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ESTIMATION OF THE LARGER TRANSLATION PARAMETER

By SAuL BLUMENTHAL! AND ARTHUR COHEN?

New York University and Rutgers-The State University

1. Introduction and summary. Let the random variables X1, X, -+, Xin,
¢ = 1, 2, be real valued and independent with density functions f(x — 6;) (8;
real), 7 = 1, 2, (with respect to Lebesgue measure). We take f Zoxf(z)dx =0
with no loss of generality. The problem considered here is estimation of the fune-
tion ¢( 6, 62) = maximum (6, , 6.) with a squared error loss function. Questions
of minimaxity and admissibility of certain natural estimators are considered.
This problem is the estimation analogue of the well known ranking and selection
problem, which has received considerable attention in the past. For a bibliography
see Bechhofer, Kiefer, and Sobel (1968). Whereas previous work is concerned
with choosing the population with the larger parameter, here we are concerned
with estimating the larger parameter.

Consider for the momeént, the case where n = 1. A natural estimator of
(61, 6,) is (X1 , Xz1) = maximum of (X , Xa). This estimator is symmetric
in the observations and invariant under translations which take (6;, 6;) to
(6, + a, 6, + a), for any real constant a. Under suitable conditions, one of which
is that f be symmetric, (the conditions will be stated precisely for general » in
the next paragraph), it is shown that ¢(Xu , X») is minimax. However (X1 ,
Xo1) is not in general admissible. Furthermore, when f is not symmetric (X ,
X2) also need not be minimax. Another estimate with the invariance properties
stated above is the a posterior: expected value of ¢(6;, 6;), given (Xu, Xu),
when the generalized prior distribution of (6, , ;) is taken to be the uniform dis-
tribution over the two dimensional plane. For many estimation problems, such

an adaptation of the Pitman estimator is known to be minimax. However, for.

this problem, under suitable conditions (again including that f be symmetric),
this estimator need not be minimax. It is true though, that this estimator is ad-
missible.

In order to summarize the results for general n, it is convenient to define the
analogues of the estimates considered above. Let X; be the a posteriors expected
value of 6; , given X;;,j = 1,2, - -+ , n, when 6; has the generalized uniform dis-
tribution as a prior distribution. That is,

(11) Xi = fe,- H;Llf(X,'j - 0,) d0,/f II;'L=1f(X¢j - 0;) d0,~, 1= 1, 2.

Note X, is the usual Pitman estimator of 6; and thus if f is the normal density
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then X; = X;. Let

(1‘2) ¢(X11’X12’ A ,Xln,le, LI ,in)
= ¢(X1, X;) = maximum of (X, Xa).

Also define 8 to be the a posterior: expected value of ¢(6;, 62), given X,;,
i=1,27=1,2, ---,n, when the generalized prior distribution of (61, ;) is
the uniform distribution on the two dimensional plane. That is,

6*('X‘ll ’ X y T in)
(13) = [[ o0, 0) T f(X1s — 61) T f(Xes — 62) dby dbs
S T f(Xns — 1) T f(Xas — 62) d6y o)™

In order to explicitly state the main results it is convenient to introduce some

notation which will be more formally presented in the next section. Recall X; is

the usual Pitman estimator of 6;. Let ¥; = (Yu, Y, -+, Yina) where

Y,-j = X; ;1 — Xa. Let p(z, y) be the conditional density of X; given ¥; when
; = 0.

Now for the problem of estimating <p(01 , 02) the main results are as follows:
(a) If p(z,y) = p(—=,y) and EE[(Xy" + X,7) | Y1, ¥3] < o, then ¢(X1, Xs)
is minimax. The proof of this result is based on an idea of Farrell (1964). (b) If
p(x, y) # p(—=z, y), then the problem is complicated and in fact an example is
given showing that ¢(-) is not minimax. (¢) The estimator ¢(-) need not be
admissible. When f is normal, it is easily shown, using a theorem and remark of
Sacks (1963) that ¢(-) is inadmissible (Section 4). (d) if E{E2[(X1 + X))
log (X + X2)|°| Y1, Ya)} < o for some 8 > 0, then 8*(-) is admissible.
The proof of this fact depends on results of Stein (1959b) and James and Stein
(1961). (e) The estlmator 8" need not be minimax and in Section 3 it is shown
that frequently 6" is not minimax.

Despite the inadmissibility of ¢(X;, X,), this estimator has great intuitive
appeal, is easy to use, and we have not succeeded in finding an estimate whose
risk improves on the risk of . Also it is minimax under the restrictions noted
above. Furthermore, if the problem was to simultaneously decide which popula-
tion has the larger mean and estimate the larger mean, then a reasonable formu-
lation for which ¢(X; , X:) is an admissible estimator of go( 6, 6;) could easily be
found. See for example Cohen (1965). The admissible 8%, on the other hand, is
more difficult to compute and has a larger bias than <p(.X1 , Xo).

In a future paper, we shall discuss topics such as the general question of un-
biased estimation of ¢(6:, 6;), the maximum likelihood estunate and its proper-
ties, and the generation of invariant Bayes estimates of which % is a particular
example.

As we develop the main results, generalizations will be indicated. In the next
section we introduce the notation for a more general model than as given earlier
and develop some preliminaries. In Section 3 we give the minimax results while
in Section 4 we give the admissibility results.
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2. Notation. In this section, we introduce the notation to be followed here-
after and relate it to that of the Introduction. .

Following Stein (1959a) we define the random variables X;, Y,; (1 = 1, 2;
j=l,"'7n—1)by

(2.1) Xi=Xag—nYa, -, Yia), i=1,2
and

(2.2) Yi= Xim — Xa, i=1,2 j=1,--,n—1,
where

(2.3) r(y) = (o)™ [2f(@)f(x + 1) - f(& + yanr) do,
(24) ro(y) = [f@)f(z + 1) - f(& + Yur) da,
and

(25) Yy = (yl y T yﬂ—l)-

The conditional density of X; given (Y, - -+, Y ._1) when f(z) is the density
of X ij is

(2.6) p(z,y) = {f(x + r(y))f(x + r(y) + ) - f(@ 4+ r11(y) + Ya-1)}/7o(y)

and when f(x — 6;) is the density of X;;, the conditional density given the ¥’s
is p(z — 6;, y). It will be noted that X; = X, if n = 1, and is the Pitman esti-
mator of 6; (given by (1.1)) in general.

Hereafter, Y; (¢ = 1, 2) will be arbitrary but identical spaces, »(-) will be a
probability measure defined on the Borel subsets of Y; (¢ = 1, 2), and z will be
a real number. p(-, -) = O on E; x Y; (¢ = 1, 2) to Ej is jointly measurable
in the two variables and

(2.7) [pz,y)de =1 forall yey;, (i=1,2),
(2.8) [zp(z,y)de =0 forall y ey, (z=1,2).

(Note that p given by (2.6) satisfies (2.7) and (2.8) with ; = E,_; and »(dy)
given by 75(y) dy1 - - - diyn.) We shall sometimes find it convenient to write Y
for Yo x Y2, ¥ for (yl ’ y2)’ v for » X v, and p(xl y T2 s y) for p(xl ’ yl)p(x2 ’ y2)°
Hereafter, the observed variables are (X;, ¥;) with X; ¢ E;, Y, ¢ Y, (1 =
1, 2) and the marginal conditional density of X; given Y is p(z: — 0;,y.)(— o <
0; < =) (¢ =1,2).
The risk of an estimator 6(X; , X, , Y) for ¢(6:, 6:) is given by .

(29) R(61,8:,8) = [o [Z [Z[6(21,22,y) — (61, 6)]
p(xl — 6 y Ly — 0 , y) dxl dwzv(dy)

In terms of this notation the estimator (1.2) remains as

(210) qo(Xl , Xz) = max (Xl , Xz)
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while the estimator (1.3) becomes
(211) (X1, X., V1, Ya)
= [J e, 0)p(X1 — 61, Y1)p(Xs — 6, Y3) dby dbs .

For the purposes of the next section, it will be convenient to use the following
change of variables and corresponding change of parameters. Namely, let

(2.12a) Zy = (X, — X1)/2, Zy = (X1 + X3)/2;
(2.12b) 7 = (6 — 6)/2, uw= (6 + 62)/2.

Since both transformations are one to one there will be no loss of generality in
taking the observations as Z,, Z1, Y1, Y, with joint density

(213) p(zo y R Y1y Yoy My "7)
= 2p((z1 — u) — (20— 1), y)p((21 — ) + (20 — 1), ¥2)
and writing estimators as 6(Z, — Zy, Z1 + Zy, Y1, Y3). (For normal distribu-
tions, Z, and Z; are independent.) The risk function (2.9) becomes, noting that
ﬂo(ol ) 02) is 1 + lﬂl) ‘
(2.14) R(p,1,8) = [ogp Joy [Z0 [Z[8(2s+ 20,21 — 20,31 , %) — (u + |])T*
'p(Zo 21, Y1, Y2, M "7) dzo dzl”(dyl)l’(d?h)-
Observe that the estimators (2.10) and (2.11) in this notation are respectively
(2.15) . (Zo, Zn) = Z + |Zd,
and
(2.16) 8" (Z1 — Zo, 21+ Zo, Y1, Ys)
= Zi+ [Ze [Z0|nlp(Z0, Z1, Y1, Yo, ) dudy

3. Minimax. In this section, we consider the minimax properties of ¢(X1, X»)
and 6*. We start by proving the minimax property of an estimator for an ap-
parently unrelated problem. Then we reduce our problem, by means of invariance
arguments, in order to make use of the above minimax result.

TuroreM 3.1. Let Z be a real random variable, and let (%Y, B, v) be a probability
space. Suppose §(z,y) = 0, defined on Ey x <Y to E, is jointly measurable in (2, y)
and satisfies (2.7) and (2.8). Let
(3.1) R = ff 2g(z, y) dev(dy) < oo.

Let w be a location parameter so that for each y, we get the family of densisies {g(z —
w,y), —© < w < x}. Then |Z| is a minimax estimator of |w|, with mazimum
risk R.

Proor. The risk for |Z] is

I (el = le))g(z — w, y) dev(dy)
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(3.2) = [f (e — o))z — o, y) devd(y)
= [[ (z — ©)%(z — @, y) dev(dy) = R.

Now suppose §(z, y) is an estimator of |w|, such that for ¢ = 0, and for all w

(3.3) JI (3(2,9) — |o])’9(z — w, y) dev(dy) < R — e
Then if w = 0, we have from (3.3)
(34) JI 3Gz, y) — )’g(z — @, y) des(dy) < R — «.

By a change of variable in (3.4), we see at once that for « = —a we have
(35)  [f((z+a,y) —a—0w) gz —w,y)dev(dy) SR — e

Now for the problem of estimating the translation parameter w with respect to
squared error loss it is well known that a minimax invariant estimate with risk
R exists. Furthermore, for such a problem, the space of decision functions may be
regarded as compact with respect to regular (weak) convergence, after com-
pactification of the action space. (See LeCam (1955), Remark 6.) Hence we
may define a sequence of estimators of the form 6(z + a) — a, as a — «, such
that a subsequence converges weakly to a limit function 6*(z, y), which by (3.4)
satisfies for all w,

(3.6) I *zy) — )z — @, y) dev(dy) S R — e

If 8* does not lie in the original space of decision functions determined before the
compactification of the action space, then it could be replaced by a decision pro-
cedure in the original decision space whose risk is less than or equal to the risk
of 8 for all w. This is so since the compactification can be done in accordance with
LeCam (1955), Remark 6. Also if the limiting procedure were randomized it
could be replaced by a nonrandomized procedure whose risk was at least as good.
Thus, since the risk for the minimax procedure for the unrestricted problem is
R, it follows from (3.6) that e = 0. Hence from (3.3) there exists no estimator
whose risk has a supremum less than R, and the theorem is proved by virtue of
(3.2).

REMARk. It appears that the latter portion of the proof of this theorem would
follow also from the results of Peisakoff (1950).

To apply Theorem 3.1 to our problem, we now develop some invariance rela-
tions satisfied by both (X, Xz) and 8%, First, these estimators are symmetric
in the index 1, satisfying 8(z1 , 22, Y1 , ¥2) = 8(22, 21, Y2, ¥1). In the Z notation of
Section 2, we shall require then that

B Zy—Zo, 2+ Zoyn,Ye) = 2y + Zoy Za — Zo, Yo, ).
Define,
(3.8) Zy = |Zy and o = |4,

If we assume that Y3 and Y. are identical spaces, and use (3.7) and (3.8) in the
formula (2.14) for the risk function, we find that R(y, 9, §) = R(p, —n, 8) =



ESTIMATION OF THE LARGER TRANSLATION PARAMETER 507

R(p, », 8). Also it is easily seen that we can take the observations as Z; , Z,, Y1,
Y., write symmetric estimators as 8(Z;, Z;, Y1, Ys) = 8(Z1, Z., Y., Y1) and
take the parameter to be estimated as (¢ + «). The joint density of Z;, Z,
given Yy, Y, is given by

p(21, 22, Y1, Yo 5 4y @)
(3.9) = 2[p((a1 — u) — (22 — @), y)p((&r — p) + (22 — @), ¥2)
+p((a — 1) — (224 @), y1)p((21 — 1) + (22 + @), 92)];
—0o <z < 0w, 052 < .

Further, the estimators (2, #;) and 8* are translation invariant under the
addition of the same constant a to all observations.

We then consider the class of estimators which have the invariance property
8zt a, 2, 1, %) = 8(21, 22, Y1, ¥2) + a. (From (2.1), (2.2), (2.12) and
(3.8), we see that adding a to each z;; adds a to z; and leaves all other y and 2
values unchanged.) Letting a be (—21), we have

(3.10) d(z1,2,%,Y) —a=0(0,2,%,9) = v(2, Y1, ¥2),

so that we shall write a translation-symmetric invariant estimate as 23 + v(2,
Y1, Y2) where

(3.10a) (22, Y1, %) = v(22, Y2, Y1)-

Clearly an estimator is translation-symmetric invariant if and only if it has

this form.
Using (3.10), (3.7), (3.8), (3.9), and Y1 = Y. in (2.14) gives

(3.11) R(w,©,8) = R(,8) = [[[Z [Tler + (22, 91, 92) — o
(21,2, Y1, Y2 ; 0, w) dzz deyv(dys)v(dys).
Let
a@z) =2[[[SIbz + (2 — @), Wz — (2 — w), %)
+ p(z — (22 + @), y1)p(z + (22 + @), y2)] deaw(dyr) v(dys)
(312) =2[f {[Zop(z + t, y)p(z — ¢, ) dt
+ JOp(z — t,y)p(z + t, y2) A v(dyn) (dys)
=2 [[[Zap(z + t, y)p(z — t, y2) dtv(dyn) »(dys).
Write
(3.13) 922, Y1, 42) = 2 [Zup(t + 2, y)p(t — 2, 1) dt.
Note that (2.7) and (2.8) imply that
(3.14) [Ze2g2(2, 1, 32) dz = 0 all (y1, u).
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Then (3.11) can be expressed as
R(w,8) = [Zuzgs(2) de + [[[7 v(z, y1, 42) — ollga(z — 0, 91, 92)
(3.15) + 92(2 + o, Y1, y2)] dzv(dys) v(dy2)
+2[[[S Wz, 41, 1) — ol {[Zeap(e1, 2, 11, Y2
0, ) dzi} dzov(dys) v(dye).

When the cross product term in (3.15) vanishes, the risk of an invariant esti-
mator is just a constant plus the risk of an estimator of the restricted parameter
o. That is, the latter risk is the risk for estimating w > 0, after observing z >
0, where the density of z is the mixture go(z — w, ¥1, ¥2) + (2 + w, 1, ¥2). In
this important special case, the problems of finding estimators which are mini-
max, or admissible in the class of invariant estimators reduce to one dimensional
problems of estimating w. In order for the cross product in (3.15) to vanish for all
functions y(-, -, -) and values w, we shall need the inner integral vanishing
and this is equivalent to the following condition:

(3.16) ffw 2p(z+Ly)p(z —tye)dz =0 forall —w0 <i< o, all (y1,¥2).

For the expressions (3.13) and (3.16) to be meaningful, the integrals involved
must be finite. From the Schwarz inequality we see that this will be the case if
both

(3.17) 2Dt y)dt < o, and  [Z,tp’(t, y) dt < .

Condition (3.17) is concerned with the behavoir of p(¢, y1) near ¢ = 0, inasmuch
as lim;. tp(t, y) = 0is a sufficient condition to assure that the tails of these in-
tegrals do not blow up.

In light of the discussion preceding (3.16), we can now state as a corollary of

Theorem 3.1,
Tueorem 3.2. If (3.16) holds, and if (using (3.12) and (3.15))

(38.18) R = [[2.2°0:(z, y) dev(dy) + [Zgu(2) de
= [[2a2"p(z, y) dov(dy) < o,

then o(X;, X:) is @ minimax estimator of ¢(6y , 6;) with maximum risk of R.
Proor. In the present notation,

(3.19) o(X1,Xs) = Z+ Z,

so that in view of (3.15), (3.16) and the intervening discussion, to prove the
minimax property of (3.19) among symmetric translation invariant estimates,
we need only show that if Z has distribution (given Y') of [g2(z — w, ¥) + ¢2(z +
w,Y)] (2= 0,0 = 0), then Z is a minimax estimator of w with maximum risk

. (3.20) R = [[2Z0:(2, y) dev(dy) < oo.

This last follows from Theorem 3.1 by noting that if X (given Y) has distribution
go(x — 0, y)(—o < 2,0 < »), then Z = |X| has the stated density when
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= |6]. By (3.14) and (3.18), we see that the hypotheses of Theorem 3.1 are

satisfied.

The problem is invariant under permutation of the index, and translation of
both parameters by a (real). Thus we have demonstrated above that ¢(Xi , X»)
is minimax among invariant procedures. The conclusion of Theorem 3.2 follows
then from the generalization of the well known Hunt-Stein theorem. (See Kiefer
(1957).)

We now turn to the estimator 8*(X;, X, , Y1, ¥,) given for our purposes by
Zy + 'y*(Z2 ) Y y Yz) where

(321) +¥(Z, Y1, Vs) = [colg(Z — o, Y1, Y¥2) + g2(Z + o, Y1, Y3)] de.

When (3. 16) holds, the risk of * is given by the first two terms of (3.15), say
C + R(w, 7). The non-minimax property of 8* (under (3.16)) will follow from
Theorem 3.2 if we show that R(w, v*) > R’ (see (3.20)) for some «. Using

(3.22) Y y) —2=2[7 (x — 2)g(z,y)dz > 0, allg,
in (3.15), we find that
R(0,7") = [ w(ay){2 [T Z'gale, y) de
(3.23) + 8 [T aga(z, y) [T (z — 2)ga(2, y) do de
+ 8 [ 9:(2, ») ( [ (2 — 2)ga(=, y) )’ de}
> 2 [ w(dy) [ 2ga(z, ) de.

If .( —2,9) = (2, ) (as is the case when n = 1 and f(-) is symmetric, or for
general n when p(z, y) is symmetrlc for each y, e.g. when f(-) is normal or
umform), then (3.23) becomes R(0, v*) > R’. We have now demonstrated that
8 (-, - -) is not minimax for estimating ¢(6;, 6;) for the f(-)’s mentioned

above.

We now illustrate that when (8.16) does not hold, ¢(X;, X.) may not be
minimax for estimating ¢(6; , 6;). Let n = 1 so that X; = Xa (¢ = 1, 2) and let
f(+) be the exponential density given by
(3.24) fx) =,z z -1,

= 0, z < —1.
For the estimator (o(X:, Xz2) — d), a direct calculation gives
(325) R(61, 6, 0(X1,Xs) —d) = E(max (X, X:) — d — max (6, 6))°
=1+ G —d)e "+ d

For d = %, we obtain the constant risk of (5/4), whereas for d = 0 (correspond-
ing,to ¢(Xi1, X»)), we have risk of 1 + (3) exp (——IOZ — 61]) which is ('g) at
16, — 01| 0 (i.e., w = 0). Thus ¢(X;, X») is not minimax. (Incidentally 8% is
not minimax for this example either, having risk exceedmg (3)atw = 0. )

The above argument also shows that ¢(X; , X,) and 8" cannot be minimax for
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general n as well, since the Pitman estimator X; for the exponential density
f(xz — 0) with f(x) given by (3.24) is just (min (Xu, -+, Xw) + (0 — 1)/n).
This X; has an exponential distribution (ne "**", z = —1), and is independent
of (Y1, -+, Yua).

Remarks. 1. First we wish to discuss the relation (3.16) and the conditions
under which it holds since that relation is crucial to the results of this section.

Condition (3.16) is satisfied when n = 1 for all symmetric densities f(-), and
is satisfied for general n if X; is independent of ¥;(z = 1, 2) and f(-) is sym-
metric. For example, for arbitrary =, the normal density satisfies (3.16).

It will be noted that (3.16) is equivalent to

(3.16a) E(X:+ X:| X, — X1,y) =0, forall (X: — X;) and y.

If X, is independent of ¥; (as for n = 1), Cacoullos (1967) shows that for all
distributions, such that all moments are finite, (3.16a) implies that p(z) is
symmetric. C. R. Rao and K. Jogdeo, in personal communications, claim that
the result can be extended to include all distributions whose characteristic func-
tions are not zero on any interval; but Rao has an example indicating that the
result is not always true.

It is also clear that (3.16) holds if p(z, y) is symmetric in z for each fixed y.
This will not be true in general when f(-) is symmetric, but does hold for some
cases. We shall demonstrate here the symmetry of p(z, y) for each y, for the
uniform distribution. Let

(3.26) fx) = (3), —-1=sz=s1
Use the definitions (2.1), (2.2), (2.3), and (2.4) along with
(827) Yo=0, M,=max (Yo,Y1, -+, Yau),

my, =min (Yo, Y1, -+-, Yaa), Ru(y) = Mw — ma,
to find that

(328)  m(y) = (N2 — Ru(y)), 1n(y) = —(3)(Ma + ma).
From (2.6) we obtain
p(z,y) = [1/(2 — Ra(y))]  for =1+ (Ra(y)/2) Sz =1

(3.29) — (Ba(y)/2),
: =0 otherwise,

which is symmetric in z, so that (3.16) holds.

2. The risk function of ¢(X;, Xz) was shown to be the first term in (3.15)
+ R(w, Z;), and R(w, Z;) was shown to be bounded by R’ (3.20) (for w = 0).
In addition, we indicate the following formula

(3.30) R(w, Zs) = R’ — 40 [[% (2 — w)ga(2, y) dev(dy)
“from which the property lim,.. R(w, Z,) = R = R(0, Z,) is immediate.
3. Additional properties of o* = Z; + v* are: (i) from (3.22) we see that
8*(+, -, -, *) > o(+, -) but converges monotonically to ¢(-, ) as Z, increases.
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Although we showed R(0, v*) > R’, we can also show that (i) limy,. R(w,v*) =
R/, and (ii) limy.w (1/N) [¢ R (w,v*) dw = R'.

4. Admissibility. In this section we prove the admissibility of the estimator
8* given in (1.3) and (2.11). The proof follows essentially from results of Stein.
In the first lemma below we state Theorem 3.1 of James and Stein (1961) in a
form that more closely fits the present problem. This theorem gives a sufficient
condition for almost admissibility of an estimator of an arbitrary real valued
function g(6y, 6:). In Theorem 4.1, we prove under appropriate moment condi-
tions the admissibility of the estimator which equals the a posteriori expected
value of ¢g(6;, 6,) given the observations, and given a uniform generalized prior
distribution on (6, , 6,), i.e.

(41) §(X1, X, Y) = [[g(b, 0)p(Xy — 6, X, — 6, Y) db, db, .

Following this we show that Theorem 4.1 is applicable to 8* as an estimator of
¢(61, 6:). We conclude this section by showing that ¢(X;, X2) (see (2.10)) is
inadmissible for ¢(6; , 6;) when f is normal.

We now state

Lemma 4.1. (Stein). If §(X, Y)(X = (X1, X,)) is an estimator of g(0) (8 =
(61, 65)) with bounded risk such that for each set C in a denumerable family F of
sets whose union is the space of all 9,
(42)  infesco [ 4(6) dOE(3(X, Y) — 8,(X, ¥))*/[[ a(6) d6] = 0,

where S(C) s the set of probability densities with respect to Lebesgue measure
which are constant (but not 0) on C, and §,(X, Y) s the a posterior: expected value
of q(6) when q(0) d s the prior distribution, then §(X, Y') is almost admissible

with respect to Lebesgue measure.
Before stating Theorem 4.1, let us suppose that C is a disk with center at the

origin and radius R, B = 1. Then note that (4.2) is implied by
liMyae (1/75(0)) [ »(dy) [{ dw: dx,
(4.3) AU S 3z, y) — 9(0))p(21 — 61, 22 — 62, y)m,(0) dOT’
/S Pl — 61,22 — 02, y)me(6) dB} = 0,

where 7,(6) is a sequence of densities, with respect to Lebesgue measure, which
are constant on the disk C. To see that (4.3) implies (4.2) note that the integral
in the numerator of (4.2) is

I 7e(0)Edo(z, y) — [ g(0)p(z1 — 61, 22 — 62, y)7.(0) dO
/I oz — 61,20 — 62, y)ma(8) db)’
= ff .(0) f v(dy) ff p(21 — 01,2 — 02, y) dry dae
(4.4) ALST 8z, y) — 9(0))p(z1 — 01, 2 — 62, y)m,(0) df)]
/LSS D@ — 6, — 6s, y)m.(8) d6T
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= [ vw(dy) [[ dx,da,
ALST (3(x,9) — 9(8)p(1 — 61, 22 — 02, y)m,(6) dO)*

/[ p(@ — 61,2 — 6, y)m.(6) d6}.

Since the sequence ,(6) will be constant on the disk C, it is clear from (4.4) that
(4.3) implies (4.2). Now we state

TreorREM 4.1. If the observed variables (X1, X», Y) are distributed so that for
some 8 = (6;, 6), (X1 — 6., Xo — 6., Y) has a probability density satisfying
(2.7) and (2.8) and if

4.5) [ o@)lff @ + 2)log” (21" + ") |p(21, @2, y) day do]
[H(y) + R(y)] < =,

where
(4.6) H(y) = supe,a, [[ lg(—21, —22) — Eolg(—X1, —Xo)}T’
p(xy — 01,22 — 6, Y) dry dy
and
(47) R(y) = sups R(8,y) = sups,e, [ (2, 9) — g(O)F

~p(x1 — 0 y Lg — 02, y) dilil dil?g

then §(X, Y) given by (4.1) is an admissible estimator of g(0).

Proor. Since we assume p(z; — 6, 22 — 62, ¥) is a density for each y, it
follows from Stein (1959a), p. 973, that almost admissibility implies admissi-
bility. Hence, by virtue of Lemma 4.1, if we show (4.3), the proof is complete.
To demonstrate (4.3) we define w, by

7.(0) = (K,/o) log’ (¢*/R?); 06+ 6’ <R,
(4.8) = (K,/o) log’ (a*/(6" + 6.°)%); R < 6° + 6’ < Mo,
= (K./o)[Bo/ (6 + 6:)][1/log" (A((6" + 67)/a)"));

0. + 6’ = Mo®
wherel < < 1+5,0< M < 1, AM? > 1 and these constants and B are
chosen so that = is continuous everywhere and continuously differentiable ex-
cept at 6,° + 6,° = R’ Call the inner integral on the left hand side of (4.3) I(y),
ie. ‘.

(49) I(y) = [J dor daol[ [ (3, 9) — 9(6))p (21 — 61,22 — 62, y)me(6) dOT/
[f p(x1 — 61, 2 — 6, y)7.(0) db}.
If we can show that
(4.10) I(y) £ R(y) forally,
,and
(4.11) I(y) £ Ci(logo/a)H(y)
A @ 4 21+ log (1 + 22 |p(21, 72, y) dan daa,
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whenever
(4.12) Aw) = [f (&’ + @")p(21, 22, y) derdze < Coo,

where C; and C; are positive constants, then we may proceed as in James and
Stein (1961), pps. 374 and 375 to complete the proof of the theorem.
Applying the Schwarz inequality to the numerator of (4.9), gives

(4.13) I(y) = [f =.(0)R(6,y) d8 < R(y)

which is (4.10). To establish (4.11), apply (4.1) followed by the Schwarz in-
equality to the bracketed integral in the numerator of (4.9) to obtain

S Bz, ) — 9(0))p(z — 61, 2 — b, 9)lme(0) — mo(x)] dbT
(4.14) < [ (=, y) — 9(8))p(z1 — 61, 2 — 62, y) df

Jf Tro(0) — mo(@)'p(21 — 61, 22 — 62, y) db.
Using (4.1), we find that

I 3z, y) — 9(8))p(@ — 6,22 — 02, y) dB
(4.15) = [[ (=0, —6)p(61 + @1, 0 + 22, y) 61 dF;
— U g(—61, —6:)p(6y + 1, 62 + 2, y) d6y dO™

The right side of (4.15) is bounded uniformly in (21, ;) by H(y) (see (4.6)).
Using (4.15), (4.14) and (4.6) in (4.9) we now find that

I(y) £ H(y) [[ dzydw] [] [.(8) — mo(2)'p(@1 — 61, 22 — 62, y) d6/
(4.16) [ p(zs — 6, 3 — 6, y)m.(6) 6!
= H(y) I dey dad [[ tno(z — 1) — 7o(2)PP(n, 12, 9) dn/
I p(nuy m2, ¥)me(z — n) dnl.

Apply the Markov inequality as does Stein (1959b) p. 6 to the integral in the
denominator on the right side of (4.16), and change the order of integration to
obtain
(417) I(y) £ CH®) [[ p(m, m,y) dnydne

1] trolz — 1) — m(2)] da/m* (Il + 2M)],
where
(418) A=X(y), C3>0, and = (o)) = =" ((6 4 ") = ma(0).

We now note that the integral in (4.17) has been bounded by Stein (1959b)
pps. 7-16 for the case B = 1, and that Stein’s computations are essentially
unaltered by the fact that B > 1, so that Stein’s bound of
(419)  (Cilogo/o) [ (2 + @) (1 + |log® (2" + ") )p(21, 22, y) dar das

is valid here also. If we use (4.19) in (4.17) we get (4.11) and thus complete
the proof of Theorem 4.1.



514 SAUL BLUMENTHAL AND ARTHUR COHEN

As a corollary to Theorem 4.1, we can now obtain the admissibility of 8.
Preliminary to this we obtain a bound on H(y) which we give as

LemMa 4.2. Let Xy, X, have conditional joint density p(zy — 61, 22 — 62, Y)
given y, then

(4.20) E[{min (X;, X,) — E(min (X1, X,))}*| Y]
< 2ff (ad 4+ 2)p(ay, 22, y) doy das = 2N(y).

Proor. The proof holds in more generality. For let «; = EX;. Then
El{min (X7, X») — E(min (X1, X2))}* | Y]
E{((Xa+ X2)/2) — (1X1 — X3//2)

— (o1 + ) /2) + (B X2 — Xol/2)}* | Y]
2E[{(Xy — a1 + Xo — )/2)" | Y]

+ 2E[{(|1X; — Xal/2) — EIX: — Xol/2}" 1]
2E[(X1 — )| Y] + 2B[(X> — @)’ | Y] = 2\(y),

where the last inequality follows from the fact that E(|W| — E\W|)® =
E(W — EW)~.

Remark. Clearly the bound (4.20) holds also for the variance of max (X1, Xs).
If the joint density p(2: , 2, , y) is interchangeable (p(xy, %2, ¥) = p(T2,21,%)),
then the bound in (4.20) can be sharpened to A(y).

Now we state

THEOREM 4.2. If the observed variables (X1, Xo, Y) are distributed so that fer
some 0 = (01, 05), (X1 — 61, Xo — 6y, Y) has a probability density satisfying
(2.7) and (2.8) and if

(421) [ A@)LS @ + @b)log® (z° + #)|p(e1, 22, y) durdas]’ < =,

then 8 (X1, X2, Y) given by (2.11) is an admissible estimator of ¢(6y, 62).
Proor. In view of (4.5), (4.6), (4.7) and the definition of \(y) in (4.12),
we need only show that

(4.22) H(y) < C\(y) and R(y) £ Ce\(y) for some Ci, C: positive.

The first inequality in (4.22) (with C; = 2) follows from Lemma 4.2 and the
fact that max (—a, —b) is (—min (a, b)). If we write o( X1, X») = (X1 + X2)/2
+ | X, — X5|/2, use (4.1) in (4.7) we have

R(6,y) = [ {[((z1 + 2)/2) — (61 + 6,)/2)]
+ S (i — wl/2)p(@1 — w1, 22 — w2, ¥) dp dpse
(4.23) — (|60 — 6/2)p(21 — 61, 72 — 62, y) dy dazs
< M) + 2 1S (e — wal/2) — (16 — 6a//2)}

(T — w1, T2 — M2, Y) dm dm]2

I

IIA

lIA

p(xy — 61,22 — 02, y) doyds .



ESTIMATION OF THE LARGER TRANSLATION PARAMETER 515

If we apply the Schwarz inequality inside the second term on the right side of
(4.23) and use once again that (la] — [b])* < (@ — b)* = 2(d® + V) we find
that the integral in question is bounded by 4A(y). Hence R(y) = 5\(y), which
shows (4.22) and completes the proof of Theorem 4.2.

Note. In proving Theorem 4.2 we did not use either the independence of the
X’s or the assumption ; = Y, . Thus, the estimator §* of (1.3) will be admissi-
ble even for unequal sample sizes and for (Xi;, Xa;) not necessarily independent.

We conclude this section by proving

TuoEOREM 4.3. If the density f of the original observations X.; s normal, then
o(X1, Xo) 7s tnadmissible.

Proor. We first note that ¢(X:, X.) is a translation-symmetric invariant
estimator and from (3.19) o(X;, X») = Z; + Z,. Clearly if Z, + Z, is inad-
missible among the class of translation-symmetric invariant estimators then it is
inadmissible. Since f is normal it follows from the development in Section 3 that
the class of admissible translation-symmetric invariant estimates is determined
by the class of admissible estimates for estimating w, when observing (Z., Y)
and the conditional density of Z, given Y is ¢2(z — w, y) + ¢g2(2 + w, y). (See
(3.13) for the definition of g;.) Once again, since f is normal it follows that Z,
and Y are independent and that g, is the normal density with constant and known
variance. Without loss of generality we let the variance be 1. Thus, the problem
is reduced to showing that the single observation Z on a non-negative random
variable with density

(4.24) 9(z, 0) = (2m)HeE GO 250, w >0,

is an inadmissible estimator of w when the loss is squared error. Note that the
density (4.24) satisfies the conditions of a theorem due to Sacks (1963), Remark
3, p. 766. That is, for ¢ > 0, if we replace ¢** by g(z + ¢, w)/g(2, w) in Assump-
tion 3 of Sacks, then this assumption is not violated. Assumption 3 requires that,
for each ¢t > 0, and each ¢ > 0,

(4.25) SuPuzo (8 — @)*g(2, 0)/g(2 + & w) < =,
and
(4.26) T 4cseo SUPuza (E — @)% g(2, )/g(2 + ¢ w) = 0.

If we use (4.24), then we see that conditions (4.25) and (4.26) are satisfied,
for we get after simplifying,

(+.27)  supuzo (¢ — w)2(e” + )/ (€™ + & e )
= Sup‘,,go{(t - O))2(1 + e—sz)/(ewe + e——2wze—we)}.

Clearly the right hand side of (4.27) is finite, and it is also clear that
Him 4. supuz4 Of the bracketed factor on the right hand side of (4.27) is zero.
Hence, from Sacks’ result, Z will be inadmissible if it is not a generalized Bayes
solution. But Z cannot be a generalized Bayes solution, since if it were, there
would exist a generalized distribution £(68) such that

(4:.28) 5 = J’BO w'(e—-(z—w)'zl‘z + e—(z+w)2/2) dé(w)/ J‘:)O (e——(z—w)2/2 + e——(z+w)2/2) dE(O)).
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Clearly when z is zero, the right hand side of (4.28) is strictly positive. Hence
no £(w) satisfying (4.28) can exist and the theorem is proved.

Remark. Note that in this section we proved the admissibility of Z; +
v*(Z, Y1, Ys) for p + « when the loss is squared error. The proof required
us to view the problem in a two dimensional parameter space. Under appropriate
conditions, Z; is admissible for u with respect to squared error loss and v*(Z,,
Y1, Y,) is admissible for w with respect to squared error loss. The risk of Z; + ¥
for estimating p + w, under (3.16), is the sum of the risks for estimating the
individual parameters. This suggests the following question. Let X;, ¢ = 1, 2,
---, k, be independent random variables with distribution F,(X, 6;). Let
d.(x;) be admissible estimators for estimating 6; with loss function L(3, ). When
will 8* = D % 8:(x:) be an admissible estimator for 6% = D %= 0;, when the
loss function is L(8%, 6*)? Clearly, this is the case when we estimate normal
means with known variances when the loss is squared error. The admissibility
result of this section is another example of when this may be done.

Acknowledgment. The authors are grateful to the referee for improvement of
the original version of this paper. In particular his efforts are responsible for a
stronger statement of Theorem 3.1 and shorter proofs of Theorem 3.1 and Lemma
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