some b > 0

(4) P{supgenn (x(g) — x(h)) > b} =1

for all h and every neighborhood N of the identity.

Proor. Fix h and N. If P{z(h) is continuous at every h e G} = 1let 8 > 0 be
such that (3) holds. Then for every M ¢ 9, P{supu [2(g) — x(h)| = 8/2} = 1.
We may replace the = here with >, by taking g slightly smaller. Further, we
may approximate this probability within any ¢ > 0 by replacing supens with a
sup over merely finitely many ¢’s, say g1, g2, - -+ , g» - Due to symmetry of the
joint distribution of x(g1), ---, 2(¢a.), 2P{max, z(¢:;) — z(h) = B8/2} =
P{max,; |z(g:) — z(h)| = 8/2}. By letting e — 0 we find P{supgsnn v(g) — x(k)
= B/2} = 1. Letting M — e, P{lim,., z(g) — z(h) = 8/2} = %. Since the sum-
mands in (2) are continuous at all ¢ when evaluated at any «, {lim sup,., z(g)
— x(h) = B/2} is a ““tail” event, so that by the zero-one law it has probability one

as promised.
LemMA 2.4. If the equation in (4) holds for a given N & 9, then for any ¢ > 0 and
8 > 0 one can write x = y + z and find a finite subset {g1 , - - - , g.} C N such that

the following conditions are true of all sufficiently small M € 9t:
(i) For all g and h, y(g) and z(h) are independent elements of H,

(ii) infenn P{z(g) — 2(h) > —8} > 1 — ¢, and

(iif) P Ui {infpepnn (g) — y(h) > b} 2 1 — e

Proor. Let {g1, -+ -, go} & D n N be such that P{max; z(hg;) — z(h) > b}
> 1 — ¢/2. Let m be an integer and write y(g) = Znémfn(g)en (see (2)); let
2(g) = z(g) — y(g). Since the map g — 2(g) into H C L.(2, P) is continuous,
and since N has compact closure, it follows from Chebyshev’s inequality and from
symmetry of the distributions of all elements of H, that m may be taken large
enough to satisfy both infay P{z(g) — 2(h) > —8} > 1 — eand
(5) P{max;y(hg:) — y(h) > b} > 1 — ¢/2.
Foreachk =1, --- ,nlet Ay, = {y(hg:) — y(h) > bfori = k but not ¢ < k}. If
PA; > 0 let P, be the conditional P-probability given A;. Since the map
g — y(g) is continuous at every w, limg.zg, ¥(g) — y(h) > b a.e. wrt P, ; thus for
k=2, nPlinfauny(g) — y(h) > bl nd;, > (1 — ¢/2)PA; for all suffi-
ciently small M ¢ 9t. (If for some k, PA; = 0, one trivially obtains equality here.)
Taking unions over k and applying (5), one obtains condition (iii).

LemMa 2.5. If condition (4) holds then for any e > 0 and 6 > 0

(6) Pfsupgnwxz(g) —ax(h) > 20— 68} =1 — 2 forall Neox.
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Proor. Let y, z and {g1, -+ - , g} be as in Lemma 2.4. Since g — y(g) is con-
tinuous on G when evaluated at any » £ @, for all & the events {lim sup,.» z(g)
— z(h) > b} and {limsupy.rz(h) — 2(h) > b} coincide. By (4) then,
P{supgeng;u2(g) — 2(h) > b} =1fori=1,--- ,nand M e N. Fix M N, let
By = {supngm2(g) — 2(h) > b — 6}. Since B; 2 {supgengnmz(g) —
2(gr) > by n{z(gx) — 2(h) = —38}, condition (ii) of Lemma 2.4 implies
PB;, = 1 — e. Foreach k let C, = {infy.p;nr y(g) — y(h) > b for < = k but not
for s < k}, so that Ui~ C} is the event in condition (iii) of Lemma 2.4. Condition
(6) follows immediately from {sup,ex 2(g) — x(h) > 2b — 8} 2 Urs (Bxn Cr)
and from condition (iii) of Lemma 2.4, sinece PB; n C; = PByPCy = (1 — ¢) PCi
for each k.

TueoreM 2.6. (Belyaev’s alternatives). Let  be a Gaussian left-homogeneous
random field over a locally compact second-countable group G. Then either P{x(h)
1s continuous af every h ¢ G} = 1 or for every open set N, P{x(h) is totally unbounded
forhe N} = 1.

Proor. If the first alternative condition fails then condition (4) implies that
(6) holds for every ¢ > 0 and § > 0. Since § and e are arbitrary P{supgax 2(g)
— z(h) = 2b} = 1forallh e Gand all N ¢ 9t; this also holds if we replace = with
>. By induction, foralln = 1,2, --- , P{sup,ar z(g) — x(k) > 2°b} = 1.
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