NOTES

ON LARGE DEVIATION PROBLEMS FOR SUMS OF RANDOM
VARIABLES WHICH ARE NOT ATTRACTED TO THE
NORMAL LAW

By C. C. HEypE
University of Sheffield

1. Introduction. Let X, , 7 = 1, 2, 3, --- , be a sequence of independent and
identically distributed random variables with law £(X), and write S, = > 1= X,
Letz,,n = 1,2,3, -, bea monotone sequenceof positive numbers with z, — o
asn — « such that z,™ S, —p 0. (“P” stands for conivergence in probability).
We shall call the probability Pr (|S.| > z.), or either of its component tail prob-
abilities, a large deviation probability. This constitutes an extension of the ordinary
concept of large deviation probabilities where the X; belong to some domain of
attraction, Z, = B, 'S, — A, are the normed and centered sums, and the proba-
bilities Pr (|Z.| > ) are called large deviation ones for 2, — « asn — o.

In this paper, we shall consider random variables which do not belong tothe
domain of partial attraction of the normal distribution. That is, those for which
(Lévy [4], 113)

(1) lim infyae [0 Pr (|1X]| > 4)/ [ |z <u 2" dF (z)] > 0O,

where F(z) = Pr (X = z). We shall, in addition, make the restriction that for
o > 1 and {z,} such that z, 'S, —r 0 asn — o,

(2) 0 < lim inf,.e [Pr (|X| > ax,)/Pr (| X| > )]

The condition (2) is imposed to remove from consideration some laws whose dis-
tribution functions have widely spaced points of increase and for which the large
deviation behaviour would be somewhat pathological.

Under conditions (1) and (2), we shall obtain a general expression for the order
of magnitude of the large deviation probability in the form of (3) and (4) below.
This provides a generalization of the work of Heyde [3] where the corresponding
result (one sided version) was obtained for the case where the X; belong to the
domain of attraction of a non-normal stable law. Apart from [3], there appears to
be no other work directly on large deviation problems outside the domain of
attraction of the normal distribution.

It is worth noting that the condition (2) goes some way towards implying
condition (1). In this connection, we mention the following result which is a
minor modification of a lemma of Doeblin [1]: If @« > 1 and for v > uo,

Pr (|X] > au)/Pr (IX] > u) Z ¢ > 0,
where o’cy > 1, then
© liminfuse W2 Pr (IX] > w)/ [l <e @ dF(2) = ca(l — 1/caa®) > 0.
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2. Results.

LemMA. If {z,} s a monotone sequence of positive numbess with x, — « as
n — o, then €, S, —» 0 if and only 1if for every ¢ > 0,

(i) nPr(|X]| > exs) >0 as n— =,
(ii) 720 [ 12 <on 2dF(z) >0 as n— o,

(iil) n2s " [1o)zan dF(2) >0 as n— .

This result is stated essentially for the sake of completeness. It follows im-
mediately from the degenerate convergence criterion (Logve [5], 317). We note
that when the X; do not belong to the domain of partial attraction of the normal
distribution, condition (ii) is satisfied as a consequence of conditions (1) and (i).

TrEOREM. Suppose that X;,1 = 1,2, 3, - -, is a sequence of independent and
identically distributed random variables satisfying the eonditions (1) and (2).
Further, {x,} s a monotone sequence of positive numbers such that ., — © as
n— o and , 'S, —» 0. Then,

(3) 0 < liminfp.e [Pr ([Sa] > .)/n Pr (|X| > )]
< 1im SUPsse [Pr (|Sa] > ) /n Pr (|X]| > 2,)] < =,
or equivalently,
(4) 0 < lim infse [Pr (|Sa] > @.)/Pr (maxi <, [Xi| > 2a)]
< 1im $uppsw [Pr (8. > .)/Pr (maxi<a | Xi| > #a)] < .

Proor. Take ¢ > 0 and denote by A; and B; the events {|Xi| > (1 + €)zn}
and {|D 7 i X;| < exa} respectively, ¢ = 1,2, --- , n. If E is the complement
of E, we then have

Pr (8. > #x) = Pr[Ui4 (4:n B))]
= X Pr[NE (4,0 B) n (4:n By)]
S Pr[Nici 4;n (4in B))]
2 {Pr(4:nB;) — Pr(UiZi 4;n 4,)}
Sr . Pr(A)[Pr(B:) — (i — 1) Pr(4))]
n Pr (4:)[Pr (B1) — n Pr (4,)].

Now 2, S, —p 00 Pr (B;) — 1asn — « and, given § > 0 with 1 — 26 > 0,
we can choose N so large that Pr (B;) > 1 — & forn = N, . Further, from the
lemma, we see that n Pr (4;) — 0 as n — o, so that we can choose N: so large
that n Pr (4;) < 8 forn = N.. Thus, forn = N = max (N:, N;), we obtain
from (5),

(6) Pr(|Sa| > za) 2 n(1 — 28) Pr (|X] > (1 + €)z),
so'that
Pr (|84 > ) /n Pr (| X| > x,) = (1 — 25) Pr (JX]| > (1 4 €)za)/Pr (| X| > xa)

v

(5)
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and
lim infpse [Pr ([Sa] > 20)/n Pr (| X| > 2,)]
2 (1 — 28) lim infos [Pr (|X| > (1 + €)2)/Pr (IX] > 2,)] > 0

in view of condition (2).

In order to complete the proof we shall work in terms of the symmetrized
random variables X, ¢ = 1, 2, 3, - - - , making continued use of the weak sym-
metrization inequalities (Lo&ve, [5], 245) to transfer the results.

Define

Xin = X3 if |X¥| S 22,
=0 otherwise,
and write S," = Y i Xi°, Son = Dorey Xon . We hax‘re
(7) Pr (|8:°| > 22,) < nPr (|X°| > 22,) + Pr (|Saa| > 2z,)
and, using the weak symmetrization inequalities,
Pr (|X°| > 22,)/Pr (|1X| > ) = 2Pr (|X| > 2.)/Pr (| X] > 2,) = 2.

We now turn our attention to Pr (|S4.| > 2z.). From Chebyshev’s inequality,
we obtain

Pr (|8l > 22,) = (22,)E(S5.)°
= 1(22,)"" [ 2] 20, @"d Pr (X* < @),
so that
[Pr (|8l > 22)/n Pr (|X| > )]
[Pr ([Sua] > 22,)/n Pr (|X°] > 2x,)][Pr (|X°] > 22.)/Pr (|X| > z,)]
< 2(204) 7" [ 101 520, #"d Pr (X* £ 2)/Pr (IX7] > 22.),

and lim Supp« [Pr ([Sn.| > 2,)/n Pr (|X| > x,)] < « since X* cannot belong
to the domain of partial attraction of the normal distribution. We then have,
from (7), lim sup,-. [Pr (|S.°| > 2z,)/nPr(|X| > 2.)] < « and hence, using
the weak symmetrization inequalities, lim sups»« [Pr (|S, — med S,| > 2z,.)/
nPr (|X| > 2.)] < «. However, as 2, 'S, = 0, 2, 'med S, — 0 as n — o
and so, for ¢ > 0 and » sufficiently large,

Pr (|8, — med Si| > 2x,)/n Pr (| X| > x.)
(8) = Pr (|8 > (2 + e)za)/n Pr (|X] > z,)
= [Pr(|Sa| > (2 + ¢)zu)/n Pr (|X| > (2 + €)xa)
[Pr (|X] > (2 + €)za)/Pr (|X] > z,)].

Using condition (2) and a simple transformation, it follows from (8) that
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lim SupPssw [Pr (|Sa] > 2.)/n Pr (|X| > .)] < «. This completes the proof of
(3) and it just remains to establish the equivalence of (3) and (4). This, however,
is easily deduced as, from Bonferroni’s inequalities (Feller [2], 100), we have

n Pr (|X] > a)[1 — (n — 1) Pr(|X] > xa)]
=< Pr (maxip<q |[Xi| > 2.) = nPr(|X] > z,)
and hence, in view of condition (i) of the lemma,
Pr (maxi < | Xi| > @) ~nPr(|X| > 2,) as n— .
The required result follows and the proof of the theorem is complete.
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