A FIRST PASSAGE PROBLEM FOR THE WIENER PROCESS

By L. A. SaEPP

Bell Telephone I:abomtories, Incorporated

We study the stopping time 7 = T,., the first time the Wiener process
W(1),0 <t < = crosses the curve == ¢(t + @)}, @ > 0, ¢ > 0. In an analogous
discrete time problem the moments of T were studied in Blackwell-Freedman
(1964), Chow-Robbins-Teicher (1965), and Chow-Teicher (1966). Results ob-
tained showed that for the discrete problem ET < o if and only if ¢ < 1, and
ET* < « if and only if ¢ < (3 — 6')!. We show that these statements are also
valid in our case and find the generalization: ET" < o if and only if ¢ is less than
the first positive zero of the Hermite polynomial He,, . We conjecture that the
same result holds also in the original discrete case. (Note that (3 — 6%)* is the
first zero of He,.) We also give explicit formulas for the moments of 7. Our
method is based on the Wald identity for the Wiener process: E exp(— NT/2 +
\W(T)) = 1.

We show that any stopping time T with ET < oo satisfies EW(T) = 0 and
EW*T) = ET. These identities will be derived as a consequence of the basic
properties of the Ito stochastic integral.

1. Stopping times and Ito integrals. Let W (¢, »),0 = < «,w & Q be a Wiener
process with continuous paths. A finite nonnegative rv T'(w) is called a stopping
time if {7 < ¢} e S{W(s):s = 1},0 = ¢ < . For such a T let ¢(t, w) = 1 for
t £ T(w), er(t,w) = 0fort > T(w).

Lemma 1. The Ito integral I(er)(w) = [§ or(t, w) dW(t) is defined and I (or)
= W(T) as.

Proor. According to K. Ito (1951), we must show that ¢r is measurable in
t X w, is nonanticipative, and satisfies [§ ¢’(t, w)dt < « a.s. Let T, = k/2" on
{(k — 1)/2" £ T < k/2". It is easy to check that T, is both measurable and
nonanticipative and that ¢r, — ¢r at each (¢, w). Since T(w) = [¢ o’ (t, w) di
and T(w) < o a.s. because T is a stopping time, we have checked that
I(pr) is defined. That I(¢r) = W(T) is a consequence of the definition of the
Ito integral and the continuity of Wiener paths.

TuroreM 1. Let T be any stopping time with ET < . Then EW(T) = 0 and
EW*(T) = ET.

Proor. The mean of an Ito integral with finite variance is zero (Ito (1951)).
The variance of I(¢r) = W(T) is given by Ito’s formula [o Eor (8, w) dt =
[¢ P{T = & dt = ET. This proves both assertions.

CavuTioN. It is possible that ET = « and EW*(T) < « as the example T =
time of crossing level one shows.

The result for discrete time corresponding to Theorem 1 has been proved in
great generality by martingale methods [3].
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2. Parabolic level crossing. Let T = T,,. denote the first time [W(f)| =
¢(t + a)i. By Theorem 1, E(e(T + o)) = ET or ET = ac’/(1 — ¢ provided
that ET < oo. This indicates that ET = o forc¢ = 1 and ET < « forc < 1.
This much follows easily but in order to obtain higher moments of T it is best to
proceed directly to the probability -distribution of T'.

The analogue for continuous time of the fundamental theorem of sequential
analysis is (Dvoretzky-Kiefer-Wolfowitz (1953))

(1) Ee—)\zT/2e)‘W(T) = 1.

Although the conditions under which (1) is valid are not very general, it holds
whenever T is a bounded stopping time. In case T is not bounded (1) can some-
times be proved by passage to the limit from bounded times. This we now do.
Let T A n = min(7T, n). Using (1) for T A n we have

(2) 1= (120 €727 D AP + [ 15, 627 ™ dP.

The second integral goes to zero because |W(n)| < ¢(n + a)* on {T > n}, and
(1) follows.

We will use (1) to study the distribution of T. Let p(t) = pa.(t) denote the
density of T, for ease of notation. By (1) we have

(3) 5 p(t)e ™" cosh Ae(t + @)} dt = 1,0 = \ < .
Multiply in (3) by Mexp(—»Na/2) and integrate over \ to get
(4) IS pt)(t + a)* dt = [N dn/[5 \e™cosh Ae dh

where p = —(1 + 8)/2and 8 > —1.
In order to obtain information about E(7T + a)* with u > 0, we must analy-
tically continue (4) to 8 < —1. Expanding in powers of ¢ we get

(5) (Jsp@®)(t + a)*dty™
= a" Dm0 (—2")"u(p — 1) -+ (g — m + 1)/(2m),

which we recognize as a™* M(—u, %, ¢’/2) where M is the confluent hypergeo-
metric function (Abramowitz-Stegun (1964)). This gives the analytic continua-
tion. Foru = n a positive integer, M( — n, &, ¢*/2) = Hew(c)/Hes(0) where He
are the Hermite polynomials, He, (z) = (—1)"(exp(z*/2)) d"/dx"(exp(—2"/2)).

The moment ET* = ET, . is finite or infinite according as E(T + a)* is finite
or infinite. By (5) we see that E(T + a)* < « if and only if ¢ < ¢o = co(p)
independently of @ where ¢, is the first zero of M(—p, %, ¢’/2). Thus the nth
moment of T is finite when c is less than the first zero of Hey, . The zeros of He
;and M have been tabulated (Abramowitz-Stegun (1964)), giving co(u):
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u: ETH < o co(u): ¢ < ¢o [ colw)
.1 2.0941 1.0 1.0000
.2 1.7545 2.0 .7420
.3 1.5537 3.0 .6167
4 1.4132 4.0 .5391
.5 1.3069 5.0 .4849
.6 1.2223 6.0 .4444
7 1.1528 8.0 .3868
.8 1.0942 10.0 .3470
.9 1.0438

For p large, ¢co ~ 1/ ! and for small, ¢o ~ (2 log 1/p)!. The moments them-
selves can be obtained from (5). For example if ¢ < ¢o(2) ‘we have E(T + a)® =
o’/(1 — 28 + ¢*/3), E(T + a) = a/(1 — ¢*) and we can solve for ET and ET™

(5) gives the Laplace transform of p(a(e” — 1)) and so determines p in
principle. Darling-Siegert (1953) give a Laplace transform formula for P{|W(t)|
< at%, ¢ =t = b} by Markovian methods.

On the basis of the analogy with discrete random walk it seems reasonable to
guess that for example, for simple random walk S, the stopping time N = first
n > no for which |S,| > ¢n! will have EN* < o if and only if ¢ is less than the
first zero of Hey, , generalizing [4]. As in [4], no is taken large enough to avoid
stopping with probability one for small c.

We learned from D. L. Burkholder after this note was to be published that
Leo Breiman has obtained more general results in his paper, “First exit times
from a square root boundary,” which will appear in the Proceedings of the 5th
Berkeley Symposium. He obtains the conjectured results for the discrete time
case as well. Our methods are different.

‘Acknowledgment. B. F. Logan found the expansion (5), for which I am in-
debted.
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