ASYMPTOTIC EFFICIENCY OF MULTIVARIATE NORMAL
SCORE TEST!
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1. Introduction and summary. Let X, = (X1, Xoa, '+, Xpa), a =
1,2,---,m,and @ = m + 1, -+ , N, be independent random samples of sizes
mandn = N — m from continuous p-variate edf ¥’ (x) and ¥®(x) respectively.
For testing Ho: ¥ = ¥® against shift alternatives ¥@(x — A) = ¥®(x) vari-
ous tests are available in literature of which the important ones are the following:

(a) the classical Hotelling’s T? test;

(b) the multivariate version of the Wilcoxon test proposed by Chatterjee and
Sen ([4], [5]). The test statistic W is a quadratic form in the veetor of coordinate-
wise Wilcoxon statistics.

(¢) The multivariate version of the normal score test proposed by Bhat-
tacharyya [1] and for the general multisample problem by Tamura [9] and Sen
and Puri [8]. The test statistic M is a quadratic form in coordinatewise normal
score statistics. Both M and W are members of the class of tests (4.7) of Tamura
[9].

For consideration of asymptotic relative efficiency (ARE) let ¥(x) denote the
common cdf under Ho and Ay = 8/N?, (5 # 0) a sequence of shift alternatives
tending to H, along the direction &. Using e.5(3, ¥) as a general notation for the
Pitman efficiency of a test A relative to a test B, which typically depends on ¥
and 8, we have under suitable regularity conditions (c.f. Theorem 3, Tamura

9D

(1.1) ea:w(8, V) = AyAy ea:r(8, U) = AyAr '
where
(1.2) Ay = A%, Ap =3I, Ar=352"%

and A = (\;), T = (v4), Z = (psoio;) are nonsingular p X p matrices. 2 is
the covariance matrix of ¥. Denoting by ¥; and ¥; the sth marginal density and
cdf of ¥, by ¥,; the joint (4j)th marginal cdf and by ¢ and ® the density and cdf
of standard normal distribution, the typical elements of A and I' are given by:

(1.3) Nij = pl0707" and  vi; = pisvive
where
(14) 0= [2oWi(z) de/pl@ (@)}, v = [(12)F [Zo ¢ (2) dal ™
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(L5) o5 2o [20 @A 2) 10T (y)] d¥ii(2, y);
(1.6)  pi; = 12 J2a [20 T i(2)Ui(y) ATz, y) — 3.

(pij), ( p;,‘) and (pi;) are respectively the product moment, the grade, and the
normal score correlation matrices of ¥. In this paper the ARE properties of the
M test relative to the W and T” tests are studied by investigating the bounds of
the efficiencies (1.1) for various important classes of multivariate distributions.
Since the ARE expressions (1.1) for two sample tests are essentially of the same
structure as those for their multisample analogues, no generality is lost, as far as
efficiency bounds are concerned, by restricting discussions to the two sample
situation. It is shown that in the class of nonsingular multivariate normal dis-
tributions the M test has efficiency 1 relative to 7” and its efficiency relative to W
exceeds 1 irrespective of the direction 5. The M test behaves very well when the
parent distribution has marginal densities dropping down to zero discontinuously
at either tail and also in gross error models when heavy-tails are present in the
contaminating distribution.

2. Multivariate normal and other special cases. Taking ¥ = ®,(0, =), the
p-variate nonsingular normal cdf it can be easily verified from (1.4) and (1.5)
that 8; = o, pij = pi; and consequently ey.r(5, ¥) = 1. In fact, it issufficient to
assume that ¥ has normal marginals. It shows that when the parent distribution
is nonsingular and has normal marginals the ARE property of the univariate
normal score test vs. the {-test is preserved in the multivariate extensions. This
property is not shared by W as can be seen from the result (5.6) of Bickel [3].
Regarding the relative performance between M and W tests the following theorem
shows that for multivariate normal ¥ the M test behaves better than W in all
directions 8.

TaeorEM 2.1. If ¢, denote the family of all nonsingular p-variate normal dis-
tributions

(21) inf\ys% inf;, eM:W( 3, ‘I’) =1 for all P,
(2.2) SUPwes, SUP3 e:w(d,¥) = o Jor p=3
= 1.15 for p = 2.

Proor. As noted before ¥ ¢ ¢, imll)lies A = Z=. Also noting that ¢’(z) dzr =
(27r’}¢r,-)_1 we have vi; = (37)ow;pi;. Using these and letting 8% = (8,/0y,
62/0'2 y "y 61’/‘71’) in (11)

(23) earw(®, W) = [8%(pis) "8I (3mpis) 57"

For (2.1) it is therefore, sufficient to show that for every ¥ ¢ ¢, the matrix differ-
ence D = (ps;) ™" — (wpsi/3) ™" is positive semidefinite (psd). For a random vector
Y= (Y1,Y,, --,Y,) having edf ®,(0, (p;;)) the following are true:

(24)  cov[®(Y.), ®(Y,))] = pis/12,  cov[B(Y)), V)] = puy/2n’.

The second equality follows by showing first that cov [®(Y,), Y] = (279" and
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then for ¢ # j using the representation Y; = p;Y; 4+ (1 — p3;)*U where U is
stan(,lard normal independent of Y,. (2.4) shows that the p X p matrix
(§mpi; — pij) is the covariance matrix of Z = (Z,, Z,, --- , Z,) defined by

(2.5) Z.=2r'®(Y;) — Y, i=1,2,---,p,

and hence is psd. Multiplication by the pd matrices (7p;;/3)™" to the left and
(ps;) ™" to the right yields D and the positive semi-definiteness is preserved. Inci-
dentally, note that the lower bound 1 cannot be attained by any ¥ ¢ ¢, because
nonsingularity of ¥ implies that there does not exist a linear relation among
Zy,Zy, -+, Zp with probability 1 and hence that D is pd. However, the lower
bound is sharp as is proved in Theorem 2.2. (2.2) readily follows from Bickel [3]
by using the fact that for ¥ ¢ ¢, , ex.w = ém-r and the proof is terminated.

From the univariate efficiency bounds of Chernoff-Savage [6] and Hodges-
Lehman [7] it follows that if § be the family of all continuous p-variate edf with
pairwise independent components

(2.6) infy.g infs ex.r(3, ¥) = 1,  infe.5 infs ex.w(d, ¥) = ¥m,

and in each case the lower bound is attained by some ¥ &£ & and some $ # 0.The
supremum in each case is infinity. Consider, next, the class of c¢df ¥ which are
homogeneous in the sense that the joint marginals ¥,; are the same for all
1 = 75 j = p. Exchangable random variables are a special case of this type.
Denoting by ¢, 6%, 4* the common diagonal elements and by po’, p*67%, p'y* the
common off diagonal elements of =, A, and I" respectively, the bounds of ARE in

(1.1) come out as
(2.7) infﬁ ex:7(8, ¥) = 0202q(P, p*)7 sups ex:r(d, ¥) = azon(P; P*)7
(2.8) infyew:w(3, ¥) = 0°v'q(p'p™),  supgew.w(d,¥) = 64'Q(s’,0"),
where ¢(a, b) and Q(a, b) are respectively the minimum and maximum of the
quantities (1 — a)/(1 — b) and [1 4+ (p — 1)a]/[1 + (p — 1)b]. The exact
values of (2.7) and (2.8) depend, among other things, on the common correla-
tions of the three types and hence cannot be given in general. Specializing (2.8)
to ¥e ¢, once again we now show that the bound in (2.1) is sharp.
TuroreM 2.2. If Ve ¢, has identical correlations p, then
(2.9) (a) supg[inf]ex:w(8,%) = A(p)[Bo(p)] & 0<p<1
= B,(»A(p)] & —(p— 1T <p=0
where
(2.10) A(p) = ¥a[l — (6/m)sin™" (p/2)]/(1 — p)
and  By(p) = %x[l 4 (6/7)(p — 1) sin™" (p/2)]/[1 + (p — 1)p]-
(b) For every € > 0 there exists a nonsingular multivariate normal cdf ¥, such
tf),at
(2.11) 1 < inf ex.w(8,%.) < 1 + e
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Proor. Using the representation (2.3) and the elementary inequality:
sm (mz/3) = x for 0 = 2 = 3, the part (a) follows from (2.8) by noting that
= (6/7) sin~ (p/2) For (b) note that the function

g(p) = (2/p) sin (p/2) 1 and p | O

Select p. > 0 such that g(p.) < 1 + ¢/2. The inequality (6/7) sin " (p/2) < p
for0 <p<1 1mp11es that as a function of positive integer p Bo(p.) | g(pc) as
P> @, 80 that for p* sufficiently big Bps(p.) < 1 + e. Thus, taking ¥, to be a
D -vanate normal edf with identical correlation p, (2.11) is satisfied.

The following extends to the multivariate case the result of Hodges and Leh-
mann 7] on the infinite ARE of the univariate normal score test vs. the Wilcoxon
for distributions having discontinuous density.

TarEOREM 2.3. If the p-variate cdf ¥ be nondegenerate and have marginal densities
satisfying the conditions (3.8) and (3.10) of Hodges-Lehmann [7], then for every
8 # 0, eyw(d,¥) = .,

Proor. Observe first that under the condition (3.8) of [7] the expression for
ex:w given in (1.1) is not valid because under the sequence Ay of local shift
alternatives My does not have an asymptotic noncentral x,’ distribution whereas
limy., £ay(Wx) = x7°(Aw). The proof is accomplished, however, by showing
that Ay <  and that My — o in Pay-probability. By a well known inequality
of pd quadratic form

(2.12) Ay = 8T8 = 85 /Crain(T),

where Cyin(T') denotes the minimum eigen value of I'. (3.10) of [7] and non-
degeneracy of ¥ imply that each v; < « and (p;;) is nonsingular and hence that
Cwin(T) > 0. Thus, for fixed 8 Ay < . Let Ty denote the vector of coordinate-
wise normal scores test statistics and (p7jy) the p X p matrix with elements

prian = N1 b na hy(Ria)hn(Rja),

where hy(a) is the expected value of the ath normal order statistics in a sample

of size N and Rip, « = 1,2, --- , N, are the combined sample ranks in the sth
coordinate. The test statistic My is then given by the quadratic form
My = Tx(pFin) T . Ifu = (uy,us, -+, up), we have

u(pliam )t = N7 D aei D=1 udw( Ria) h(Ria)T
(X ud )N 2 2o [h(Bio)
= pN '(uu’) 2_aat [hn()].
This implies that Crax(pfiy) = PN D u= [ha(@)]* and hence we have
My Z ToTw /Coax(Bii0))
(PN Xt ()} ' TW T

IIA

\%
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As N — o, > 5 [hn(a)f/N — 1 and under the condition (3.8) of [7]
T+Tx — « in probability. This completes the proof of the theorem.

3. Contamination model. The following theorem shows that with an increas-
ing amount of heavy tails in the contdminating multivariate distribution the M
test tends to behave much better than T just as the W test does (c.f. Bickel
(31).

TrEOREM 3.1. Let ¥ and ¥ be two continuous nondegenerate p-variate cdf having
means 0 and marginal densities ¥; and i, 1 = 1,2, ,p. For 0 < ¢ < 1,
c=(c,C, ,c) and x/c = (;/c1, TafCa, +++ Tp/Cp) define the mixture

(3.1) Fo(x) = (1 — )¥(x) + ¥'(x/c).

If e(8, c) denote the ARE of the M test vs. T” for the parent ¢df F(x), then for any
8 # 0limg., e(d,¢c) = .
Proor. Let

(3.2) 8i(ci) = [Za[fi(ci, x) dz/d{® Fi(ci, )]

where F;(c;, ) and fi(c; , «) respectively denote the 4th marginal cdf and density
of F.. Applying the Hodges-Lehmann [7] bound to this marginal we have
0:(c:) =(2r)} JZaf#(ci, x) dz. Use of (3.1) to decompose fi(c; , *) and appli-
cation of Schwarz’s inequality yield

limeae [Zufi(ci,2) de = (1 — ¢)® [Zu¢id(x)dz > 0
and hence
(33) hm infc,._,w oi(c,-) > 0.

Let o2(c:) and pij(cx , ¢;) denote the variances and the correlations of the dis-
tribution (3.1) and psjo denote the correlations of the distribution ¥'. As ¢ —
each o(¢c;) — « and pij(c:, ¢;) — pijo . Using (3.3) the proof now follows in the
same lines as Theorem 6.1 of Bickel [2].
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